Supporting Information | 2
3
4 | Inactivation of Murine Norovirus and Fecal Coliforms by Ferrate(VI) in Secondary Effluent Wastewater | |--|---| | 5 | | | 6 | | | 7
8
9
10
11
12 | Kyriakos Manoli,*,*,* Roberta Maffettone,*,* Virender K. Sharma,*,§ Domenico Santoro,*, Ajay K. Ray,† Karla D. Passalacqua, Kelly E. Carnahan, Christiane E. Wobus, and Siva Sarathy†,* | | 14
15
16
17
18
19
20
21
22
23
24 | †Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A5B9, Canada, Email: kmanoli@uwo.ca †Trojan Technologies, London, Ontario N5V4T7, Canada Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., College Station, Texas 77843, USA; vsharma@tamu.edu Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA | | 26
27
28
29 | Total Pages: 11 Text Pages: 2 Figures Pages: 4 Tables Pages: 4 | - 31 **Text S1** - 32 Chemicals. Phosphate buffer (PB) solutions (0.01 M) were prepared by diluting amounts of - Na₂HPO₄ and NaH₂PO₄·H₂O in DI water to achieve the desired pH. The secondary effluent - wastewater (SEW) at pH 8.2 was grab sampled (prior to disinfection step) at the Pottersburg - Wastewater Treatment Plant (London, Ontario, Canada), an activated sludge-based treatment - plant. Sodium phosphate dibasic (Na₂HPO₄; ≥99% purity) and sodium thiosulfate (Na₂S₂O₃; - 37 99% purity) were purchased from Sigma-Aldrich, Canada. Sodium phosphate monobasic - monohydrate (NaH₂PO₄·H₂O; \geq 98% purity) was purchased from Caledon Laboratory Chemicals - 39 (Georgetown, Ontario, Canada). Polypropylene (0.45 μm) and regenerated cellulose (0.2 μm) - 40 syringe filters were acquired from VWR International (Mississauga, Ontario, Canada). - 41 Fe(VI) Preparation and Quantification. The wet chemical method was used to synthesize solid - 42 potassium ferrate(VI) (K₂FeO₄; 98% purity). Fe(VI) solutions were prepared prior to each - experiment by diluting the desired amount (4-8 mg) of solid K₂Fe^{VI}O₄ to DI water (12-15 mL) - 44 followed by centrifugation at 3400 rpm and 23±1 °C. The concentration of Fe(VI) in the solution - was determined spectrophotometrically by measuring the absorbance at 510 nm using molar - absorptivity ($\epsilon_{pH~6.2} = 476~M^{-1}~cm^{-1}$, $\epsilon_{pH~7.2} = 663~M^{-1}~cm^{-1}$, $\epsilon_{pH~7.7} = 908~M^{-1}~cm^{-1}$, $\epsilon_{pH~8.2} = 1050$ - 47 M^{-1} cm⁻¹ and $\epsilon_{pH \, 9} = 1150 \ M^{-1} \ cm^{-1}).^{2,3}$ - 48 Analytical Methods. The standard membrane filtration method (9222D) was applied to measure - 49 the concentration (colony-forming units (CFU) 100 mL⁻¹) of fecal coliforms (FC) in secondary - 50 effluent wastewater (SEW).⁴ Levels of chemical oxygen demand (dichromate method; - 51 DOC316.53.01099) and nitrogen (s-TKN method; DOC316.53.01258) in SEW (Table S1) were - measured by performing the USEPA-approved Hach methods and testing kits (Hach Odyssey - 53 DR/2500; Hach, Loveland, Colorado, USA). Solids-related parameters (Table S1) of the SEW - were measured according to the standard methods.⁴ The UV transmittance (UVT) at 254 nm was - 55 determined using a REALUVT meter (REALTECH, Whitby, Ontario, Canada), and the - absorbance at 400 nm was measured using the Hach spectrophotometer. Turbidity was measured - by a Hach 2100AN Turbidimeter (Table S1). Fisher Scientific accumetTM Portable pH (AP62) - and conductivity (AP65) Meters were used to measure the pH and conductivity, respectively. ## 59 REFERENCES - 60 (1) Sharma, V. K.; Zboril, R.; Varma, R. S. Ferrates: greener oxidants with multimodal action - in water treatment technologies. *Acc. Chem. Res.* **2015**, *48* (2), 182–191. - 62 (2) Cho, M.; Lee, Y.; Choi, W.; Chung, H.; Yoon, J. Study on Fe(VI) species as a - disinfectant: Quantitative evaluation and modeling for inactivating Escherichia coli. *Water* - *Res.* **2006**, *40* (19), 3580–3586. - 65 (3) Luo, Z.; Strouse, M.; Jiang, J.-Q.; Sharma, V. K. Methodologies for the analytical - determination of ferrate(VI): a review. J. Environ. Sci. Health. A. Tox. Hazard. Subst. - 67 Environ. Eng. **2011**, 46 (5), 453–460. - 68 (4) APHA. Standard methods for the examination of water and wastewater. In; American - 69 Public Health Association: Washington D.C., 1998. **Figure S1.** (A) Effect of Fe(VI) concentration on inactivation of MNV with time, and (B) Decay of Fe(VI) with time at different concentrations of Fe(VI) (data fitted by eq 4). (Experimental conditions: $[MNV]_{1.05 \text{ mg L}}^{-1} = 917 \text{ PFU mL}^{-1}$, $[MNV]_{2.08 \text{ mg L}}^{-1} = 429 \text{ PFU mL}^{-1}$, 0.01 M phosphate buffer (pH = 8.2±0.1), T = 23±1 °C). **Figure S2.** ICT dose response curve for the inactivation of MNV by Fe(VI) (Fitting data of Figure S1(A) using Chick-Watson model (eq 1) (ICT calculated using eq 5). (Experimental conditions: $[MNV]_{1.05 \text{ mg L}^{-1}} = 917 \text{ PFU mL}^{-1}$, $[MNV]_{2.08 \text{ mg L}^{-1}} = 429 \text{ PFU mL}^{-1}$, 0.01 M phosphate buffer (pH = 8.2±0.1), T = 23±1 °C). **Figure S3.** (A) Effect of pH on inactivation of MNV by Fe(VI) with time, and (B) Decay of Fe(VI) with time at different pH (data fitted by eq 4), in 0.01 M phosphate buffer (PB). (Experimental conditions: $[MNV]_{pH=6.2} = 37126$ PFU mL⁻¹, $[MNV]_{pH=7.2} = 1467$ PFU mL⁻¹, $[MNV]_{pH=7.7} = 4800$ PFU mL⁻¹, $[MNV]_{pH=8.2} = 429$ PFU mL⁻¹, $[Fe(VI)]_{pH=6.2} = 2.04$ mg L⁻¹, $[Fe(VI)]_{pH=7.2} = 2.36$ mg L⁻¹, $[Fe(VI)]_{pH=7.7} = 2.14$ mg L⁻¹, $[Fe(VI)]_{pH=8.2} = 2.08$ mg L⁻¹, and $T=23\pm1$ °C). **Figure S4.** ICT dose response for the inactivation of enterococci by Fe(VI), in secondary effluent wastewater (SEW). (Experimental conditions: [Enterococci] = 3798 CFU 100 mL⁻¹, [Fe(VI)] = 1.16-8.29 mg L⁻¹, pH = 8.2 ± 0.2 , T = 23 ± 1 °C). **Table S1.** Water quality characteristics of the secondary effluent wastewater (SEW) used in the study. | Parameter | Value ^a | |--|--------------------| | Fecal coliforms, FC (CFU 100 mL ⁻¹) | 11440 ± 303 | | pН | 8.2 ± 0.2 | | Conductivity, (μS cm ⁻¹) | 1017 ± 14 | | $\mathrm{UV}_{400}, (\mathrm{cm}^{\text{-}1})^b$ | 0.012 ± 0.001 | | UVT ₂₅₄ , (%) | 77.1 ± 0.1 | | UV ₂₅₄ , (cm ⁻¹) | 0.113 ± 0.001 | | Chemical Oxygen Demand, COD (mg L-1) | 37 ± 3 | | Soluble Chemical Oxygen Demand, SCOD (mg L ⁻¹) | 24 ± 6 | | Total Nitrogen, TN (mg N L-1) | 13.3 ± 0.2 | | Soluble Total Nitrogen, STN (mg N L ⁻¹) | 12.0 ± 0.4 | | Total Kjeldahl Nitrogen, TKN (mg N L-1) | 2.7 ± 0.2 | | Nitrites and Nitrates, NO ₂ -N + NO ₃ -N (mg N L ⁻¹) | 10.6 ± 0.1 | | Particulate Organic Nitrogen, (mg N L-1) | 1.3 ± 0.4 | | Ammonia + Soluble Organic Nitrogen (mg N L ⁻¹) | 1.4 ± 0.4 | | Total Phosphorus, TP (mg P L ⁻¹) ^c | 0.45 ± 0.13 | | Turbidity, (NTU) | 5.0 ± 0.1 | | Total Solids, TS (mg L-1) | 653 ± 10 | | Total Suspended Solids, TSS (mg L ⁻¹) | 13 ± 3 | | Total Dissolved Solids, TDS (mg L ⁻¹) | 640 ± 10 | $[^]a$ Average \pm standard deviation of triplicate analysis of the grab sampled SEW 101102 103 104 ^{100 &}lt;sup>b</sup>Indication of color ^cMeasured by the wastewater treatment plant at the same day we collected the SEW **Table S2.** Kinetic parameters determined in this study for the inactivation of MNV by Fe(VI) (k_d) and the decomposition of Fe(VI) (k_2) in 0.01 M phosphate buffer. 106 | pН | [MNV] | [Fe(VI)] | k_2 , 10 ⁻¹ | k _d , 10 ⁻¹ | |-----|-------------------------|-----------------------|--------------------------|---| | | (PFU mL ⁻¹) | (mg L ⁻¹) | $(L mg^{-1} min^{-1})$ | (L mg ⁻¹ min ⁻¹) | | 6.2 | 37126 | 2.04 | 0.98 ± 0.06 | 4.80±0.17 | | 7.2 | 935 | 1.16 | 0.49 ± 0.02 | 2.23±0.06 | | 7.2 | 1467 | 2.36 | 0.53±0.02 | 2.23±0.00 | | 7.7 | 4800 | 2.14 | 0.17±0.01 | 1.39±0.10 | | 8.2 | 917 | 1.05 | 0.05±0.002 | 0.75±0.04 | | 8.2 | 429 | 2.08 | 0.04±0.001 | 0.75±0.04 | Table S3. Kinetic parameters determined in this study for inactivating MNV and FC by Fe(VI) in secondary effluent wastewater. | pН | [MNV] | [Fe(VI)] | [FC] | D | k_1 | MNV ^a | | FCb | ı | | |-----|-------------------------|-----------------------|--------------------------|-----------------------|----------------------|---|-------------|--|-----------|----------------| | | (PFU mL ⁻¹) | (mg L ⁻¹) | (CFU | (mg L ⁻¹) | (min ⁻¹) | k _d , 10 ⁻¹ | β | k_{d} | m | $k_{\rm p}$ | | | | | $(100 \text{ mL})^{-1})$ | | | (L mg ⁻¹ min ⁻¹) | | (L ^m mg ^{-m} min ^{-m}) | | (L mg-1 min-1) | | 8.2 | - | 1.16 | 11372 | 0.21±0.04 | 0.37±0.04 | - | | | | | | 8.2 | 32327 | 2.06 | 11771 | 0.41±0.09 | 0.12±0.02 | 1.35±0.04 | 0.017±0.003 | 2.08 ± 0.05 | 1.08±0.06 | 0.03±0.018 | | 8.2 | 24123 | 8.29 | 11177 | 0.57±0.16 | 0.08±0.004 | 1.33±0.04 | | | | | aMNV: Murine norovirus; bFC: Fecal coliforms **Table S4.** Model predicted ICT values required for 1-, 2-, 3-, and 4-log₁₀ reduction of murine norovirus (MNV) and fecal coliforms (FC) by Fe(VI) in secondary effluent wastewater. | Reduction | ICT (1 | mg min L ⁻¹) | |---------------|--------|--------------------------| | | FC | MNV | | | | | | $1-\log_{10}$ | 1 | 7 | | $2-\log_{10}$ | 17 | 15 | | $3-\log_{10}$ | N/A | 22 | | $4-\log_{10}$ | N/A | 30 | | | | |