Supporting Information

Fluoromethoxymethylation of Nitrogen Heterocyclic Compounds with Fluoromethyl Iodide

Rongkang Wang, Tianqi Ding, Lvqi Jiang*, Wujuan He, Wenbin Yi*

Table of Contents

1. Mechanistic Studies	S2	
2. NMR Spectra	S4	
3. X-Ray Crystallographic Data of 3q	S46	

1. Mechanistic Studies

Figure S1. Progress of the reaction of 2a, 4a and 4f, for up to 3 h, by ¹⁹F NMR spectroscopy.

To understand the mechanism of this fluoromethoxymethyl reaction, we decided to trace the reactions by ^{19}F NMR in three cases (**2a**, **4a** and **4f**). The results were displayed in Figure S1. During the 3 hours reaction process of reaction with **2a**, only two singals including those for the reagent **1** (δ -189.9 ppm) and product **3a** (δ -153.6 ppm) were observed. The amount of ICH₂F decreased and the desired product **3a** increased during the reaction process. For 1*H*-indazole **4a**, the signals were very different. In spite of reagent **1** and product **5a**, two new singals were obtained: δ -162.5 ppm (**5a-1**) and δ -163.2 ppm (**5a-2**), which were two CH₂F-substituted products¹. It was obvious that **5a-1** decreased accompanied by the increase of product **5a**, while another signal of δ -163.2 ppm (**5a-2**) was observed with no significant change. This indicated that only one CH₂F-substituted intermediate (**5a-1**) could convert to the final product **5a**.² For the case of 1*H*-benzotriazole **4f**, it was similar that two CH₂F-substituted products **5f-1** (δ -168.2 ppm) and **5f-2** (δ -169.6 ppm) were observed, but neither could transfer to the CH₂OCH₂F product.

References:

- 1. Zhang, W.; Zhu, L.; Hu, J. Electrophilic monofluoromethylation of O-, S-, and N-nucleophiles with chlorofluoromethane. *Tetrahedron.* **2007**, *63*, 10569-10575.
- 2. The structure of CH₂F-substituted intermediates **5a-1** and **5a-2** were confirmed by comparing ¹³C NMR spectra with the similar CH₃-substituted compounds: a) Cheung, M.; Boloor, A.; Stafford, J. A. Efficient and Regioselective Synthesis of 2-Alkyl-2*H*-indazoles. *J. Org. Chem.* **2003**, *68*, 4093-4095; b) Liu, H.-J.; Hung, S.-F.; Chen, C.-L.; Lin, M.-H. A method for the regioselective synthesis of 1-alkyl-1*H*-indazoles. *Tetrahedron.* **2013**, *69*, 3907-3912.

2. NMR Spectra

-70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 f1 (ppm)

$$\begin{tabular}{ll} MeO & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

3. X-Ray Crystallographic Data of 3q

The white crystals of 3q were obtained by using the solvent vapor diffusion method in ether solution. Crystallographic data of complexes was collected at 296 K on a Bruker APEX-II CCD system equipped with graphite-monochromated Mo-K α radiation (λ = 0.071073 nm) using ω - ϕ scan technique. Diffraction data were integrated by the SAINT program, which was also used for intensity corrections for Lorentz and polarization effects. Semi-empirical absorption correction was applied using SADABS. The structures were solved by direct methods and all non-hydrogen atoms were refined anisotropically on F² by full-matrix least-squares using the SHELXL-97 crystallographic software package.

Thermal ellipsoids for **3q** are shown at 50% probability level.

Formula	C13H13FN2O2
Formula weight	248.25
Crystal system	Orthorhombic
space group	P21
a (Å)	4.2319(3)
b (Å)	14.2453(9)
c (Å)	19.5737(12)
α (º)	90.00
β (⁰)	90.00
γ ($^{\circ}$)	90.00
Volume(ų)	1179.99(13)
Z	4
<i>T</i> (K)	173(2)
D _{calcd} (g/m ³)	1.397

F(000)	520
Reflections collected	2065
Unique reflections	1900
Goof	1.055
$R_1[I > 2\sigma(I)]$	0.0342
$wR_2[I>2\sigma(I)]$	0.0886ª
CCDC NO.	1889210

^a $w = 1/[\sigma^2(F_0)^2 + (0.0512P)^2 + 0.1488P]$, where $P = (F_0^2 + 2F_c^2)/3$;