Fluoromethoxymethylation of Nitrogen Heterocyclic Compounds with Fluoromethyl Iodide

Rongkang Wang, Tianqi Ding, Lvqi Jiang*, Wujuan He, Wenbin Yi*

Table of Contents

1. Mechanistic Studies. S2
2. NMR Spectra S4
3. X-Ray Crystallographic Data of 3q S46

1. Mechanistic Studies

Figure S1. Progress of the reaction of 2a, 4a and $\mathbf{4 f}$, for up to 3 h , by ${ }^{19} \mathrm{~F}$ NMR spectroscopy.

To understand the mechanism of this fluoromethoxymethyl reaction, we decided to trace the reactions by ${ }^{19} \mathrm{~F}$ NMR in three cases ($\mathbf{2 a}, \mathbf{4 a}$ and $\mathbf{4 f}$). The results were displayed in Figure S1. During the 3 hours reaction process of reaction with 2a, only two singals including those for the reagent $\mathbf{1}(\delta-189.9 \mathrm{ppm})$ and product $\mathbf{3 a}(\delta-153.6$ $\mathrm{ppm})$ were observed. The amount of $\mathrm{ICH}_{2} \mathrm{~F}$ decreased and the desired product 3a increased during the reaction process. For 1 H -indazole $\mathbf{4 a}$, the signals were very different. In spite of reagent $\mathbf{1}$ and product 5a, two new singals were obtained: δ $-162.5 \mathrm{ppm}(\mathbf{5 a - 1})$ and $\delta-163.2 \mathrm{ppm}(\mathbf{5 a - 2})$, which were two $\mathrm{CH}_{2} \mathrm{~F}$-substituted products ${ }^{1}$. It was obvious that $\mathbf{5 a - 1}$ decreased accompanied by the increase of product $\mathbf{5 a}$, while another signal of $\delta-163.2 \mathrm{ppm}(\mathbf{5 a - 2})$ was observed with no significant change. This indicated that only one $\mathrm{CH}_{2} \mathrm{~F}$-substituted intermediate (5a-1) could convert to the final product $\mathbf{5 a} .{ }^{2}$ For the case of 1 H -benzotriazole $\mathbf{4 f}$, it was similar that two $\mathrm{CH}_{2} \mathrm{~F}$-substituted products $\mathbf{5 f - 1}(\delta-168.2 \mathrm{ppm})$ and $\mathbf{5 f} \mathbf{- 2}(\delta-169.6 \mathrm{ppm})$ were observed, but neither could transfer to the $\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{~F}$ product.

References:

1. Zhang, W.; Zhu, L.; Hu, J. Electrophilic monofluoromethylation of O-, S-, and N-nucleophiles with chlorofluoromethane. Tetrahedron. 2007, 63, 10569-10575.
2. The structure of $\mathrm{CH}_{2} \mathrm{~F}$-substituted intermediates $\mathbf{5 a - 1}$ and $\mathbf{5 a - 2}$ were confirmed by comparing ${ }^{13} \mathrm{C}$ NMR spectra with the similar CH_{3}-substituted compounds: a) Cheung, M.; Boloor, A.; Stafford, J. A. Efficient and Regioselective Synthesis of 2-Alkyl-2H-indazoles. J. Org. Chem. 2003, 68, 4093-4095; b) Liu, H.-J.; Hung, S.-F.; Chen, C.-L.; Lin, M.-H. A method for the regioselective synthesis of 1-alkyl-1H-indazoles. Tetrahedron. 2013, 69, 3907-3912.
3. NMR Spectra

$\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{~F}$
$470 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

$$
470 \mathrm{MHz}_{\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}}^{3 \mathrm{Cl}}
$$

$\stackrel{3 \mathrm{e}}{470 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}}$

$$
\begin{aligned}
& \stackrel{3 \mathrm{~g}}{470 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}}
\end{aligned}
$$

$\underset{126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}}{3 i}$

$470 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

CN
3 aq
$470 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

-80	-90	-100	-110	-120	-130	-140			-170	-180	-190				
-80	-90	-100	-110	-120	-130	-140	${ }^{-150}$	${ }_{\text {ppri) }}$	-170	-180	-190	-200	-210	-220	-230

$$
\begin{aligned}
& \stackrel{8}{\circ} \\
& \stackrel{1}{i}
\end{aligned}
$$

\begin{abstract}
年电

路

[^0]

Se

3. X-Ray Crystallographic Data of 3q

The white crystals of $\mathbf{3 q}$ were obtained by using the solvent vapor diffusion method in ether solution. Crystallographic data of complexes was collected at 296 K on a Bruker APEX-II CCD system equipped with graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=$ 0.071073 nm) using $\omega-\varphi$ scan technique. Diffraction data were integrated by the SAINT program, which was also used for intensity corrections for Lorentz and polarization effects. Semi-empirical absorption correction was applied using SADABS. The structures were solved by direct methods and all non-hydrogen atoms were refined anisotropically on F^{2} by full-matrix least-squares using the SHELXL-97 crystallographic software package.

Thermal ellipsoids for $\mathbf{3 q}$ are shown at 50% probability level.

Formula	C13H13FN2O2
Formula weight	248.25
Crystal system	Orthorhombic
space group	$P 21$
$a(\AA)$	$4.2319(3)$
$b(\AA \AA)$	$14.2453(9)$
$c(\AA)$	$19.5737(12)$
$\alpha(\underline{\circ})$	90.00
$\beta(\underline{\circ})$	90.00
$\gamma(\underline{0})$	90.00
Volume $\left(\AA^{3}\right)$	$1179.99(13)$
Z	4
$T(\mathrm{~K})$	$173(2)$
$D_{\text {calcd }}\left(\mathrm{g} / \mathrm{m}^{3}\right)$	1.397

$F(000)$	520
Reflections collected	2065
Unique reflections	1900
Goof	1.055
$R_{1}[I>2 \sigma(I)]$	0.0342
$\omega R_{2}[\mid>2 \sigma(I)]$	0.0886^{a}
CCDC NO.	1889210
$\left.12 P)^{2}+0.1488 P\right]$, where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 ;$	

[^0]:

