# Discovery of N-(indazol-3-yl)-piperidine-4-carboxylic acids as ROR $\gamma \mathbf{t}$ Allosteric Inhibitors for Autoimmune Diseases 

Hongjun Zhang, ${ }^{*,}{ }^{\S, 1}$ Blair T. Lapointe, ${ }^{\S, 1}$ Neville Anthony, ${ }^{\S, 1}$ Rita Azevedo, ${ }^{\S, 2}$ Jos Cals, ${ }^{\S, 2}$ Craig C. Correll, ${ }^{\%, 1}$ Matthew Daniels ${ }^{\pi, 1}$ Sujal Deshmukh, ${ }^{\Pi, 1}$ Hans van Eenenaam, ${ }^{\%, 2}$ Heidi Ferguson, ${ }^{\Delta, 1}$ Laxminarayan G. Hegde, ${ }^{\#, 1}$ Willem Jan Karstens ${ }^{\S, 2}$ John Maclean, ${ }^{\Lambda, 1}$ J. Richard Miller,, ${ }^{, 1}$ Lily Y. Moy, ${ }^{\#, 1}$ Vladimir Simov, ${ }^{\S, 1}$ Sunil Nagpal, $\%, 1$ Arthur Oubrie, ${ }^{\S, 2}$ Rachel L. Palte, ${ }^{\S, 1}$ Gopal Parthasarathy, ${ }^{\varsigma, 3}$ Nunzio Sciammetta, ${ }^{\S, 1}$ Mario van der Stelt, ${ }^{\S, 2}$ Janice D. Woodhouse, ${ }^{\#, 1}$ B. Wesley Trotter, ${ }^{\S, 1}$ Kenneth Barr ${ }^{\S, 1}$
 and Drug Metabolism, ${ }^{\triangle}$ Basic Pharmaceutical Sciences, ${ }^{\wedge}$ Modeling \& Informatics, "In Vitro and In Vivo Pharmacology, and ${ }^{\text {s }}$ Structural Determination
${ }^{1}$ Merck \& Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, USA.
${ }^{2}$ Merck Sharp \& Dohme, Molenstraat 110, Oss 5342 CC, The Netherlands.
${ }^{3}$ Merck \& Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA.
Table of Contents
Abbreviations ..... S2
Synthetic procedures ..... S3
Protocols for ROR $\gamma$ t biochemical TR-FRET, cellular GAL4, and PBMC assays. ..... S20
Protocol of PD model Bcl-xL ..... S22
X-ray structure-determination statistics of 25 ..... S23
Panlabs profiling data of $\mathbf{2 5}$ ..... S24
Procedure for rat and dog pharmacokinetic (PK) study ..... S28
References ..... S29

## Abbreviations

DCM: dichloromethane
DMF: dimethylformamide
$\mathrm{KOH}:$ potassium hydroxide
EtOAc: ethyl acetate
DMAP: 4-dimethylaminopyridine
TBDPS-Cl: tert-butyldimethylphenylsilyl chloride
MTBE: methyl tert-butyl ether
TR-FRET: time-resolved fluorescence energy transfer
PBMC: peripheral blood mononuclear cell
PCR: polymerase chain reaction

## Preparation of 4-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-3fluorobenzoate (12)



Step1: To a solution of 4-fluoroindazole ( $5.0 \mathrm{~g}, 37 \mathrm{mmol}$ ) in DMF $(80 \mathrm{~mL})$ at rt was added $\mathrm{I}_{2}$ $(18.6 \mathrm{~g}, 74 \mathrm{mmol})$ and $\mathrm{KOH}(7.73 \mathrm{~g}, 138 \mathrm{mmol})$ respectively. The reaction mixture was stirred at rt for 2 h , and TLC showed complete conversion. The reaction mixture was poured into aq. $\mathrm{NaHSO}_{3}(10 \%, 200 \mathrm{~mL})$ and extracted with EtOAc (200 mLx3). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude solid was washed with hexanes to give the desired product as a yellow solid ( $8.33 \mathrm{~g}, 86 \%$ ). LCMS calc'd for $\left[\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{FIN}_{2}\right)+\mathrm{H}\right]^{+}: 263$, found: 263.

Step2: To a mixture of 4-fluoro-3-iodo-1 $H$-indazole ( $5.24 \mathrm{~g}, 20 \mathrm{mmol}$ ), 2-chloro-6(trifluoromethyl)benzoyl chloride ( $4.86 \mathrm{~g}, 20 \mathrm{mmol}$ ), DMAP ( $2.44 \mathrm{~g}, 20 \mathrm{mmol}$ ) and DCM ( 30 mL ) was added triethylamine ( $5.8 \mathrm{~mL}, 40 \mathrm{mmol}$ ) drop wise. After the addition, the reaction mixture was kept stirring at rt for 14 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM. The combined organics were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel flash chromatography ( $2-10 \% \mathrm{EtOAc} / \mathrm{hexanes}$ ) to give the desired ( $7.8 \mathrm{~g}, 83 \%$ ). LCMS calc'd for $\left[\left(\mathrm{C}_{15} \mathrm{H}_{6} \mathrm{ClF}_{4} \mathrm{IN}_{2} \mathrm{O}\right)+\mathrm{H}\right]^{+}: 469$, found: 469.

Step3: A mixture of (2-chloro-6-(trifluoromethyl)phenyl)(4-fluoro-3-iodo-1 H - indazol-1yl)methanone ( $300 \mathrm{mg}, 0.64 \mathrm{mmol}$ ), 2-fluoro-4-(methoxycarbonyl)phenylboronic acid ( 190 mg , $0.96 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(52 \mathrm{mg}, 0.064 \mathrm{mmol})$ and $\mathrm{KOAc}(190 \mathrm{mg}, 1.92 \mathrm{mmol})$ in dioxane ( 10 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was heated at $90{ }^{\circ} \mathrm{C}$ for 2 h under microwave. The reaction mixture was cooled down, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated. The crude residue was purified by silica gel flash chromatography ( $0-5 \% \mathrm{EtOAc} /$ hexanes) to give the desired product as a yellow solid ( 180 mg ). LCMS calc'd for $\left[\left(\mathrm{C}_{23} \mathrm{H}_{12} \mathrm{ClF}_{5} \mathrm{~N}_{2} \mathrm{O}_{3}\right)+\mathrm{H}\right]^{+}: 495$, found: 495.

Step 4: To a solution of methyl 4-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-3-fluorobenzoate ( $180 \mathrm{mg}, 0.36 \mathrm{mmol}$ ) in THF ( 5 ml ) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was added LiOH ( 350 $\mathrm{mg}, 1.44 \mathrm{mmol}$ ). The reaction mixture was stirred at rt for 14 h , acidified with 2 N HCl to $\mathrm{pH}=$ $3 \sim 4$. The mixture was concentrated to give a white solid, which was rinsed with $\mathrm{H}_{2} \mathrm{O}$ to furnish the desired product ( 160 mg , purity $>95 \%$ ). LCMS calc'd for $\left[\left(\mathrm{C}_{22} \mathrm{H}_{10} \mathrm{ClF}_{5} \mathrm{~N}_{2} \mathrm{O}_{3}\right)+\mathrm{H}\right]^{+}: 481$, found: 481. ${ }^{1} \mathrm{H}$ NMR (DMSO-d6, 600MHz) $\delta 13.6$ (br s) $8.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}$ ); $8.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2$ $\mathrm{Hz}) ; 7.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2) ; 7.91(2 \mathrm{H}, \mathrm{m}) ; 7.86(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}) ; 7.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10,1.4 \mathrm{~Hz})$; $7.70(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}) ; 7.47(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d6): 166.2 (d, J = 2.5 Hz ); 164.8; 160.1 (d, J = 250 Hz ); 155.3 (d, J = 255 Hz ); 144.4 (d, J = 3.1); 141.5 (d, J = 6.3 Hz); $135.4(\mathrm{~d}, \mathrm{~J}=6.9) ; 134.3 ; 133.9(\mathrm{~d}, \mathrm{~J}=8.1) ; 133.2 ; 132.3 ; 132.1(\mathrm{q}, \mathrm{J}=2.1 \mathrm{~Hz}) ; 131.9 ; 128.1(\mathrm{q}$, $\mathrm{J}=32.1 \mathrm{~Hz}) ; 126.0(\mathrm{q}, \mathrm{J}=3.9 \mathrm{~Hz}) ; 126.0(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}) ; 123.3(\mathrm{q}, \mathrm{J}=274 \mathrm{~Hz}) ; 122.8(\mathrm{~d}, \mathrm{~J}=14.8$ $\mathrm{Hz}) ; 117.0(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}) ; 115.0(\mathrm{~d}, \mathrm{~J}=19.6 \mathrm{~Hz}) ; 112.6(\mathrm{~d}, \mathrm{~J}=18.6 \mathrm{~Hz}) ; 111.8(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}) ;$

Preparation of 4-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-1H-pyrazolo[4,3-b]pyridin-3-yl)-3-fluorobenzoic acid (14).



Compound 14 was synthesized from commercially available 3 -iodo-1H-pyrazolo[4,3-b]pyridine by following a similar route as described for 12. LCMS calc'd for $\left[\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClF}_{4} \mathrm{~N}_{3} \mathrm{O}_{3}\right)+\mathrm{H}\right]^{+}: 464$, found: 464. HRMS calc'd for $\left[\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClF}_{4} \mathrm{~N}_{3} \mathrm{O}_{3}\right)+\mathrm{H}\right]^{+}: 464.0420$, found: 464.0431. ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta 8.97$ (dd, $J=4.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.91 (dd, $J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.39 (t, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.90-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{dd}, J=10.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 151 MHz, DMSO) $\delta 166.29$, $165.04,159.88\left({ }^{1} \mathrm{~J}_{\mathrm{CF}}=256.1 \mathrm{~Hz}\right), 150.60,146.28,142.74,135.19,134.27,133.24,133.02,132.43$, $132.05,131.73,128.32,126.02,125.85,125.55,123.50,122.43\left({ }^{1} \mathrm{~J}_{\mathrm{CF}}=272.9 \mathrm{~Hz}\right), 121.37,117.50$.

Preparation of 1-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)piperi dine-4-carboxylic acid (20)


Step 1. To a mixture of (2-chloro-6-(trifluoromethyl)phenyl)(4-fluoro-3-iodo-1H-indazol-1-yl) methanone ( $2.0 \mathrm{~g}, 4.2 \mathrm{mmol}$ ) and methyl piperidine-4-carboxylate ( $3.06 \mathrm{~g}, 21.4 \mathrm{mmol}$ ) in DMF $(20 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.77 \mathrm{~g}, 12.8 \mathrm{mmol})$. The mixture was stirred at $130{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ for 10 hrs . The mixture was diluted with water $(500 \mathrm{~mL})$ and extracted with EtOAc $(100 \mathrm{~mL} * 3)$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified with column (petane : $\mathrm{EtOAc}=8: 1$ to $5: 1$ ) to give the title compound as white solid ( 1.1 g , yield: $42 \%$ ). LCMS calc'd for $\left[\left(\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClF}_{4} \mathrm{~N}_{3} \mathrm{O}_{3}\right)+\mathrm{H}\right]^{+}: 484$, found: 484.

Step 2. To a solution of methyl 1-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)piperidine-4-carboxylate ( $5.2 \mathrm{~g}, 10.8 \mathrm{mmol}$ ) in THF / $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL} / 10 \mathrm{~mL})$ was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(901 \mathrm{mg}, 21.5 \mathrm{mmol})$ and under $\mathrm{N}_{2}$ at $6^{\circ} \mathrm{C}$. The mixture was stirred at ambient temperature for 10 hrs . After TLC showed the reaction was completed, the mixture was diluted $(300 \mathrm{~mL})$ and acidified with aqueous HCl . The solution was extracted with EtOAc ( 50 mL * 3). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified with prep-HPLC (acetonitrile $+0.75 \%$ trifluoroacetic acid in water) to give the title compound ( 4.1 g , yield: $93 \%$, purity $>95 \%$ ). LCMS calc'd for $\left[\left(\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClF}_{4} \mathrm{~N}_{3} \mathrm{O}_{3}\right)+\mathrm{H}\right]^{+}: 470$, found: 470.

## Preparation of racemic ethyl 4-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1 H -indazol-3-yl)cyclohex-3-enecarboxylate (21)



21

Step 1. To a mixture of (2-chloro-6-(trifluoromethyl)phenyl)(4-fluoro-3-iodo-1H-indazol-1yl)methanone ( $1 \mathrm{~g}, 2.1 \mathrm{mmol}$ ) in THF ( 40 mL ) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added ethyl $4-(4,4,5,5-$ tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-3-enecarboxylate ( $897 \mathrm{mg}, 3.2 \mathrm{mmol}$ ) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(667 \mathrm{mg}, 6.3 \mathrm{mmol})$. The mixture was purged with nitrogen followed by the addition of $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ( $726 \mathrm{mg}, 0.63 \mathrm{mmol}$ ). The reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 10 h . The resulting mixture was cooled down, filtered through Celite. The filtrate was diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with EtOAc. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude residue was purified by silica gel flash chromatography ( $0-10 \% \mathrm{EtOAc} /$ hexanes ) to give the desired product ( $300 \mathrm{mg}, 29 \%$ ) as a brown oil. LCMS calc'd for $\left[\left(\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClF}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}\right)+\mathrm{H}\right]^{+}: 495$, found: 495.

Step2. To a mixture of ethyl 4-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro -1 H -indazol-3-yl)cyclohex-3-enecarboxylate from previous step ( $100 \mathrm{mg}, 0.36 \mathrm{mmol}$ ) in in 5 ml THF/5 ml $\mathrm{H}_{2} \mathrm{O}$ was added $\mathrm{LiOH}(350 \mathrm{mg}, 1.44 \mathrm{mmol})$. The mixture was stirred at rt for 14 h , and acidified with 2 N HCl . The mixture was concentrated under reduced pressure to afford the desired product.

LCMS calc'd for $\left[\left(\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClF}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}\right)+\mathrm{H}\right]^{+}: 467$, found: 467

Preparation of (3R,4R and 3S, 4S)-1-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-3-hydroxypiperidine-4-carboxylic acid (22), (3R,4S)-1-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-3-hydroxypiperidine-4-carboxylic acid (23) and (3S,4R)-1-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-3-hydroxypiperidine-4-carboxylic acid (24)


Step1: To a solution of 1-benzyl-3-oxo-piperidine-4-carboxylic acid ethyl ester ( $1.4 \mathrm{~g}, 5.4 \mathrm{mmol}$ ) in ethanol $(13.4 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(0.203 \mathrm{~g}, 5.36 \mathrm{mmol})$ portionwise. ${ }^{1}$ After addition, the reaction mixture was kept stirring for additional 30 mins. Then the reaction mixture was concentrated under reduced pressure, diluted with EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, washed with brine, dried over $\mathrm{MgSO}_{4}$, and concentrated. The residue was purification by flash chromatography ( $10-60 \%$ EtOAc/hexanes) to give 0.52 g ( $37 \%$ ) of ethyl 1-benzyl-3-hydroxypiperidine-4-carboxylate as a mixture of cis and trans isomer (ratio $\sim 2.3: 1$ ), LCMS calc'd for $\left[\left(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3}\right)+\mathrm{H}\right]^{+}: 264$, found: 264.
Step2: To a flask containing a solution of ethyl 1-benzyl-3-hydroxypiperidine-4-carboxylate $(0.52 \mathrm{~g}, 1.98 \mathrm{mmol})$ in ethanol $(9.9 \mathrm{ml})$ was added palladium hydroxide on carbon $(0.069 \mathrm{~g}, 0.099$ $\mathrm{mmol})$. The mixture was stirred at rt for 14 h with a hydrogen balloon. Then the mixture was filtered through celite and rinsed with EtOAc. The filtrate was concentrated and used directly for next step.

Step3: To a flask was added (2-chloro-6-(trifluoromethyl)phenyl)(4-fluoro-3-iodo-1H-indazol-1yl)methanone ( $500 \mathrm{mg}, 1.067 \mathrm{mmol}$ ), ethyl 3-hydroxypiperidine-4-carboxylate (crude from step 2,
$314 \mathrm{mg}, 1.81 \mathrm{mmol}$ ), DMF ( 5.4 ml ), copper(i) iodide ( $31 \mathrm{mg}, 0.16 \mathrm{mmol}$ ), cesium carbonate ( 869 $\mathrm{mg}, 2.67 \mathrm{mmol}$ ) and 2-isobutyrylcyclohexanone ( $53.9 \mathrm{mg}, 0.320 \mathrm{mmol}$ ). The mixture was degassed for 5 min , then sealed and heated at $90^{\circ} \mathrm{C}$ for 12 h . The mixture was cooled down, diluted with EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, washed with brine, dried over $\mathrm{MgSO}_{4}$, concentrated. The residue was purified by flash chromatography ( $10-70 \% \mathrm{EtOAc} / \mathrm{hexances}$ ) to give $\sim 100 \mathrm{mg}$ of product, which was contaminated by some minor impurity. The material was repurified by prep-TLC ( $5 \% \mathrm{EtOAc} / \mathrm{DCM}$, develop twice) to give two racemic isomers. Cis-isomer: 56 mg (yield $10 \%$ ), less polar. Trans-isomer, 32 mg (yield $5.8 \%$ ), more polar. LCMS calc'd for $\left[\left(\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClF}_{4} \mathrm{~N}_{3} \mathrm{O}_{4}\right)+\mathrm{H}\right]^{+}: 514$, found: 514.

Step 4: To a solution of racemic cis-isomer (3R,4R and 3S,4S)-ethyl 1-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-3-hydroxypiperidine-4-carboxylate (18mg, 0.035 mmol , cis-isomer from step 3) in THF ( 1 ml ) / $\mathrm{MeOH}(0.5 \mathrm{ml})$ was added lithium hydroxide ( $0.175 \mathrm{ml}, 0.175 \mathrm{mmol}$ ). The mixture was stirred at rt for 2 h . The mixture was acidified with 2 N HCl to $\mathrm{pH}=3 \sim 4$, and extracted with EtOAc. The organic layer was dried over $\mathrm{MgSO}_{4}$, concentrated, and purified by singleton (reverse HPLC, $0-100 \% \mathrm{CH} 3 \mathrm{CN} / \mathrm{H} 2 \mathrm{O}$ with $0.1 \% \mathrm{TFA}$ ) to give racemic (3R,4R and 3S, 4S)-1-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-3-hydroxypiperidine-4-carboxylic acid 22 ( 14 mg , yield $82 \%$ ). LCMS calc'd for $\left[\left(\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClF}_{4} \mathrm{~N}_{3} \mathrm{O}_{4}\right)+\mathrm{H}\right]^{+}: 486$, found: $486 .{ }^{1} \mathrm{H}$ NMR ( 600 MHz , DMSO- $d_{6}$ ) $\delta 12.06(\mathrm{~s}, 1 \mathrm{H}), 8.25$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.91 (dt, $J=33.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.82-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.29$ (dd, $J=11.0,8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 3.78-3.05(\mathrm{~m}, 4 \mathrm{H}), 2.94(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{q}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.05-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.41(\mathrm{~m}, 1 \mathrm{H})$.
Step5: 32 mg of racemic trans-isomer from step 3 was subjected to chiral separation [Chiral cel OJ-H, $21 \times 250(\mathrm{~mm}), 10 \% \mathrm{MeOH}$ as modifier in $\left.\mathrm{CO}_{2}\right]$ to afford two enantiomers. Enantiomer 1: 13 mg , retention time 3.31 min and 3.60 min (two rotamers), (3R,4S)-ethyl 1-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-3-hydroxypiperidine-4-carboxylate.

Enantiomer 2: 10mg, retention time 5.17 min and 6.31 min (two rotamers), (3S,4R)-ethyl 1-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-3-hydroxypiperidine-4carboxylate.

To a solution of (3R,4S)-ethyl 1-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-3-hydroxypiperidine-4-carboxylate ( $13 \mathrm{mg}, 0.025 \mathrm{mmol}$, enantiomer 1 from chiral separation)
in THF $(1 \mathrm{ml}) / \mathrm{MeOH}(0.5 \mathrm{ml})$ was added lithium hydroxide $(0.253 \mathrm{ml}, 0.253 \mathrm{mmol})$. The mixture was stirred at rt for 2 h . The mixture was acidified with 2 N HCl to $\mathrm{pH}=3 \sim 4$, and extracted with EtOAc. The organic layer was dried over $\mathrm{MgSO}_{4}$, concentrated. The residue was purified by reverse HPLC ( $\left.50-85 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}\right)$. The desired fraction was collected, diluted with EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{MgSO}_{4}$, concentrated to give (3R,4S)-1-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-3-hydroxypiperidine-4-carboxylic acid 23 ( $10 \mathrm{mg}, 83 \%$ ). LCMS calc'd for $\left[\left(\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClF}_{4} \mathrm{~N}_{3} \mathrm{O}_{4}\right)+\mathrm{H}\right]^{+}$: 486, found: 486. ${ }^{1} \mathrm{H}$ NMR ( 600 MHz , Methanol- $d_{4}$ ) $\delta 8.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=11.5$, $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{td}, J=8.1,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=10.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{ddq}, J=28.5$, 11.7, $5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.74-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.24(\mathrm{~m}$, $1 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{ddt}, J=21.0,13.7,6.3 \mathrm{~Hz}, 1 \mathrm{H})$.

To a solution of (3S,4R)-ethyl 1-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-3-hydroxypiperidine-4-carboxylate, ( $10 \mathrm{mg}, 0.019 \mathrm{mmol}$, enantiomer 2 from chiral separation) in THF ( 1 ml ) was added lithium hydroxide $(0.195 \mathrm{ml}, 0.195 \mathrm{mmol})$. The mixture was stirred at rt for 2 h . The mixture was acidified with 2 N HCl to $\mathrm{pH}=3 \sim 4$, extracted with EtOAc. The organic layer was dried over $\mathrm{MgSO}_{4}$, and concentrated. The residue was purified by reverse HPLC (50$85 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%$ TFA) . The desired fraction was collected, diluted with EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{MgSO}_{4}$, concentrated to give (3S,4R)-1-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-3-hydroxypiperidine-4carboxylic acid 24 ( 8 mg , yield 84\%) . LCMS calc'd for $\left[\left(\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClF}_{4} \mathrm{~N}_{3} \mathrm{O}_{4}\right)+\mathrm{H}\right]^{+}: 486$, found: 486. ${ }^{1} \mathrm{H}$ NMR ( 600 MHz , Methanol- $d_{4}$ ) $\delta 8.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=11.5,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.66$ $(\mathrm{td}, J=8.1,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=10.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{ddq}, J=28.5,11.7,5.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.74-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.83$ (m, 1H), 1.78 (ddt, $J=21.0,13.7,6.3 \mathrm{~Hz}, 1 \mathrm{H})$.

## Preparation of (3S,4R) -1-(1-(2-chloro-6-cyclopropylbenzoyl)-4-fluoro-1H-indazol-3-yl)-3-

 hydroxypiperidine-4-carboxylic acid (25)


1) Preparation of 2-chloro-6-cyclopropylbenzoic acid


Step 1. To a solution of 1-bromo-3-chlorobenzene ( $81.5 \mathrm{~g}, 0.43 \mathrm{~mol}$ ) in 500 mL of THF was added LDA ( $255 \mathrm{~mL}, 0.51 \mathrm{~mol}$ ) solution dropwise at $-78^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was stirred at the same temperature for 1 h . After the addition of $\mathrm{N}, \mathrm{N}$-dimethylformamide ( $50 \mathrm{~mL}, 0.64 \mathrm{mmol}$ )
at $-78{ }^{\circ} \mathrm{C}$ dropwise, the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for additional 2 hrs . TLC showed the reaction was completed (Pentane:EtOAc=10:1), then the mixture was quenched by sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(100 \mathrm{~mL})$ and extracted with EtOAc $(300 \mathrm{~mL} * 3)$. The combined organic layers were washed with brine ( $100 \mathrm{~mL} * 2$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Pentane:EtOAc $=100: 1$ ) to give $50 \mathrm{~g}(55 \%)$ of the title compound as a yellow solid. LCMS calc'd for $\left[\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BrClO}\right)+\mathrm{H}\right]^{+}: 219$, found: 219.

Step 2. To a solution of 2-bromo-6-chlorobenzaldehyde ( $27 \mathrm{~g}, 123 \mathrm{mmol}$ ) in 540 mL of toluene/ $\mathrm{H}_{2} \mathrm{O}(8: 1)$ were added $\mathrm{K}_{3} \mathrm{PO}_{4}(98.5 \mathrm{~g}, 369 \mathrm{mmol})$, cyclopropylboronic acid ( $16 \mathrm{~g}, 185 \mathrm{mmol}$ ) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2.8 \mathrm{~g}, 246 \mathrm{mmol})$ under $\mathrm{N}_{2}$. The mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After the reaction finished (monitored with TLC, Pentane: $\mathrm{EtOAc}=20: 1$ ), the mixture was cooled to $25^{\circ} \mathrm{C}$ and filtered. The filtration was concentrated in vacuo. The residue was purified by column chromatography on silica gel (Pentane:EtOAc $=100: 1$ ) to give $15 \mathrm{~g}(55 \%)$ of the title compound as a yellow oil. LCMS calc'd for $\left[\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}\right)+\mathrm{H}\right]^{+}: 181$, found: 181.

Step 3. To a solution of 2-chloro-6-cyclopropylbenzaldehyde ( $14 \mathrm{~g}, 77.7 \mathrm{mmol}$ ), $\mathrm{NaH}_{2} \mathrm{PO}_{4}(65 \mathrm{~g}$, $544 \mathrm{mmol})$ and $\mathrm{NH}_{2} \mathrm{SO}_{3} \mathrm{H}(26 \mathrm{~g}, 271 \mathrm{mmol})$ in 300 mL of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1)$ was added $\mathrm{NaClO}_{2}(17.5$ $\mathrm{g}, 194 \mathrm{mmol}$ ) in 50 mL of water dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 3 h . After the reaction finished (monitored with TLC, Pentane:EtOAc $=5: 1$ ), the mixture was diluted with 100 mL of water and extracted with EtOAc ( $300 \mathrm{~mL} * 3$ ). The combined organic layers were washed with water ( $100 \mathrm{~mL} * 2$ ), brine $(100 \mathrm{~mL} * 2)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Pentane: $\mathrm{EtOAc}=10: 1$ to pure DCM) to give $13 \mathrm{~g}(86.7 \%)$ of the title compound as a yellow solid. LCMS calc'd for $\left[\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{2}\right)+\mathrm{H}\right]^{+}$: 197, found: 197.

## 2) Preparation of 4-fluoro-3-iodo-1-(tetrahydro-2H-pyran-2-yl)-1H-indazole



To a solution of 4-fluoro-3-iodo-1H-indazole ( $10 \mathrm{~g}, 38.1 \mathrm{mmol}$ ) in 150 mL of THF was added dihydropyran (DHP) ( $11.5 \mathrm{~g}, 122.4 \mathrm{mmol}$ ) and PTSA ( $776 \mathrm{mg}, 4 \mathrm{mmol}$ ). The reaction mixture heated to reflux for 6 h . After the reaction was finished, The reaction mixture was poured into
water. The mixture was extracted with EtOAc $(300 \mathrm{~mL} * 3)$ and the extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to afford crude, the crude product was purified by silica gel chromatography eluted with Pentane: $\mathrm{EtOAc}=50: 1$ to $5: 1$ to afford the title compound ( 7 g , yield: 54\%) as a yellow solid. LCMS calc'd for $\left[\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FIN}_{2} \mathrm{O}\right)+\mathrm{H}\right]^{+}: 347$, found: 347 .
3) Preparation of (3S,4R) -1-(1-(2-chloro-6-cyclopropylbenzoyl)-4-fluoro-1H-indazol-3-yl)-

## 3-hydroxypiperidine-4-carboxylic acid

Step 1. A solution of ethyl 1-benzyl-3-oxopiperidine-4-carboxylate, $\mathrm{HCl}(20.0 \mathrm{~g}, 67.2 \mathrm{mmol})$ in $\mathrm{MeOH}(200 \mathrm{ml})$ in a 500 ml 3-neck round bottle flask equipped with thermocouple was cooled to $0^{\circ} \mathrm{C}$ and charged with sodium borohydride $(7.62 \mathrm{~g}, 201 \mathrm{mmol})$ portionwise over a period of 75 min, avoiding excessive gas evolution. Then cooling bath was removed and the reaction mixture was kept stirring at rt for 2.5 hr . The mxiture was cooled to $0^{\circ} \mathrm{C}$ again, quenched dropwise with $200 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and extracted into EtOAc. The combined organic layers were washed with water, brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford crude ethyl 1-benzyl-3-hydroxypiperidine-4-carboxylate. LCMS calc'd for $\left[\left(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3}\right)^{+} \mathrm{H}\right]^{+}: 264$, found: 264.

Step 2. A solution of ethyl 1-benzyl-3-hydroxypiperidine-4-carboxylate ( $16.95 \mathrm{~g}, 63.5 \mathrm{mmol}$ ) from previous step and imidazole $(13.15 \mathrm{~g}, 193 \mathrm{mmol})$ in DMF $(85 \mathrm{ml})$ was cooled to $0^{\circ} \mathrm{C}$, followed by the addition of TBDPS-Cl ( $15 \mathrm{ml}, 58.4 \mathrm{mmol}$ ). The reaction mixture was stirred at rt for 65 hr , quenched with 100 ml water slowly and extracted with MTBE. The combined organics were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo onto $\mathrm{SiO}_{2}$ and purified via flash chromatography (Silicycle $40 \mathrm{~g}, 0-15 \%$ EtOAc/Hexanes) to afford ethyl trans-1-benzyl-3-((tert-butyldiphenylsilyl)oxy)piperidine-4-carboxylate (10.3 g, $27 \%$ over 2 steps). LCMS calc'd for $\left[\left(\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{Si}\right)+\mathrm{H}\right]^{+}: 502$, found: 502 .

Step 3. A solution of ethyl trans-1-benzyl-3-((tert-butyldiphenylsilyl)oxy)piperidine-4carboxylate $(10.3 \mathrm{~g}, 20.4 \mathrm{mmol})$ and $\mathrm{AcOH}(5.85 \mathrm{ml}, 102 \mathrm{mmol})$ in ethanol $(50 \mathrm{ml})$ was evacuated and backfilled nitrogen ( 3 x ), charged with $\operatorname{Pd}-\mathrm{C}(2.08 \mathrm{~g}, 1.955 \mathrm{mmol})$, evacuated and backfilled with hydrogen (3x). The reaction mixture was stirred at rt for 14 hr under a balloon of hydrogen, filtered through celite, and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated filtrate in vacuo, then taken up in 100 ml EtOAc. The mixture was stirred vigorously with 200 ml sat aq $\mathrm{NaHCO}_{3}$. The organic layer was separated and washed with sat aq $\mathrm{NaHCO}_{3}$, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
filtered and concentrated filtrate in vacuo to provide ethyl trans-3-((tert-butyldiphenylsilyl)oxy)piperidine-4-carboxylate (7.96g, 94\%). LCMS calc'd for $\left[\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}\right)+\mathrm{H}\right]^{+}: 412$, found: 412.

Step 4. A mixture of 4-fluoro-3-iodo-1-(tetrahydro-2H-pyran-2-yl)-1H-indazole ( $5.00 \mathrm{~g}, 14.5$ $\mathrm{mmol})$, ethyl trans-3-((tert-butyldiphenylsilyl)oxy)piperidine-4-carboxylate ( $7.96 \mathrm{~g}, 17.60 \mathrm{mmol}$ ), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(14.12 \mathrm{~g}, 43.3 \mathrm{mmol}$ ) and RuPhos G1 Precat ( $953 \mathrm{mg}, 1.17 \mathrm{mmol}$ ) in dioxane ( 35 ml ) was sparged with $\mathrm{N}_{2}$, sealed and The mixture was heated to $80^{\circ} \mathrm{C}$ for 20 h , filtered through celite, and rinsed with EtOAc. The filtrate was concentrated organics in vacuo onto $\mathrm{SiO}_{2}$ and purified via flash chromatography (10-40\% EtOAc/Hexanes) to provide ethyl trans-3-((tert-butyldiphenylsilyl)oxy)-1-(4-fluoro-1-(tetrahydro-2H-pyran-2-yl)-1H-indazol-3-yl)piperidine-4carboxylate $(8.0 \mathrm{~g}, 96 \%)$. LCMS calc'd for $\left[\left(\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{Si}\right)+\mathrm{H}\right]^{+}: 630$, found: 630.

Step 5. A solution of ethyl trans-3-((tert-butyldiphenylsilyl)oxy)-1-(4-fluoro-1-(tetrahydro-2H-pyran-2-yl)-1H-indazol-3-yl)piperidine-4-carboxylate ( $8.0 \mathrm{~g}, 12.8 \mathrm{mmol}$ ) in DCM ( 56 ml ) and methanol ( 16 ml ) in a 250 ml 3-neck RBF equipped with addition funnel and thermocouple was cooled to $\sim 5^{\circ} \mathrm{C}$ internal temperature, followed by the addition of concentrated $\mathrm{HCl}(10.5 \mathrm{ml}, 128$ mmol ) dropwise. After addition, the reaction mixture was kept stirring at rt for 51 h . The mixture was then diluted with water (temperature rose to $\sim 30^{\circ} \mathrm{C}$ ), and the organic layer was separated. The aqueous layer was extracted with DCM . The combined organics were washed with sat aq $\mathrm{NaHCO}_{3}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo and purified via flash chromatography ( $10-50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ ) to afford ethyl trans-3-((tert-butyldiphenylsilyl)oxy)-1-(4-fluoro-1H-indazol-3-yl)piperidine-4-carboxylate ( $4.9 \mathrm{~g}, 71 \%$ ) LCMS calc'd for $\left[\left(\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{Si}\right)+\mathrm{H}\right]^{+}: 546$, found: 546. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(4 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.4,6.8 \mathrm{~Hz}), 7.33(6 \mathrm{H}, \mathrm{m}), 7.07(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.8,7.9 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{m}), 3.98(2 \mathrm{H}, \mathrm{m}), 3.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0$, $3.8 \mathrm{~Hz}), 3.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.4 \mathrm{~Hz}), 2.99(1 \mathrm{H}, \mathrm{m}), 2.89(1 \mathrm{H}, \mathrm{m}), 2.63(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=11.8,4.1 \mathrm{~Hz}), 2.04$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 1.91(1 \mathrm{H}, \mathrm{m}), 1.16(3 \mathrm{H}, \mathrm{m}), 0.97(9 \mathrm{H}, \mathrm{s})$.

Step 6: To a flask was containing (3S,4R and 3R,4S)-ethyl 3-((tert-butyldiphenylsilyl)oxy)-1-(4-fluoro-1H-indazol-3-yl)piperidine-4-carboxylate ( $200 \mathrm{mg}, 0.37 \mathrm{mmol}$ ) was added DIPEA (256 $\mu 1,1.47 \mathrm{mmol})$, DMAP ( $22 \mathrm{mg}, 0.18 \mathrm{mmol}$ ), DCM ( 1.2 ml ), and 2-chloro-6-cyclopropylbenzoyl
chloride ( $158 \mathrm{mg}, 0.73 \mathrm{mmol}$, prepared and used as crude through reacting the corresponding benzoic acid with oxalyl chloride in the presence of catalytic amount of DMF followed by concentration) and the resulting solution was allowed to stir at room temperature overnight. The reaction mixture was then concentrated and the residue was purified by flash chromatography ( $\mathrm{EtOAc} / \mathrm{Hexanes} 0-65 \%$ ) to give desired product as a colorless solid. ( $167 \mathrm{mg}, 62 \%$ ) LCMS calc'd for $\left[\left(\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{ClFN}_{3} \mathrm{O}_{4} \mathrm{Si}\right)+\mathrm{H}\right]^{+}$: 724 , found: 724 .

Step 7: To a vial was added (3S,4R and 3R,4S)-ethyl 3-((tert-butyldiphenylsilyl) oxy)-1-(1-(2-chloro-6-cyclopropylbenzoyl)-4-fluoro-1H-indazol-3-yl)piperidine-4-carboxyl ate ( $165 \mathrm{mg}, 0.23$ $\mathrm{mmol})$, THF ( 2.3 ml ), and TBAF ( $456 \mu \mathrm{l}, 0.456 \mathrm{mmol}$ ) and the solution was heated to $50^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was cooled and diluted with saturated ammonium chloride. The mixture was diluted with ethyl acetate, washed with aqueous ammonium chloride and brine. Aqueous layers were back extracted once with ethyl acetate. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash chromatography (EtOAc/Hexane 10-75\%) to give desired product, which was separated by chiral separation to give the desired enantiomer (3S,4R)-ethyl 1-(1-(2-chloro-6-cyclopropylbenzoyl)-4-fluoro-1H-indazol-3-yl)-3-hydroxypiperidine-4-carboxylate (Peak 1, 19.6 $\mathrm{mg}, 17 \%)$. LCMS calc'd for $\left[\left(\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{ClFN}_{3} \mathrm{O}_{4}\right)+\mathrm{H}\right]^{+}: 486$, found: 486.

Step 8: To a flask was added (3S,4R)-ethyl 1-(1-(2-chloro-6-cyclopropylbenzoyl)-4-fluoro-1H-indazol-3-yl)-3-hydroxypiperidine-4-carboxylate ( $19.6 \mathrm{mg}, 0.040 \mathrm{mmol}$ ), lithium hydroxide ( $9.7 \mathrm{mg}, 0.40 \mathrm{mmol}$ ), THF ( $538 \mu \mathrm{l}$ ), and $\mathrm{H}_{2} \mathrm{O}(269 \mu \mathrm{l})$ and the solution was allowed to stir at room temperature for 2 h . The reaction mixture was acidified with 2 N HCl and then washed with EtOAc. The combined organic layers were dried With $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated under reduced pressure. The residue was purified by Prep-HPLC (Acetonitrile/Water $+0.10 \%$ TFA $50-95 \%)$ to get the desired product $25(10.7 \mathrm{mg}, 57 \%$, purity $>95 \%)$ as a colorless solid. LCMS calc'd for $\left[\left(\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClFN}_{3} \mathrm{O}_{4}\right)+\mathrm{H}\right]^{+}: 458$, found: 458. HRMS calc'd for $\left[\left(\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClFN}_{3} \mathrm{O}_{4}\right)+\mathrm{H}\right]^{+}: 458.1277$, found: 458.1290. ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta 8.36(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{td}, J=8.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dt}, J=8.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{dd}, J=11.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.55$ (m, 1H), $2.71(\mathrm{tt}, J=12.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=12.9,9.4,4.1 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.87(\mathrm{tt}, J=10.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{ddd}, J=12.6,8.4,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $0.88-0.79(\mathrm{~m}, 1 \mathrm{H}), 0.72(\mathrm{tdd}, J=7.6,6.3,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.65-0.59(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 151 $\mathrm{MHz}, \mathrm{DMSO}) \delta 176.08,166.29,154.50\left({ }^{1} \mathrm{~J}_{\mathrm{CF}}=251.5 \mathrm{~Hz}\right), 154.33,142.73,142.65,136.12$, $132.89,131.30,129.77,126.51,123.90,112.26,111.61,109.85,67.27,55.59,50.03,48.84$, 27.01, 13.72, 8.69, 8.54.

## Synthesis of 4-(1-(2,6-dichlorobenzyl)-1H-indazol-3-yl)benzoic acid (2).

Compound 2 could be synthesized by following a similar procedure as described in WO2014/028591 for example 1B by reacting methyl 4-(1H-indazol-3-yl)benzoate with 2-(bromomethyl)-1,3-dichlorobenzene followed by ester hydrolysis . LCMS calc'd for $\left[\left(\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}\right)+\mathrm{H}\right]^{+}: 397$, found: 397. Purity $>95 \%$.

## Synthesis of compounds 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19.

Synthesis of compounds $\mathbf{3 - 4 , 6 - 9}, \mathbf{1 1}, \mathbf{1 3}, \mathbf{1 5 - 1 7}$ was carried out similarly according to the method described for both $\mathbf{1 2}, \mathbf{1 4}$, and $\mathbf{5}^{2}$ by employing the corresponding commercially available boronic acids or pinacol boronic esters, aryl halides, and bis-o-substituted benzoyl chlorides. Synthesis of compound 18 and 19 was carried out by employing the corresponding aza-indazole iodide according to the method described for $\mathbf{2 0}$ and $\mathbf{2 1}$ respectively. All the final compounds showed $>95 \%$ purity as indicated by LCMS.

| Compound <br> $\#$ | Aryl halide | Coupling reagent and <br> conditions | LCMS <br> Calc'd for <br> $[\mathrm{M}+\mathrm{H}]^{+}$ | LCMS <br> Found for <br> $[\mathrm{M}+\mathrm{H}]^{+}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 *}^{*}$ |  | 411 | 411 |  |

(0)
(0)
*Final ester deprotection was carried out in the presence of TFA instead of base.

## Preparation of 4-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-2-

 hydroxybenzoic acid (10)

10

To a solution of intermediate methyl 4-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-4-fluoro-1H-indazol-3-yl)-2-methoxybenzoate (prepared according to the procedures described for compound 11) $(100 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ was added $\mathrm{BBr}_{3}(1 \mathrm{M}, 0.37 \mathrm{~mL}, 0.37 \mathrm{mmol})$ at rt , and the mixture was kept stirring for 48 h . Then $\mathrm{MeOH}(\sim 10 \mathrm{~mL})$ was added to quench excess $\mathrm{BBr}_{3}$ and the mixture was concentrated under reduced pressure. The residue was purified by prep HPLC to give the desired product $\mathbf{1 0}$ as a yellow solid. LCMS calc'd for $\left[\left(\mathrm{C}_{22} \mathrm{H}_{11} \mathrm{ClF} 4 \mathrm{~N}_{2} \mathrm{O}_{4}\right)+\mathrm{H}\right]^{+}: 479$, found: 479. H NMR ( 400 MHz , MeOD) $\delta 8.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}$ ), 7.95-7.76 (5H, m), 7.35-7.29 (3H, m). Purity >95\%.

## Biological Assays ${ }^{2}$

RORg-LBD SRC-1 cofactor peptide interaction assay - The potency of small molecule RORg ligands was assessed by monitoring their effect on the association of a LXXLL-motif containing steroid receptor coactivator (SRC1) peptide. Compound ( 10 mM DMSO stock) was serially diluted in 3-fold steps using an Agilent Bravo liquid handler. Diluted compound or DMSO (25 nL ) were transferred into a black Greiner 384 well plate (Cat\#781076) using a LabCyte Echo acoustic dispenser. To each well of the plate was added 15 uL of 3.75 nM RORg-LBD in receptor buffer ( 50 mM Tris- $\mathrm{HCl} \mathrm{pH} 7.0,50 \mathrm{mM}$ potassium chloride, 1 mM EDTA, $0.1 \%$ delipidated bovine serum albumin, 1 mM dithiothreitol, 1.25 nM Anti-His W1024 Europium chelate antibody (Perkin Elmer) and 3\% (v/v) of lysate from $\sim 24000$ Sf9 cells). Compounds were allowed to incubate with receptor for 15 minutes and then 5 uL of peptide in detection buffer or detection buffer alone were added. Detection buffer ( 5 x ) consists of 50 mM Tris-HCL pH 7.0, 50 mM potassium chloride, 1 mM EDTA, $0.1 \%$ delipidated bovine serum albumin, 1 mM dithiothreitol and 20 nM streptavidin-APC (Perkin Elmer). When peptide (BiotinSPSSHSSLTERHKILHRLLQEGSP) was included, its concentration in the 5 x stock was 250 nM . The plate was then incubated overnight at 4 degrees. The following morning the plate was warmed to room temperature and read using an Envision plate reader (Perkin Elmer). TR-FRET signal was defined as the ratio of the fluorescence emission at 615 nm to 665 nm following excitation at 337 nm . The percent activity of each dilution was determined as the ratio of background corrected signal to the background corrected signal of wells receiving only DMSO. IC50 values were determined by fitting percent activity data to a four-parameter logistic dose response equation in GraphPad Prism (GraphPad Software).

Chimeric RORg-GAL4 reporter assay- The coding sequence of RORg aa97-518 was cloned in frame with the DNA binding domain of the yeast GAL4 protein within the CMV-promoter-driven pCDNA3.1 vector. This vector, along with the GAL4 UAS-luciferase reporter vector pGL4.31 (Promega), were used to transfect HEK293T cells. Briefly, $1 \times 10^{7}$ cells in 10 mL of DMEM high glucose media with $10 \%$ FBS were transfected with a mixture consisting of 10 ug of each plasmid and 60 uL of TransIT-293 (Mirus Bio) in 1.5 mL of Optimem (Invitrogen). Following transfection, cells were transferred to one T75 flask and incubated overnight at $37{ }^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$. Compound dilutions are prepared as above and 50 nL was transferred to a 384 -well Greiner white tissueculture treated plate (catalog \#781080) using an Echo acoustic dispenser (LabCyte). Cells were
harvested and resuspended at $0.8 \times 10^{6}$ cells per mL in DMEM high glucose media with $10 \%$ FBS. To each well of the plate was added 25 uL of cell suspension and the cells incubated overnight at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$. After 20-22 hours, the plates were brought to room temperature and 25 uL of Steady-Glo luciferase reagent (Promega) was added to each well. The luminescent signal was measured on an Envision plate reader. Determination of compound IC50 was performed as described above
PBMC Th17 polarization and IL-17 production assay- Test compounds were prepared as 10 mM stocks in DMSO and serially diluted $1: 3$ to provide an 8 -concentration titration. The compounds ( 200 nL of each dilution) were acoustically dispensed into 96-well Costar 3912 assay plate. Frozen human PBMCs from a single donor were and diluted to a density of $5 \times 10^{5} \mathrm{cells} / \mathrm{ml}$ with growth media (RPMI 1640/10\% FBS/ pen/strep). Stimulatory cytokines were added to final concentrations of $25 \mathrm{ng} / \mathrm{mL}$ IL-1B, $10 \mathrm{ng} / \mathrm{mL}$ IL- $23,0.5 \mathrm{ng} / \mathrm{mL}$ IL-2, $10 \mathrm{ng} / \mathrm{mL}$ IL-6 (all cytokines from R\&D Systems). Additionally, T-Activator CD3/28 Dynabeads (Invitrogen) were added to a concentration of 100,000 beads per mL . The stimulated cells were immediately dispensed into the assay plate containing serially diluted compound at a volume of 200 uL cells per well. Cell plates were then incubated at at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ for 4 days. Culture media ( 100 uL ) was harvested from each well and IL-17 expression was measured by ELISA (R\&D Systems) according to the manufacturer's instructions. Cell viability was assessed by addition of 100 uL of CellTiter-Glo (Promega) to each well of the cell assay plate followed by luminescence detection on an Envision plate reader (PerkinElmer).

## Bcl-xL PD study protocol ${ }^{3}$

Single cell suspension was prepared from freshly harvested thymus from mice (Male $\mathrm{C} 57 \mathrm{Bl} / 6$, 7wks old from Taconic). Cell were checked for viability and counted using Vi-cell XR counter (Beckman Coulter). DNA samples were prepared as per vendor's instructions using Qiagen RNeasy Mini Kit (\#74104) to generate RNA and Bio-Rad iScript to synthesize cDNA (\#1708891). Quantitative real-time PCR was performed in a QuantStudio ${ }^{\text {TM }} 7$ Flex Real-Time PCR System, according to manufacturer's instructions (Thermo Fisher Scientific Inc.). Bcl-XL expressions were measured with TaqMan® Gene Expression Assays (Actb Mm00607939 and Bcl211 Mm00437783) (Thermo Fisher Scientific Inc.). The gene expression in individual treated animal was compared to the average expression in the tissues from vehicle treated control group, and expressed as percent inhibition relative to control group.
Note: All procedures were approved by the Animal Care and Use Committee of Merck \& Co., Inc. (Boston, MA) and carried out at Merck \& Co., Inc. All experiments adhered to the 'Guide for the Care and Use of Laboratory Animals''(Guide for the Care and Use of Laboratory Animals. $8^{\text {th }}$ Edition; The National Academies Press: Washington, DC, 2011).

Table 1: Data collection and refinement statistics of 25**

| PDB code | Compound 28 |
| :---: | :---: |
| Data collection |  |
| Space group | P6, 22 |
| Cell dimensions $a, b, c(\AA)$ | 108.4, 108.4, 104.3 |
| Resolution ( $\AA$ ) | 48.11-2.87 (*3.03-2.87) |
| $R_{\text {merge }}$ | 0.065 (0.88) |
| I/OI | 33.5 (3.7) |
| Completeness (\%) | 100.0 (100.0) |
| Redundancy | 18.8 (19.4) |
| Refinement |  |
| Resolution ( $\AA$ ) | 48.1-2.9 |
| No. reflections | 8712 |
| $R_{\text {work }} / R_{\text {friee }}$ | 0.20/0.26 |
| No. atoms |  |
| Protein | 1987 |
| Ligand | 32 |
| Solvent | 5 |
| $B$-factors |  |
| Protein ( $\AA^{2}$ ) | 86.6 |
| Ligands ( $\AA^{2}$ ) | 78.6 |
| Solvent ( $\AA^{2}$ ) | 71.4 |
| R.m.s. deviations |  |
| Bond lengths ( $\AA$ ) | 0.010 |
| Bond angles ( ${ }^{\circ}$ ) | 1.14 |

**This research used resources at the Industrial Macromolecular Crystallography Association Collaborative Access Team (IMCA-CAT) beamline 17-ID, supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Hauptman-Woodward Medical Research Institute. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

## Data from Panlabs profiling of $\mathbf{2 5}$

## Experimental Results

| Cat \# | Assay Name | Batch* | Spec. | Rep. | Conc. | \% Inh. | IC $\mathrm{So}^{*}{ }^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 104010 | Cholinesterase, Acetyl, ACES | 343529 | hum | 2 | $10 \mu \mathrm{M}$ | 6 |  |
| 116020 | Cyclooxygenase COX-1 | 343546 | hum | 2 | $10 \mu \mathrm{M}$ | 0 |  |
| 118010 | Cyclooxygenase COX-2 | 343547 | hum | 2 | $10 \mu \mathrm{M}$ | 9 |  |
| 140010 | Monoamine Oxidase MAO-A | 343496 | hum | 2 | $10 \mu \mathrm{M}$ | 8 |  |
| 140120 | Monoamine Oxidase MAO-B | 343495 | hum | 2 | $10 \mu \mathrm{M}$ | -14 |  |
| 163200 | Peptidase, CASP3 (Caspase 3) | 343533 | hum | 2 | $10 \mu \mathrm{M}$ | -2 |  |
| 163500 | Peptidase, CASP8 (Caspase 8) | 343534 | hum | 2 | $10 \mu \mathrm{M}$ | 0 |  |
| 163600 | Peptidase, CASP9 (Caspase 9) | 343535 | hum | 2 | $10 \mu \mathrm{M}$ | 0 |  |
| 112510 | Peptidase, CTSG (Cathepsin G) | 343531 | hum | 2 | $10 \mu \mathrm{M}$ | 15 |  |
| 152000 | Phosphodiesterase PDE3 | 343532 | hum | 2 | $10 \mu \mathrm{M}$ | -12 |  |
| 176610 | Protein Serine/Threonine Kinase, MAPK14 (p38a) | 343539 | hum | 2 | $10 \mu \mathrm{M}$ | -9 |  |
| 171000 | Protein Serine/Threonine Kinase, MAPK3 (ERK1) | 343537 | hum | 2 | $10 \mu \mathrm{M}$ | 26 |  |
| 171315 | Protein Serine/Threonine Kinase, MARK3 | 343538 | hum | 2 | $10 \mu \mathrm{M}$ | 8 |  |
| 178010 | Protein Serine/Threonine Kinase, PKC, Non-Selective | 343540 | rat | 2 | $10 \mu \mathrm{M}$ | 10 |  |
| 170020 | Protein Tyrosine Kinase, EGF Receptor | 343689 | hum | 2 | $10 \mu \mathrm{M}$ | -10 |  |
| 174990 | Protein Tyrosine Kinase, Insulin Receptor | 343688 | hum | 2 | $10 \mu \mathrm{M}$ | 8 |  |
| 195000 | Tyrosine Hydroxylase | 343541 | rat | 2 | $10 \mu \mathrm{M}$ | 12 |  |
| 200510 | Adenosine A1 | 343558 | hum | 2 | $10 \mu \mathrm{M}$ | 5 |  |
| 200610 | Adenosine Ast | 343559 | hum | 2 | $10 \mu \mathrm{M}$ | 3 |  |
| 203100 | Adrenergic $a_{s}$ | 343466 | rat | 2 | $10 \mu \mathrm{M}$ | 8 |  |
| 203200 | Adrenergic $\mathrm{C}_{18}$ | 343467 | rat | 2 | $10 \mu \mathrm{M}$ | 13 |  |
| 203400 | Adrenergic $a_{10}$ | 343468 | hum | 2 | $10 \mu \mathrm{M}$ | 15 |  |
| 203630 | Adrenergic $\mathrm{C}_{2 \lambda}$ | 343647 | hum | 2 | $10 \mu \mathrm{M}$ | -11 |  |
| 203710 | Adrenergic $\mathrm{d}_{38}$ | 343648 | hum | 2 | $10 \mu \mathrm{M}$ | 6 |  |
| 203810 | Adrenergic $a_{x}$ | 343649 | hum | 2 | $10 \mu \mathrm{M}$ | -1 |  |
| 204010 | Adrenergic $\beta_{1}$ | 343478 | hum | 2 | $10 \mu \mathrm{M}$ | 1 |  |
| 204110 | Adrenergic $\beta_{2}$ | 343479 | hum | 2 | $10 \mu \mathrm{M}$ | 3 |  |
| 204200 | Adrenergic $\beta_{3}$ | 343480 | hum | 2 | $10 \mu \mathrm{M}$ | -1 |  |
| 204460 | Adrenomedullin AM1 | 343450 | hum | 2 | $10 \mu \mathrm{M}$ | 2 |  |
| 206000 | Androgen (Testosterone) | 343517 | hum | 2 | $10 \mu \mathrm{M}$ | 6 |  |
| 210030 | Angiotensin AT 1 | 343605 | hum | 2 | $10 \mu \mathrm{M}$ | 7 |  |
| 211000 | Atrial Natriuretic Factor (ANF) | 343575 | gp | 2 | $10 \mu \mathrm{M}$ | 10 |  |
| 212510 | Bradykinin $\mathrm{B}_{1}$ | 343613 | hum | 2 | $10 \mu \mathrm{M}$ | 5 |  |

## Experimental Results

| Cat \# | Assay Name | Batch* | Spec. | Rep. | Conc. | \% Inh. | IC s0 $^{\text {* }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 212620 | Bradykinin B z | 343518 | hum | 2 | $10 \mu \mathrm{M}$ | -2 |  |
| 217030 | Cannabinoid $\mathrm{CB}_{1}$ | 343563 | hum | 2 | $10 \mu \mathrm{M}$ | 7 |  |
| 217100 | Cannabinoid $\mathrm{CB}_{2}$ | 343564 | hum | 2 | $10 \mu \mathrm{M}$ | 15 |  |
| 217510 | Chemokine CCR1 | 343615 | hum | 2 | $10 \mu \mathrm{M}$ | -12 |  |
| 244500 | Chemokine CXCR2 (IL-8Rs) | 343619 | hum | 2 | $10 \mu \mathrm{M}$ | 2 |  |
| 244550 | Chemokine CXCR4 | 343458 | hum | 2 | $10 \mu \mathrm{M}$ | 4 |  |
| 218020 | Cholecystokinin CCK 1 (CCKa) | 343522 | hum | 2 | $10 \mu \mathrm{M}$ | 8 |  |
| 218130 | Cholecystokinin $\mathrm{CCK}_{2}\left(\mathrm{CCK}_{5}\right)$ | 343678 | hum | 2 | $10 \mu \mathrm{M}$ | -7 |  |
| 219150 | Corticotropin Releasing Factor CRF1 | 343576 | hum | 2 | $10 \mu \mathrm{M}$ | 2 |  |
| 219500 | Dopamine Di | 343561 | hum | 2 | $10 \mu \mathrm{M}$ | -3 |  |
| 219700 | Dopamine Das | 343562 | hum | 2 | $10 \mu \mathrm{M}$ | 0 |  |
| 224010 | Endothelin ETA | 343469 | hum | 2 | $10 \mu \mathrm{M}$ | 9 |  |
| 224110 | Endothelin ET8 | 343470 | hum | 2 | $10 \mu \mathrm{M}$ | -16 |  |
| 226010 | Estrogen ERa | 343524 | hum | 2 | $10 \mu \mathrm{M}$ | 0 |  |
| 226810 | GABA, Chioride Channel, TBOB | 343471 | rat | 2 | $10 \mu \mathrm{M}$ | 8 |  |
| 226630 | GABA, Ro-15-1788, Hippocampus | 343612 | rat | 2 | $10 \mu \mathrm{M}$ | 7 |  |
| 228510 | GABAd, Non-Selective | 343472 | rat | 2 | $10 \mu \mathrm{M}$ | -2 |  |
| 232030 | Glucocorticoid | 343644 | hum | 2 | $10 \mu \mathrm{M}$ | 4 |  |
| 232600 | Glutamate, AMPA | 343473 | rat | 2 | $10 \mu \mathrm{M}$ | 4 |  |
| 232700 | Glutamate, Kainate | 343526 | rat | 2 | $10 \mu \mathrm{M}$ | 5 |  |
| 237000 | Glutamate, Metabotropic, mGlus | 343618 | hum | 2 | $10 \mu \mathrm{M}$ | 3 |  |
| 232810 | Glutamate, NMDA, Agonism | 343527 | rat | 2 | $10 \mu \mathrm{M}$ | 27 |  |
| 232910 | Glutamate, NMDA, Glycine | 343614 | rat | 2 | $10 \mu \mathrm{M}$ | -7 |  |
| 233000 | Glutamate, NMDA, Phencyclidine | 343481 | rat | 2 | $10 \mu \mathrm{M}$ | -4 |  |
| 234000 | Glutamate, NMDA, Polyamine | 343474 | rat | 2 | $10 \mu \mathrm{M}$ | 9 |  |
| 239000 | Glycine, Strychnine-Sensitive | 343475 | rat | 2 | $10 \mu \mathrm{M}$ | -3 |  |
| 239610 | Histamine $\mathrm{H}_{1}$ | 343552 | hum | 2 | $10 \mu \mathrm{M}$ | 4 |  |
| 239710 | Histamine $\mathrm{H}_{2}$ | 343616 | hum | 2 | $10 \mu \mathrm{M}$ | -8 |  |
| 239820 | Histamine $\mathrm{H}_{3}$ | 343643 | hum | 2 | $10 \mu \mathrm{M}$ | -1 |  |
| 239900 | Histamine $\mathrm{H}_{4}$ | 343568 | hum | 2 | $10 \mu \mathrm{M}$ | 7 |  |
| 250480 | Leukotriene, Cysteinyl CysLT2 | 343573 | hum | 2 | $10 \mu \mathrm{M}$ | -21 |  |
| 251010 | Melanin-Concentrating Hormone MCH1 (SLC1) | 343460 | hum | 2 | $10 \mu \mathrm{M}$ | -6 |  |
| 251100 | Melanocortin $\mathrm{MC}_{1}$ | 343482 | hum | 2 | $10 \mu \mathrm{M}$ | 6 |  |
| 251300 | Melanocortin $\mathrm{MC}_{3}$ | 343483 | hum | 2 | $10 \mu \mathrm{M}$ | 4 |  |
| 251350 | Melanocortin MC4 | 343484 | hum | 2 | $10 \mu \mathrm{M}$ | 3 |  |

## Experimental Results

| Cat \# | Assay Name | Batch* | Spec. | Rep. | Conc. | \% Inh. | $1 C_{50}{ }^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 251400 | Melanocortin $\mathrm{MC}_{4}$ | 343485 | hum | 2 | $10 \mu \mathrm{M}$ | 11 |  |
| 252610 | Muscarinic M1 | 343607 | hum | 2 | $10 \mu \mathrm{M}$ | 2 |  |
| 252710 | Muscarinic Mz | 343608 | hum | 2 | $10 \mu \mathrm{M}$ | -3 |  |
| 252810 | Muscarinic M3 | 343609 | hum | 2 | $10 \mu \mathrm{M}$ | -5 |  |
| 252910 | Muscarinic M4 | 343610 | hum | 2 | $10 \mu \mathrm{M}$ | 10 |  |
| 253010 | Muscarinic M5 | 343611 | hum | 2 | $10 \mu \mathrm{M}$ | 19 |  |
| 257010 | Neuropeptide $Y Y_{1}$ | 343476 | hum | 2 | $10 \mu \mathrm{M}$ | -2 |  |
| 257110 | Neuropeptide $Y Y_{2}$ | 343621 | hum | 2 | $10 \mu \mathrm{M}$ | 2 |  |
| 258010 | Neurotensin NT, | 343577 | hum | 2 | $10 \mu \mathrm{M}$ | 9 |  |
| 258590 | Nicotinic A cetylcholine | 343509 | hum | 2 | $10 \mu \mathrm{M}$ | -4 |  |
| 258700 | Nicotinic Acetylcholine a1, Bungarotoxin | 343510 | hum | 2 | $10 \mu \mathrm{M}$ | -1 |  |
| 260210 | Opiate $\mathrm{k}(\mathrm{OP2} 2, \mathrm{KOP})$ | 343622 | hum | 2 | $10 \mu \mathrm{M}$ | -7 |  |
| 260410 | Opiate $\mu(O P 3, M O P)$ | 343623 | hum | 2 | $10 \mu \mathrm{M}$ | -3 |  |
| 260600 | Orphanin ORL | 343578 | hum | 2 | $10 \mu \mathrm{M}$ | -1 |  |
| 265010 | Platelet Activating Factor (PAF) | 343519 | hum | 2 | $10 \mu \mathrm{M}$ | 20 |  |
| 265600 | Potassium Channel [ $\mathrm{K}_{\text {atr }}$ ] | 343642 | ham | 2 | $10 \mu \mathrm{M}$ | 20 |  |
| 267500 | PPARY | 343641 | hum | 2 | $10 \mu \mathrm{M}$ | 39 |  |
| 268020 | Progesterone PR-B | 343640 | hum | 2 | $10 \mu \mathrm{M}$ | 13 |  |
| 268110 | Prostanoid EP, | 343572 | hum | 2 | $10 \mu \mathrm{M}$ | 9 |  |
| 268310 | Prostanoid EP3 | 343571 | hum | 2 | $10 \mu \mathrm{M}$ | 23 |  |
| 268510 | Prostanoid FP | 343570 | hum | 2 | $10 \mu \mathrm{M}$ | 19 |  |
| 268600 | Prostanoid IP | 343569 | hum | 2 | $10 \mu \mathrm{M}$ | 14 |  |
| 268810 | Purinergic P2Y | 343639 | rat | 2 | $10 \mu \mathrm{M}$ | 20 |  |
| 269500 | Retinoid X Receptor RXRa | 343638 | hum | 2 | $10 \mu \mathrm{M}$ | 7 |  |
| 271110 | Serotonin (5-Hydroxytryptamine) 5-HT iA $^{\text {a }}$ | 343486 | hum | 2 | $10 \mu \mathrm{M}$ | 27 |  |
| 271200 | Serotonin (5-Hydroxytryptamine) $5-\mathrm{HT} \mathrm{T}_{18}$ | 343579 | rat | 2 | $10 \mu \mathrm{M}$ | 5 |  |
| 271650 | Serotonin (5-Hydroxytryptamine) 5-HT ${ }^{\text {d }}$ | 343635 | hum | 2 | $10 \mu \mathrm{M}$ | -7 |  |
| 271700 | Serotonin (5-Hydroxytryptamine) 5-HT> | 343636 | hum | 2 | $10 \mu \mathrm{M}$ | 4 |  |
| 271800 | Serotonin (5-Hydroxytryptamine) 5-HTx | 343637 | hum | 2 | $10 \mu \mathrm{M}$ | 4 |  |
| 271910 | Serotonin (5-Hydroxytryptamine) $5-\mathrm{HT} 3$ | 343565 | hum | 2 | $10 \mu \mathrm{M}$ | 0 |  |
| 272200 | Serotonin (5-Hydroxytryptamine) $5-\mathrm{HT}_{6}$ | 343545 | hum | 2 | $10 \mu \mathrm{M}$ | 1 |  |
| 282700 | Somatostatin sst2 | 343634 | hum | 2 | $10 \mu \mathrm{M}$ | 8 |  |
| 255520 | Tachykinin NK1 | 343620 | hum | 2 | $10 \mu \mathrm{M}$ | 2 |  |
| 255600 | Tachykinin NKz | 343574 | hum | 2 | $10 \mu \mathrm{M}$ | 25 |  |
| 286000 | Thyrotropin Releasing Hormone (TRH) | 343633 | rat | 2 | $10 \mu \mathrm{M}$ | -19 |  |
| 202000 | Transporter, Adenosine | 343560 | gp | 2 | $10 \mu \mathrm{M}$ | -4 |  |

## Experimental Results

| Cat \# | Assay Name | Batch* | Spec. | Rep. | Conc. | \% Inh. | IC $\mathrm{so}^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 219000 | Transporter, Choline | 343567 | rat | 2 | $10 \mu \mathrm{M}$ | 13 |  |
| 220320 | Transporter, Dopamine (DAT) | 343549 | hum | 2 | $10 \mu \mathrm{M}$ | -3 |  |
| 226400 | Transporter, GABA | 343525 | rat | 2 | $10 \mu \mathrm{M}$ | 15 |  |
| 204410 | Transporter, Norepinephrine (NET) | 343548 | hum | 2 | $10 \mu \mathrm{M}$ | 12 |  |
| 274030 | Transporter, Serotonin (5-Hydroxytryptamine) (SERT) | 343477 | hum | 2 | $10 \mu \mathrm{M}$ | 6 |  |
| 287010 | Vasoactive Intestinal Peptide VIP, | 343494 | hum | 2 | $10 \mu \mathrm{M}$ | -12 |  |
| 287530 | Vasopressin $\mathrm{V}_{1}$ | 343542 | hum | 2 | $10 \mu \mathrm{M}$ | -1 |  |
| 287560 | Vasopressin $V_{18}$ | 343543 | hum | 2 | $10 \mu \mathrm{M}$ | 7 |  |
| 287610 | Vasopressin $V_{2}$ | 343544 | hum | 2 | $10 \mu \mathrm{M}$ | 2 |  |

## Representative procedure for rat and dog pharmacokinetics (PK) studies

The pharmacokinetics of compound $\mathbf{2 5}$ were studied in male Wistar Han rats and Dog Beagles after intravenous (IV) and oral administration (PO). For IV dosing at $0.5 \mathrm{mg} / \mathrm{kg}$ and $0.25 \mathrm{mg} / \mathrm{kg}$, in rat and dog respectively, compound $\mathbf{2 5}$ was formulated as a solution in $30 \%$ captisol with 1 eq of NAOH, while for PO dosing at $1 \mathrm{mg} / \mathrm{kg}$ and $0.5 \mathrm{mg} / \mathrm{kg}$ in rat and dog respectively, the compound was formulated in $10 \%$ Tween 80 . Plasma samples obtained from dosed animals were prepared for analysis by means of a single step protein precipitation technique by adding $200 \mu \mathrm{~L}$ of acetonitrile to $50 \mu \mathrm{~L}$ aliquots of individual subject samples. Samples were mixed by vortex for homogeneity and then subjected to centrifugation at 3500 rpm for 10 min . The supernatant (200 $\mu \mathrm{L}$ ) was collected and injected into the LC-MS/MS for analysis. Pharmacokinetic parameters were calculated using established non-compartmental methods. The area under the plasma concentration versus time curve (AUC) was determined using the Watson software (version 7.3), with linear trapezoidal interpolation in the ascending slope and logarithmic trapezoidal interpolation in the descending slope. The portion of the AUC from the last measurable concentration to infinity was estimated from the equation, $\mathrm{C}_{\mathrm{t}} / \mathrm{k}_{\mathrm{el}}$, where $\mathrm{C}_{\mathrm{t}}$ represents the last measurable concentration and $\mathrm{k}_{\mathrm{el}}$ is the elimination rate constant. The latter was determined from the concentration versus time curve by linear regression at the terminal phase of the semilogarithmic plot.

## References

(1) Guo Z., Patel, B. P.; Corbett, R. M.; Goswami, A.; Patel, R. N. Stereospecific microbial reduction of ethyl 1-benzyl-3-oxo-piperidine-4-carboxylate. Tetrahedron:Asymmetry 2006, 2015-2020
(2) Scheepstra, M.; Leysen, S.; van Almen, G. C.; Miller, J. R.; Piesvaux, J.; Kutilek, V.; van Eenennaam, H.; Zhang, H.; Barr, K.; Nagpal, S.; Soisson, S. M.; Kornienko, M.; Wiley, K.; Elsen, N.; Sharma, S.; Correll, C.C.; Trotter, B. W.; van der Stelt, M.; Oubrie, A.; Ottmann, C.; Parthasarathy, G.; Brunsveld, L. Identification of an allosteric binding site for ROR $\gamma$ t inhibition. Nat Comтип. 2015, 6, 8833-8843.
(3) Jetten, A.M., Ueda, E. Retinoid-related orphan receptors (RORs): Roles in cell survival, differentiation and disease. Cell Death Differ. 2002, 9, 1167-1171.

