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Dispersion imaging in the back focal plane

To verify the opening of a bandgap at normal incidence, we recorded the angle dependent attenuance
spectra at a better angular resolution of about 0.4◦. To this end we placed the sample in a microscope,
reduced the field of view to about 100 µm (the size of the particle array) and imaged the objectives back
focal plane (diffraction image) directly on the entrance slit of an imaging spectrograph. The resulting
images from the spectrograph’s camera are calibrated in one dimension in terms of wavelength, in the
other in terms of sin θi. Like this we can record the angle dependent attenuance spectra as depicted in
Fig. S1 (a) and compare them to the angle dependent spectra recorded by a normal microspectrometer
when tilting the sample (Fig. S1(b)). In the latter case, the finite aperture of the condensor lens leads to
an angular averaging over a range of ±1.6◦. The red lines depict the empty lattice dispersion for 500 nm
array period in a homogeneous medium with n = 1.516. The observed extinction is shifted to lower
energies compared to the red lines, as an effect of the ITO layer the particles are situated on. The effect
of averaging over a larger angular range in Fig. S1(b) as compared to Fig. S1(a) does qualitatively not
affect the main features, i.e. band-splitting and mode brightness.

Figure S1: Dispersion relations of 100 nm long Al nano-rods recorded by (a) imaging the diffraction plane
of the array onto the entrance slit of an imaging spectrograph with an angular resolution of about 0.4◦, as
compared to (b) the spectra recorded in a microspectrometer by tilting the sample with an illumination
with 1.6◦ divergence, as presented in Fig. 2 of the main text. Red lines depict the empty lattice dispersion
for 500 nm array period in a medium with n = 1.516.
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Mathematical model of a 1D photonic crystal with and without
excitation

As explained in the main text and as sketched in Fig. S2 we consider a 1D stack of alternating layers of
media a and b, with thicknesses la = l and lb = d− l. In every layer, the electric field can be expressed as
a superposition of the electric fields of left- and right-propagating electromagnetic waves. At an interface
between medium a (refractive index na) and medium b (nb), the waves are partly reflected and partly
transmitted, with an amplitude ratio given by the Fresnel coefficients of the interface ρ and τ , respectively.
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Figure S2: Modelling a regular array (period d) of nanorods (length l) on a slab waveguide as a 1D PC by
considering (±1, 0) CLRs only. (a) The areas occupied by the particles are described by a high refractive
index na, while the space in between is assigned a low refractive index nb.(b) With na = 1.516 × 1.05,
nb = 1.516 × 1.01 the PC dispersion relation closely resembles the empty lattice dispersion, however
with some band splitting where the normalized energy E/E0 is unity. Real and imaginary parts of k are
plotted in blue and orange, respectively. (c) Closeup of the rectangluar box in (b). (d) When including
damping (na = 1.516 × (1.05 + 0.008i), nb = 1.516 × (1.01 + 0.005i)), the band gap smears out into a
region of low propagation length, evidenced by the large imaginary part of k (orange).

In the following we include the excitation of the PC modes from an external wave and consider the
electric field amplitudes at the left side of each interface between media a and b. For example, at the left
side of the interface at the position xbN (medium a), the amplitude of the right-propagating (superscript
+) wave is a superposition of the right-propagating wave in medium b transmitted by the interface and
the part of the left-propagating wave in medium a reflected by the interface at xaN . Additionally, we
consider that each interface is the source of (somehow externally excited) waves in + and − directions
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with amplitudes Ea+S,N , E
b+
S,N , E

a−
S,N and Eb−S,N :

Eb+N = αbE
a+
N τab + α2

bE
b−
N ρba + αbE

a+
S,N .

Here, αb = einbk0lb is the phase retardation a wave experiences by passing through the layer b, with
k0 = ω/c being the vacuum wave number and lb = l − d being the thickness of layer b. Accordingly, the
left-propagating wave at the left side of the interface at xaN (medium b) can be written as:

Ea−N = αbE
b−
N τba + Ea+N ρab + Ea−SN

From these two equations we can express Eb+N and Eb−N :(
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Similarly, one can derive (
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By inserting Eq.1 into Eq. 2 we get(
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which can be formally rewritten as(
Ea+N+1
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)
= M

(
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+
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)
. (3)

The right side of the equation takes into account that the electric fields have to be lattice-periodic
functions with a complex phase factor β = eikd.

To solve this equation, we look at two cases: the free and the excited lattice.

• For the free case, E+
S = E−

S = 0. Then, Eq. 3 reduces to

M

(
Ea+N
Ea−N

)
= β

(
Ea+N
Ea−N

)
. (4)

β are the Eigenvalues of M, from which the complex wave number k of the corresponding Eigenmode
can be calculated as a function of frequency. This leads to the dispersion relations as depicted in
Fig. S2(b).
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• For the excited case, Eq. 3 can be rewritten as(
Ea+N
Ea−N

)
= (M− Iβ)−1

(
E+
S

E−
S

)
, (5)

i.e. the strengths of the left- and right-propagating waves can be determined from the source vector.
Here, β = eikxd with kx corresponding to the wave vector x-component of the exciting plane wave
in the experiment. For the source vector, we made further simplifications: The strength of the
left- and right-emitted waves are identical and independent of the interface, i.e. |Ea+S,N | = |E

b+
S,N | =

|Ea−SN | = |Eb−S,N | = 0.1E0, with E0 being the amplitude of the exciting wave. What remains is the

phase factor of the source terms, which is determined by the exciting wave as eikxx with x being the
x-coordinate of the respective interface at xaN or xbN , and a factor of ±1 depending on the emission
into either a high- or a low index region. For calculating of Fig. 8 in the main text we plot the
quantity |Ea+N +Ea−N +E0|2 (which is porpotional to the square of the polarization of the particle
regions and thus the absorbance) and presume its correspondence to the exerimentally accessible
attenuance.

Approximating the field energy of 1D PC modes

We assume the fields E = E0 cos kx for the symmetric mode and E = E0 sin kx for the antisymmetric
mode and low refractive index differences so that k is independent of the material and the field energy is
proportional to E2. Then the field energy in the high-n region of the nanorods of length l is

Ea =

∫ l/2
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2
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x

d
2π) dx =

1

2

d

2π
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l
2π

d
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(
l
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d

)]
For the expression of the field energy in the low-n region Eb, l has to be replaced by d− l. The plus sign
is for the symmetric mode, the minus sign is for the antisymmetric mode.
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Comparison to non-metallic particles

The size dependence of the CLR branch brightness is not limited to metal particles but can be observed
in regular arrays built from any material, provided that the CLRs are strong enough to be observed.
As an example, we compare square arrays (d = 500 nm) of identically shaped nanorods (width 80 nm,
height 30 nm, lengths 200 or 300/400 nm) of either aluminum (Fig. S3(a)) or indium tin oxide (ITO)
(Fig. S3(b)). We observe two peaks, corresponding to the high energy and low energy branches of the
CLR dispersion. Clearly, for l = 200 nm the low energy peak is dominating (i.e. bright), whereas for
l = 300 nm (Al) or 400 nm (ITO) the high energy peak is stronger, as marked by the diamond and circle
symbols. We note that the finite visibility of both branches in the spectra is due to the angular detection
range in our optical setup that leads to angular integration over the CLR dispersion.

Al ITO

l=200 nm
l=300 nm

l=200 nm
l=400 nm

Figure S3: Measured attenuance spectra of square arrays (d = 500 nm) of (a) aluminum and (b) ITO
nanorods of 80 nm width, 30 nm height and lengths of (blue) 200 nm and (orange) 300 nm (aluminium)
or 400 nm (ITO). The upper blue and orange diamonds mark the spectral position of the bright CLR
peaks, the circles point out the darker CLR peaks that are still visible for both rod lengths due to the
finite angular detection range of the used optics.
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