Supporting Information

2 3 4	Inactivation of Murine Norovirus and Fecal Coliforms by Ferrate(VI) in Secondary Effluent Wastewater
5	
6	
7 8 9 10 11 12	Kyriakos Manoli,*,*,* Roberta Maffettone,*,* Virender K. Sharma,*,§ Domenico Santoro,*, Ajay K. Ray,† Karla D. Passalacqua, Kelly E. Carnahan, Christiane E. Wobus, and Siva Sarathy†,*
14 15 16 17 18 19 20 21 22 23 24	†Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A5B9, Canada, Email: kmanoli@uwo.ca †Trojan Technologies, London, Ontario N5V4T7, Canada Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., College Station, Texas 77843, USA; vsharma@tamu.edu Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
26 27 28 29	Total Pages: 11 Text Pages: 2 Figures Pages: 4 Tables Pages: 4

- 31 **Text S1**
- 32 Chemicals. Phosphate buffer (PB) solutions (0.01 M) were prepared by diluting amounts of
- Na₂HPO₄ and NaH₂PO₄·H₂O in DI water to achieve the desired pH. The secondary effluent
- wastewater (SEW) at pH 8.2 was grab sampled (prior to disinfection step) at the Pottersburg
- Wastewater Treatment Plant (London, Ontario, Canada), an activated sludge-based treatment
- plant. Sodium phosphate dibasic (Na₂HPO₄; ≥99% purity) and sodium thiosulfate (Na₂S₂O₃;
- 37 99% purity) were purchased from Sigma-Aldrich, Canada. Sodium phosphate monobasic
- monohydrate (NaH₂PO₄·H₂O; \geq 98% purity) was purchased from Caledon Laboratory Chemicals
- 39 (Georgetown, Ontario, Canada). Polypropylene (0.45 μm) and regenerated cellulose (0.2 μm)
- 40 syringe filters were acquired from VWR International (Mississauga, Ontario, Canada).
- 41 Fe(VI) Preparation and Quantification. The wet chemical method was used to synthesize solid
- 42 potassium ferrate(VI) (K₂FeO₄; 98% purity). Fe(VI) solutions were prepared prior to each
- experiment by diluting the desired amount (4-8 mg) of solid K₂Fe^{VI}O₄ to DI water (12-15 mL)
- 44 followed by centrifugation at 3400 rpm and 23±1 °C. The concentration of Fe(VI) in the solution
- was determined spectrophotometrically by measuring the absorbance at 510 nm using molar
- absorptivity ($\epsilon_{pH~6.2} = 476~M^{-1}~cm^{-1}$, $\epsilon_{pH~7.2} = 663~M^{-1}~cm^{-1}$, $\epsilon_{pH~7.7} = 908~M^{-1}~cm^{-1}$, $\epsilon_{pH~8.2} = 1050$
- 47 M^{-1} cm⁻¹ and $\epsilon_{pH \, 9} = 1150 \ M^{-1} \ cm^{-1}).^{2,3}$
- 48 Analytical Methods. The standard membrane filtration method (9222D) was applied to measure
- 49 the concentration (colony-forming units (CFU) 100 mL⁻¹) of fecal coliforms (FC) in secondary
- 50 effluent wastewater (SEW).⁴ Levels of chemical oxygen demand (dichromate method;
- 51 DOC316.53.01099) and nitrogen (s-TKN method; DOC316.53.01258) in SEW (Table S1) were
- measured by performing the USEPA-approved Hach methods and testing kits (Hach Odyssey

- 53 DR/2500; Hach, Loveland, Colorado, USA). Solids-related parameters (Table S1) of the SEW
- were measured according to the standard methods.⁴ The UV transmittance (UVT) at 254 nm was
- 55 determined using a REALUVT meter (REALTECH, Whitby, Ontario, Canada), and the
- absorbance at 400 nm was measured using the Hach spectrophotometer. Turbidity was measured
- by a Hach 2100AN Turbidimeter (Table S1). Fisher Scientific accumetTM Portable pH (AP62)
- and conductivity (AP65) Meters were used to measure the pH and conductivity, respectively.

59 REFERENCES

- 60 (1) Sharma, V. K.; Zboril, R.; Varma, R. S. Ferrates: greener oxidants with multimodal action
- in water treatment technologies. *Acc. Chem. Res.* **2015**, *48* (2), 182–191.
- 62 (2) Cho, M.; Lee, Y.; Choi, W.; Chung, H.; Yoon, J. Study on Fe(VI) species as a
- disinfectant: Quantitative evaluation and modeling for inactivating Escherichia coli. *Water*
- *Res.* **2006**, *40* (19), 3580–3586.
- 65 (3) Luo, Z.; Strouse, M.; Jiang, J.-Q.; Sharma, V. K. Methodologies for the analytical
- determination of ferrate(VI): a review. J. Environ. Sci. Health. A. Tox. Hazard. Subst.
- 67 Environ. Eng. **2011**, 46 (5), 453–460.
- 68 (4) APHA. Standard methods for the examination of water and wastewater. In; American
- 69 Public Health Association: Washington D.C., 1998.

Figure S1. (A) Effect of Fe(VI) concentration on inactivation of MNV with time, and (B) Decay of Fe(VI) with time at different concentrations of Fe(VI) (data fitted by eq 4). (Experimental conditions: $[MNV]_{1.05 \text{ mg L}}^{-1} = 917 \text{ PFU mL}^{-1}$, $[MNV]_{2.08 \text{ mg L}}^{-1} = 429 \text{ PFU mL}^{-1}$, 0.01 M phosphate buffer (pH = 8.2±0.1), T = 23±1 °C).

Figure S2. ICT dose response curve for the inactivation of MNV by Fe(VI) (Fitting data of Figure S1(A) using Chick-Watson model (eq 1) (ICT calculated using eq 5). (Experimental conditions: $[MNV]_{1.05 \text{ mg L}^{-1}} = 917 \text{ PFU mL}^{-1}$, $[MNV]_{2.08 \text{ mg L}^{-1}} = 429 \text{ PFU mL}^{-1}$, 0.01 M phosphate buffer (pH = 8.2±0.1), T = 23±1 °C).

Figure S3. (A) Effect of pH on inactivation of MNV by Fe(VI) with time, and (B) Decay of Fe(VI) with time at different pH (data fitted by eq 4), in 0.01 M phosphate buffer (PB). (Experimental conditions: $[MNV]_{pH=6.2} = 37126$ PFU mL⁻¹, $[MNV]_{pH=7.2} = 1467$ PFU mL⁻¹, $[MNV]_{pH=7.7} = 4800$ PFU mL⁻¹, $[MNV]_{pH=8.2} = 429$ PFU mL⁻¹, $[Fe(VI)]_{pH=6.2} = 2.04$ mg L⁻¹, $[Fe(VI)]_{pH=7.2} = 2.36$ mg L⁻¹, $[Fe(VI)]_{pH=7.7} = 2.14$ mg L⁻¹, $[Fe(VI)]_{pH=8.2} = 2.08$ mg L⁻¹, and $T=23\pm1$ °C).

Figure S4. ICT dose response for the inactivation of enterococci by Fe(VI), in secondary effluent wastewater (SEW). (Experimental conditions: [Enterococci] = 3798 CFU 100 mL⁻¹, [Fe(VI)] = 1.16-8.29 mg L⁻¹, pH = 8.2 ± 0.2 , T = 23 ± 1 °C).

Table S1. Water quality characteristics of the secondary effluent wastewater (SEW) used in the study.

Parameter	Value ^a
Fecal coliforms, FC (CFU 100 mL ⁻¹)	11440 ± 303
pН	8.2 ± 0.2
Conductivity, (μS cm ⁻¹)	1017 ± 14
$\mathrm{UV}_{400}, (\mathrm{cm}^{\text{-}1})^b$	0.012 ± 0.001
UVT ₂₅₄ , (%)	77.1 ± 0.1
UV ₂₅₄ , (cm ⁻¹)	0.113 ± 0.001
Chemical Oxygen Demand, COD (mg L-1)	37 ± 3
Soluble Chemical Oxygen Demand, SCOD (mg L ⁻¹)	24 ± 6
Total Nitrogen, TN (mg N L-1)	13.3 ± 0.2
Soluble Total Nitrogen, STN (mg N L ⁻¹)	12.0 ± 0.4
Total Kjeldahl Nitrogen, TKN (mg N L-1)	2.7 ± 0.2
Nitrites and Nitrates, NO ₂ -N + NO ₃ -N (mg N L ⁻¹)	10.6 ± 0.1
Particulate Organic Nitrogen, (mg N L-1)	1.3 ± 0.4
Ammonia + Soluble Organic Nitrogen (mg N L ⁻¹)	1.4 ± 0.4
Total Phosphorus, TP (mg P L ⁻¹) ^c	0.45 ± 0.13
Turbidity, (NTU)	5.0 ± 0.1
Total Solids, TS (mg L-1)	653 ± 10
Total Suspended Solids, TSS (mg L ⁻¹)	13 ± 3
Total Dissolved Solids, TDS (mg L ⁻¹)	640 ± 10

 $[^]a$ Average \pm standard deviation of triplicate analysis of the grab sampled SEW

101102

103

104

^{100 &}lt;sup>b</sup>Indication of color

^cMeasured by the wastewater treatment plant at the same day we collected the SEW

Table S2. Kinetic parameters determined in this study for the inactivation of MNV by Fe(VI) (k_d) and the decomposition of Fe(VI) (k_2) in 0.01 M phosphate buffer.

106

pН	[MNV]	[Fe(VI)]	k_2 , 10 ⁻¹	k _d , 10 ⁻¹
	(PFU mL ⁻¹)	(mg L ⁻¹)	$(L mg^{-1} min^{-1})$	(L mg ⁻¹ min ⁻¹)
6.2	37126	2.04	0.98 ± 0.06	4.80±0.17
7.2	935	1.16	0.49 ± 0.02	2.23±0.06
7.2	1467	2.36	0.53±0.02	2.23±0.00
7.7	4800	2.14	0.17±0.01	1.39±0.10
8.2	917	1.05	0.05±0.002	0.75±0.04
8.2	429	2.08	0.04±0.001	0.75±0.04

Table S3. Kinetic parameters determined in this study for inactivating MNV and FC by Fe(VI) in secondary effluent wastewater.

pН	[MNV]	[Fe(VI)]	[FC]	D	k_1	MNV ^a		FCb	ı	
	(PFU mL ⁻¹)	(mg L ⁻¹)	(CFU	(mg L ⁻¹)	(min ⁻¹)	k _d , 10 ⁻¹	β	k_{d}	m	$k_{\rm p}$
			$(100 \text{ mL})^{-1})$			(L mg ⁻¹ min ⁻¹)		(L ^m mg ^{-m} min ^{-m})		(L mg-1 min-1)
8.2	-	1.16	11372	0.21±0.04	0.37±0.04	-				
8.2	32327	2.06	11771	0.41±0.09	0.12±0.02	1.35±0.04	0.017±0.003	2.08 ± 0.05	1.08±0.06	0.03±0.018
8.2	24123	8.29	11177	0.57±0.16	0.08±0.004	1.33±0.04				

aMNV: Murine norovirus; bFC: Fecal coliforms

Table S4. Model predicted ICT values required for 1-, 2-, 3-, and 4-log₁₀ reduction of murine norovirus (MNV) and fecal coliforms (FC) by Fe(VI) in secondary effluent wastewater.

Reduction	ICT (1	mg min L ⁻¹)
	FC	MNV
$1-\log_{10}$	1	7
$2-\log_{10}$	17	15
$3-\log_{10}$	N/A	22
$4-\log_{10}$	N/A	30