Supplementary Information

Controlled synthesis of $Sb_2(S_{1-x}Se_x)_3$ ($0 \le x \le 1$) Solid Solution and the Effect of Composition Variation on Eletrocatalytic Energy Conversion and Storage

Malik Dilshad Khan,¹* Saif Ullah Awan,² Camila Zequine,³ Chunyang Zhang,³ Ram K. Gupta,³ and Neerish Revaprasadu¹*

¹Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa.

Corresponding Authors

*Email: RevaprasaduN@unizulu.ac.za *Email: malikdilshad@hotmail.com

²Department of Electrical Engineering, NUST College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST) Islamabad 44000, Pakistan.

³Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA.

Figure S1. Thermogravimetric analysis of (a) complex (1) and (b) complex (2).

Figure S2. Diffraction pattern of Sb_2S_3 and Sb_2Se_3 , obtained from decomposition of tris(thiobenzoato)Sb(III) and tris(selenobenzoato)Sb(III), respectively.

Figure S3. Crystal structure of Sb₂S₃ and Sb₂Se₃ viewed along different axis.

Figure S4. Plot showing change in concentration of Selenium and Sulfur content against Se/(Se+S) composition.

Figure S5. Elemental mapping of samples with different selenium concentration, showing uniform distribution of antimony, sulfur and selenium.

Figure S6. UV-Vis-NIR spectroscopic analysis of the binary and ternary nanomaterials with different stoichiometry of $Sb_2(S_{1-x}Se_x)_3$ (where $0 \le x \le 1$), indicating shift in absorption peaks.

Figure S7. Tafel slopes of all $Sb_2(S_{1\text{-}x}Se_x)_3$ (where $0 \leq x \leq 1),$ samples.

Figure S8. |Z| vs. frequency plots for (a)SbS, (b) SbSSe-1, (c) SbSSe-2, (d) SbSSe-3, (e) SbSSe-4 and (f) SbSe samples.