Supporting information

Isobaric Vapor-Liquid Equilibrium Data for water (1) + 2-methyl-propan-1-ol (2), 2-methyl-propan-1-ol (1) + pyridine (2), and water (1) + 2-methyl-propan-1-ol (2) + pyridine (3) systems

Kuveneshan Moodley*, Mishqah Hussain, Paramespri Naidoo, Theasha Naidoo

Thermodynamics Research Unit, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban, 4041, South Africa

*To whom correspondence should be addressed: moodleyk6@ukzn.ac.za; Tel.: +27 31 2601519

Table S1. Shimadzu GC2014 operating conditions.

Operating conditions				
Carrier gas	Helium			
Carrier gas flow rate (mL/min)	30			
Detector type	TCD			
Column	PORAPAK-Q column (2 m x 2.2 mm)			
Injector temperature (K)	513.15			
Column temperature (K)	513.15			
Detector temperature (K)	513.15			

Example calculation for combined standard uncertainty in pressure:

$$u_c(P) = ((u(P_{supplier}))^2 + (u(P_{calibration accuracy}))^2 + (u(P_{repeatibility}))^2)^{\frac{1}{2}}$$

$$= (0.08^2 + 0.1^2 + 0.1^2)^{\frac{1}{2}}$$

$$= 0.163 \text{ kPa}$$
(S1)

And for combined expanded uncertainty in pressure.

$$U_c(P) = k * u_c(P)$$

= 2 * 0.163
= 0.33 kPa

Consistency testing

Table S2. Results of the consistency tests.

System	Calculated criterion			Consistency test result
	Infinite dilution test of Kojima et al. 26 (Criteria: $I_j < 30$)		Point test of Fredenslund ²⁷ (Criteria: AAD < 0.01)	
	I_1	I_2	AAD	
water $(1) + 2$ -methyl-propan-1-ol (2)			_	
P/kPa = 50.9	19.567	8.613	0.002	Passed both tests
P/kPa = 80.1	16.836	12.719	0.003	Passed both tests
P/kPa = 100.2	5.826	16.148	0.003	Passed both tests
2-methyl-propan-1-ol (1) + pyridine (2)				
P/kPa = 51.1	4.888	2.111	0.001	Passed both tests
P/kPa = 81.5	2.326	1.063	0.001	Passed both tests
P/kPa = 101.3	3.643	1.668	0.002	Passed both tests

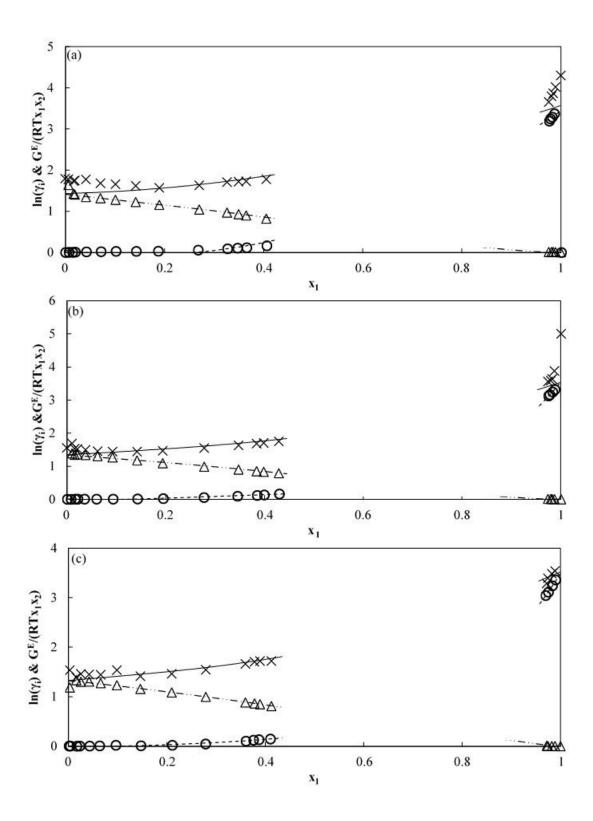


Figure S1. Plots to show coherence of $\ln\gamma_1$ (---- Δ ----) and $\ln\gamma_2$ (-----) with $G^E/(RTx_1x_2)$ (-×-) for the water (1) + 2-methyl-propan-1-ol (2) system at (a) 50.9, (b) 80.9 and (c) 100.2 kPa for the infinite dilution test of Kojima et al.²⁶.

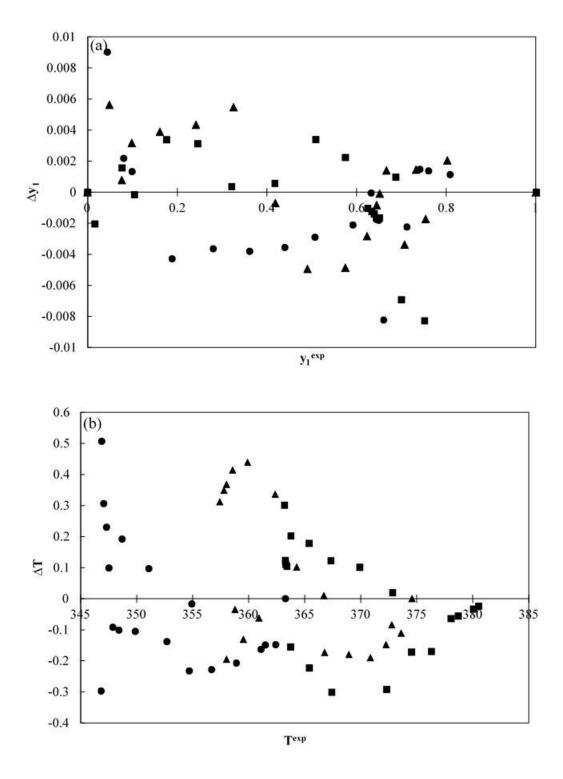


Figure S2. Plot of deviations in (a) y and (b) T for the water (1) + 2-methyl-propan-1-ol (2) system at 50.9 (\bullet), 80.9 (\blacktriangle), 100.2 (\blacksquare), for use in the point test of Fredenslund ²⁷.

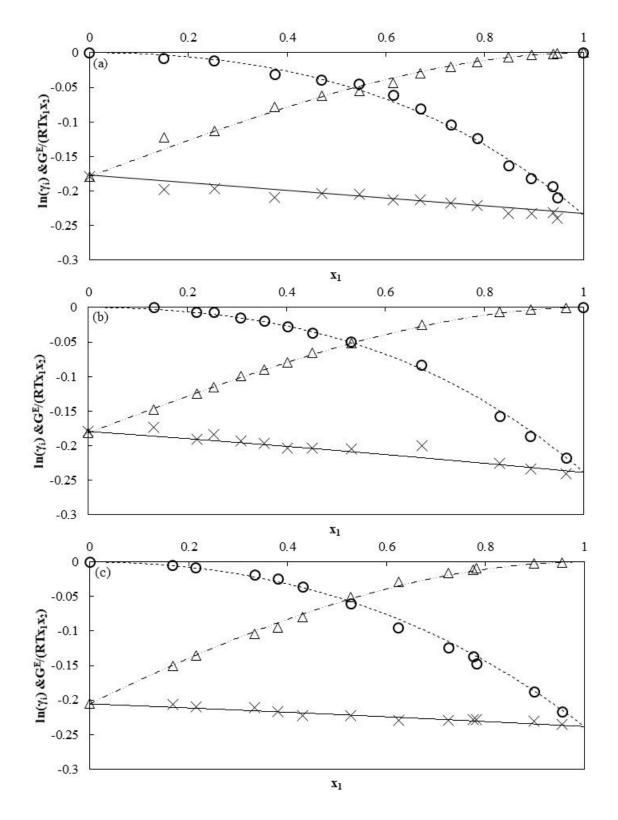


Figure S3. Plots to show coherence of $\ln \gamma_1$ (---- Δ ----) and $\ln \gamma_2$ (-----) with $G^E/(RTx_1x_2)$ (-×--) for the 2-methyl-propan-1-ol (1) + pyridine (2) system at (a) 51.1, (b) 81.5 and (c) 101.3 kPa for the infinite dilution test of Kojima et al.²⁶.

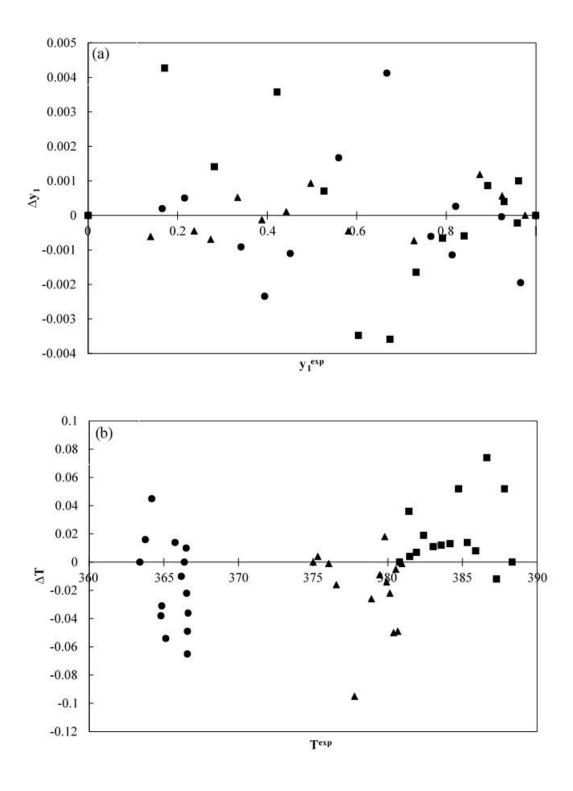


Figure S4. Plot of deviations in (a) y and (b) T for the 2-methyl-propan-1-ol (1) + pyridine (2) system at $51.1(\bullet)$, $81.5(\Delta)$, $101.3(\blacksquare)$, for use in the point test of Fredenslund ²⁷.