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1. Materials and methods

All reagents and chemicals were purchased from commercial sources and used without further
purification. DOTA-mono-NHS tris (z-Bu ester) (product number B-270) was purchased from
Macrocyclics. Gastrin Tetrapeptide (H-Trp-Met-Asp-Phe-NH;) (cas no [1947-37-1]) was
purchased from Bachem Americas (product number H-3110). All deuterated solvents were
purchased from Cambridge Isotope Laboratories. Unless otherwise noted, reactions were carried
out in oven-dried glassware under an atmosphere of argon using commercially available anhydrous
solvents. Solvents used for extractions and chromatography were not anhydrous. Silicon oil bath
was used as the heating source for all reactions. Reactions and chromatography fractions were
analyzed by thin-layer chromatography (TLC) using Merck precoated silica gel 60 F2s4 glass plates
(250 pm) and visualized by ultraviolet irradiation, 2,4-dinitrophenyl hydrazine or potassium
permanganate stain or ninhydrin stain. Flash column chromatography was performed using E.
Merck silica gel 60 (230—400 mesh) with compressed air and ethyl acetate and n-hexane were used
as eluent solvents. NMR spectra were recorded on a Bruker ARX 400 (400 MHz for 'H; 100 MHz
for 13C) spectrometer. Chemical shifts are reported in parts per million (ppm, 8) using the residual
solvent peak as the reference. The coupling constants, J, are reported in Hertz (Hz), and the
multiplicity identified as the following: br (broad), s (singlet), d (doublet), t (triplet), q (quartet),
and m (multiplet). High-resolution electrospray mass spectrometry data was collected with a
Waters LCT Premier XE time-of-flight instrument controlled by MassLynx 4.1 software. For
some samples, high-resolution mass spectra were obtained on Thermo Scientific™ Exactive Mass
Spectrometer with DART ID-CUBE. Samples were dissolved in methanol and infused using
direct loop injection from a Waters Acquity UPLC into the Multi-Mode Ionization source. HPLC
purifications were performed on a Knauer Smartline HPLC system with inline Knauer UV (210 or
254 nm) detector. Semi-preprative HPLC was performed using Phenomenex reverse-phase Luna
column (10 x 250 mm, 5 pum) with a flow rate of 4 mL/min. Final purity of compounds was
determined by analytical HPLC analysis performed with a Phenomenex reverse-phase Luna
column (4.6 x 250 mm, 5 um) with a flow rate of 1 mL/min. Compounds were identified by UV
absorbance at 254 nm. All chromatograms were collected by a GinaStar (raytest USA, Inc.;

Wilmington, NC, USA) analog to digital converter and GinaStar software (raytest USA, Inc.).
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2. Experimental data

2.1 Synthesis and characterization of heteroarylsilanes

Heteroarylsilanes were synthesized according to literature procedure.! A representative example

1s described below.

20 mol% Bu
©f\> KOt-Bu mém
tBU,SiH,, THF l
S 29I, IS
60°C,22 h Bu
2 78% 3

benzo[b]thiophen-2-yldi-fert-butylsilane (3). To a vial containing benzothiophene (134.2 mg, 1
mmol), potassium tert-butoxide (22.5 mg, 0.2 mmol) and di-tert-butylsilane (0.59 mL, 3.0 mmol)
was added THF (1.0 mL) inside a glovebox. The vial was sealed, taken outside the glovebox and
stirred at 60 °C for 22 h. The reaction mixture was concentrated in vacuo and the crude residue
was purified by silica gel column chromatography eluting with 100% hexane to afford 3 (214.0
mg, 78%) as a white solid.

'H NMR (400 MHz, CDCls) & 7.92 — 7.87 (m, 1H), 7.86 — 7.82 (m, 1H), 7.58 (d, J= 0.7 Hz, 1H),
7.39 — 7.30 (m, 2H), 4.09 (s, 1H), 1.11 (s, 18H). *C NMR (100 MHz, CDCls) 5 143.8, 140.7,
135.0, 133.8, 124.2, 124.0, 123.4, 122.0,29.4, 19.0. HRMS (APCI) m/z calcd for C16Ha4FSSi [M]*
276.1368, found 276.1364.

2.2 Synthesis of glycine ester HetSiFA 6

1) n-BuLi, TMEDA,
Bu pentane, 23 °C, Bu

I 20 h |
msm > D—siH
s .1 2)-78°Cto23°C s

1 1]
Bu DMF, 2 h, 82% Bu
3 oy 4

2-(di-tert-butylsilyl)benzo[b]|thiophene-7-carbaldehyde (4). To a flame dried round bottom
flask benzothiophene 3 (304.2 mg, 1.1 mmol), TMEDA (0.25 mL, 1.65 mmol) and pentane (3 mL)
was added under a steady stream of argon. n-Butyllithium (2.5 M in hexanes, 0.66 mL, 1.65 mmol)

was added dropwise such that the internal temperature remained between 22 and 25 °C. The
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reaction mixture was stirred at room temperature for 20 h. The solution was then cooled to -78 °C
(dry ice/acetone bath) and N, N-dimethylformamide (0.32 mL, 4.4 mmol) was added dropwise such
that the temperature was kept at -78 °C. The resulting solution was allowed to stir at -78 °C for 1
h before it was brought to room temperature and stirred at 23 °C for additional 1 h. The dark
colored reaction mixture was carefully quenched with saturated aqueous NH4Cl (3 mL). The crude
product was extracted with ethyl acetate (10 mL x 2) and combined organics were washed with
brine, dried over MgSOs4 and concentrated under reduced pressure. The residue was purified by
silica gel column chromatography eluting with 5% ethyl acetate in hexanes to afford aldehyde 4

(250 mg, 82%) as a yellow oil.

'H NMR (400 MHz, CDClz): "H NMR (400 MHz, CDCl3) & 10.26 (s, 1H), 8.13 (dd, J=7.9, 1.1
Hz, 1H), 7.88 (dd, J= 7.2, 1.1 Hz, 1H), 7.67 (s, 1H), 7.57 (dd, J= 7.9, 7.2 Hz, 1H), 4.15 (s, 1H),
1.11 (s, 18H); 3C NMR (100 MHz, CDCls) § 191.3, 142.3, 141.0, 139.3, 132.6, 131.4, 130.6,
129.5, 124.0, 28.7, 19.0. HRMS (APCI) m/z caled for Ci7HosOSSi [M+H]* 305.1395, found
305.1400.

t
Bu H,N._CO,Me - HCI Bu
L N—siH
SiH Et;N, 2 h s 1
s > By
B
u NaBH,, MeOH A~
0 H 4 0 OC, 1h 5 ” COzMe

58%
Methyl ((2-(di-tert-butylsilyl)benzo[b]thiophen-7-yl)methyl)glycinate (5): To a stirred
solution of 4 (110 mg, 0.36 mmol) and glycine methyl ester hydrochloride (68 mg, 0.54 mmol) in
methanol at 0 °C was added trimethylamine (0.075 mL, 0.54 mmol). The contents were stirred at
0°C for 30 min before warming to room temperature and stirring for 1.5 h. The reaction mixture
was cooled to 0 °C and sodium borohydride (27 mg. 0.72 mmol) was added in one portion and the
reaction was stirred at 0 °C for 1 hr. The reaction was quenched with water (1 mL) and the crude
product was extracted into ethyl acetate (25 mL) and washed with a saturated brine solution. The
residue was purified on silica gel column chromatography eluting with 20% ethyl acetate in

hexanes to obtain desired product 5 as colorless oil (79 mg, 58% yield).
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'H NMR (400 MHz, CDCL) § 7.77 (dd, J = 5.0, 4.0 Hz, 1H), 7.61 (s, 1H), 7. 36-7.33 (m, 2H),
4.16 (s, 2H), 4.10 (s, 1H), 3.73 (s, 3H), 3.49 (s, 2H), 1.11 (s, 18H). *C NMR (100 MHz, CDCI3)
§172.7,142.9, 141.3 134.8, 134.1, 132.9, 124. 4, 123.4, 122. 6, 52.1,51.8, 49.8, 28.7, 19.1. HRMS
(APCI) m/z caled for CaoH3;NO,SSi [M+H]" 378.1923, found 378.1911.

Bu

| tBU
N—SiH  KF, 18-cr-6 N\ _dip
S iay AcOH, THF s
—» t
~ 60°C, 5 h Bu
5 N COMe g59 6 H/\C02Me

Methyl ((2-(di-tert-butylfluorosilyl)benzo[b]thiophen-7-yl)methyl)glycinate (6) : To a stirred
solution of 5 (64 mg, 0.17 mmol), potassium fluoride (15 mg, 0.26 mmol) and 18-crown-6 (67 mg,
0.26 mmol) was added THF (2 mL) and acetic acid (0.030 mL, 0.51 mmol). The contents were
stirred at 60 °C for 5 h. The crude residue was filtered and concentrated under reduced pressure.
The crude product was purified on silica gel column chromatography eluting with 30% ethyl

acetate in hexanes to obtain 6 as colorless oil (44 mg, 65% yield).

'H NMR (400 MHz, CDCL) § 7.80 (dd, J = 6.2, 2.9 Hz, 1H), 7.67 (s, 1H), 7.38 (dd, ] = 6.7, 4.2
Hz, 2H), 4.18 (s, 2H), 3.73 (s, 3H), 3.49 (s, 2H), 1.12 (d, J= 1.0 Hz, 18H). '*C NMR (100 MHz,
CDCls) § 172.6, 142.8, 141.0, 133.7 (d, J =4 Hz), 133.2, 132.9, 124.6, 123.8 (d, J=2.2 Hz), 122.9,
52.1, 51.8, 49.6 (d, J = 3.5 Hz), 27.0, 20.3 (d, J = 12.2 Hz). '°F NMR (376 MHz, CDCls) 5 -
183.78. HRMS (APCI) m/z caled for CaoH3 NFO,SSi [M+H]* 396.1829, found 396.1815.

2.3 General procedure for fluorination of heteroarylsilanes:

— ’B;u KF, 18-cr-6 ‘Bu
\ AcOH, THF N\
(@ Si—H _ACOH, THF Si—F
I 60 °C, 5 h o |
Bu

Bu

A round bottom flask containing the heteroarylsilane (0.22 mmol), potassium fluoride (0.33 mmol)

and 18-crown-6-cther (0.33 mmol) was added THF (2 mL) and acetic acid (0.66 mmol) under
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argon atmosphere. The reaction mixture was stirred at 60 °C for 5 h. After completion of the
reaction, the crude mixture was filtered with dichloromethane and concentrated under reduced
pressure. The residue was purified by silica gel column chromatography eluting with 10-15% ethyl

acetate in hexanes to afford the desired heteroarylfluorosilanes.

Bu

|
mSi_F
N

v 'Bu
Me
7

2-(di-ztert-butylfluorosilyl)-1-methyl-1H-indole (7). '"H NMR (400 MHz, CDCls) § 7.67 (dt, J =
8.0, 1.0 Hz, 1H), 7.40 (dd, J = 8.4, 0.9 Hz, 1H), 7.29 (ddd, /= 8.3, 6.9, 1.2 Hz, 1H), 7.14 (ddd, J
=17.9,6.9, 1.0 Hz, 1H), 6.84 (s, 1H), 3.95 (d, J= 1.2 Hz, 3H), 1.14 (d, /= 1.2 Hz, 18H). *C NMR
(100 MHz, CDCIl3) 6 139.8, 128.2 (d, J = 1.4 Hz), 122.3, 120.8, 119.4, 112.4, 109.4, 33.1, 27.2,
20.9 (d, J = 12.1 Hz). F NMR (376 MHz, CDCl3) & -181.04. HRMS (ESI) m/z calcd for
C17H27FNSi [M+H]" 292.1897, found 292.1895.

Bu

C-4
S tl?!u

8
benzo[b]thiophen-2-yldi-tert-butylfluorosilane (8). '"H NMR (400 MHz, CDCl3) § 7.94-7.88 (m,
2H), 7.87 (s, 1H), 7.41-7.33 (m, 2H), 1.13 (d, J = 1.1 Hz, 18H). 3C NMR (100 MHz, CDCls) §
143.6, 140.4, 133.3 (d, /= 2.9 Hz), 133.1 (d, J= 16.4 Hz), 124.7, 124.2, 123.8, 122.1, 27.0, 20.3
(d, J=12.0 Hz). ’F NMR (376 MHz, CDCl3) 6 -183.95. HRMS (APCI) m/z caled for C16H23FSSi

[M+H]" 294.1264, found 294.1263.
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2-(di-tert-butylfluorosilyl)-1-methyl-1 H-pyrrolo[2,3-b]pyridine (9). 'H NMR (400 MHz,
CDCl3) 6 8.39 (dd, J=4.7, 1.5 Hz, 1H), 7.94 (dd, J = 7.8, 1.4 Hz, 1H), 7.07 (dd, J = 7.8, 4.7 Hz,
1H), 6.77 (s, 1H), 4.06 (d, J=2.2 Hz, 3H), 1.11 (d, J= 1.0 Hz, 18H). *C NMR (100 MHz, CDCl3)
0 149.0, 144.8, 142.4, 129.7, 126.7, 120.8, 116.0, 115.4, 110.6, 32.0, 22.0, 20.8 (d, J = 11.3 Hz).
YF NMR (376 MHz, CDCl3) § -181.45. HRMS (ESI) m/z caled for Ci7H2FN2Si [M+H]*
293.1849, found 293.1852.

Bu

|
J -5
CsH1 0

Bu
10
di-tert-butylfluoro(5-pentylfuran-2-yl)silane (10). 'H NMR (400 MHz, CDCl3) & 6.74 (d, J =
3.1 Hz, 1H), 6.01 (d, J = 3.1 Hz, 1H), 2.66 (t, J= 7.5 Hz, 2H), 1.69 — 1.61 (m, 2H), 1.35 — 1.29
(m, 4H), 1.07 (d, J = 1.1 Hz, 18H), 0.89 (t, J= 7.0 Hz, 3H). *C NMR (100 MHz, CDCls) § 161.4,
151.4 (d, J=23.3 Hz), 123.5, 104.7, 31.3, 28.0, 27.8, 26.8, 22.4, 20.0 (d, J = 12.4 Hz), 13.9. I°F
NMR (376 MHz, CDCl3) 6 -187.21. HRMS (APCI) m/z caled for C17H3FOSi [M+H]* 299.2206,
found 299.2212.

tBIu
@—Si—F
N |

Bu

11

1-benzyl-2-(di-tert-butylfluorosilyl)-1H-pyrrole (11). 'HNMR (400 MHz, CDCl3) § 7.34 —7.20
(m, 3H), 7.05 (dd, J = 16.6, 7.0 Hz, 2H), 6.91 (dd, J = 2.3, 1.4 Hz, 1H), 6.54 (td, J = 4.0, 1.4 Hz,
1H), 6.30 — 6.24 (m, 1H), 5.28 (s, 2H), 1.02 (d, J = 1.0 Hz, 18H). 3C NMR (101 MHz, CDCl3) &
139.4, 128.4 (d, J=5.4 Hz), 127.2, 126.9, 126.7, 120.1 (d, J= 6.0 Hz), 108.6, 53.4, 27.2, 20.9 (d,
J=12.4 Hz). ’F NMR (376 MHz, CDCl3) 8 -187.63. HRMS (APCI) m/z caled for C19H20FNSi
[M+H]" 318.2053, found 318.2059.
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2.4 Synthesis of N-hydroxysuccinimide ester HetSiFA 16

Scheme S1. Synthetic route towards HetSiFA 16

'5; KF, 18-cr-6 N sli-F
N_din Oxone N SIH ACOH THF N EDCI NHS o) S tBlu
h DMF.23°C S Te0°Ch S MR 23°C

'Bu  6h,63% By O 70% tB 20 h, 74% N-O0" ~0

(0] H
4 0O 16
tB;u F.*.;u
Oxone

N—8iH N—SiH

s 1 DMF23°C g
Bu  6h,63% ‘Bu

O H O OH
4 18

2-(di-tert-butylsilyl)benzo[b]thiophene-7-carboxylic acid (18).2 To a 10 mL round-bottom flask
containing N, N-dimethylformamide (2 mL) and aldehyde 4 (128 mg, 0.42 mmol), was added
Oxone® (135 mg, 1.05 mmol) in one portion and stirred at room temperature for 6 hrs. The
reaction mixture was diluted with 1 M HCI (1 mL) and ethyl acetate (10 mL). The organic layer
was washed with brine, dried over sodium sulfate and the solvent was removed under reduced
pressure. The crude residue was purified by silica gel column chromatography eluting with

hexanes:ethyl acetate (70:30, v/v) to obtain the desired acid 18 (84 mg, 63%) as an off-white solid.

'H NMR (400 MHz, CDCls) & 8.25 (dd, J = 7.5, 1.2 Hz, 1H), 8.10 (dd, J = 7.9, 1.2 Hz, 1H), 7.66
(s, 1H), 7.49 (t, I = 7.7 Hz, 1H), 4.14 (s, 1H), 1.14 (s, 18H). '>*C NMR (100 MHz, CDCI3) 5 171.5,
144.5, 142.3, 138.3, 133.1, 129.0, 128.0, 123.9, 123.2, 28.7, 19.1. HRMS (APCI) m/z calcd for
C17H230,8Si [M-H] 319.1194, found 319.1200.

’Eiu KF, 18-cr-6 Bu
N\_giy AcOH, THF )\
ﬁ
S @  60°C,5h s
B ) t
u 70% Bu
07 OH 07 OH
18 12
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2-(di-tert-butylfluorosilyl)benzo[b]thiophene-7-carboxylic acid (12). A round bottom flask
containing carboxylic acid 18 (70 mg, 0.22 mmol), potassium fluoride (19 mg, 0.33 mmol) and
18-crown-6-ether (87 mg, 0.33 mmol) was added THF (2 mL) and acetic acid (0.04 mL, 0.66
mmol) under argon atmosphere. The reaction mixture was stirred at 60 °C for 5 hrs. After
completion of the reaction, crude mixture was filtered with dichloromethane and concentrated
under reduced pressure. The residue was purified by silica gel column chromatography eluting
with 30% ethyl acetate in hexane to afford the desired product 12 (52 mg 70%) as an off-white
solid.

'H NMR (400 MHz, CDCL3) & 8.28 (dd, J = 7.4, 1.0 Hz, 1H), 8.14 (dd, J= 7.9, 0.9 Hz, 1H), 7.74
(s, 1H), 7.52 (t, J= 7.7 Hz, 1H), 1.15 (d, J= 0.7 Hz, 18H). '3C NMR (100 MHz, CDCL:) § 171.6,
144.3, 141.9, 136.5 (d, J = 16.1 Hz), 132.7 (d, J= 2.9 Hz), 129.4, 128.4, 124.1, 123.3, 27.0, 20.2
(d, J = 12.1 Hz). "F NMR (376 MHz, CDCL:) & -183.85. HRMS (APCI) m/z caled for
C17H22F0,S8Si [M-H]" 337.1099, found 337.1099.

‘Bu \ Sl
N\ _di [EDCI NHS
S falu DMF, 23 c
20 h, 74%

0% OH

12

2-(di-tert-butylfluorosilyl)benzo|b]thiophene-7-carboxylic acid N-succinimidyl ester (16). To
a stirred solution of carboxylic acid 12 (10 mg, 0.03 mmol) in DMF (0.12 mL) at 0 °C, EDC.HCI
(9 mg, 0.05 mmol) and N-hydroxysuccinimide (3.8 mg, 0.03 mmol) was added. The contents were
stirred at room temperature for 20 h followed by extraction into dichloromethane. The organic
phase was washed with brine, concentrated under reduce pressure and filtered through a short silica

gel plug using 20% ethyl acetate in hexane to obtain NHS-ester 16 (9.5 mg 74%) as a white solid.

'H NMR (400 MHz, CDCL3) § 8.33 (dd, J = 7.5, 1.1 Hz, 1H), 8.19 (dd, J= 7.9, 1.0 Hz, 1H), 7.74
(s, 1H), 7.53 (t, J= 7.7 Hz, 1H), 1.11 (d, J = 1.0 Hz, 1H). '*C NMR (100 MHz, CDCls) § 169.1,
161.5, 144.9, 141.9, 136.8, 132.9 (d, J=2.8 Hz), 130.5, 128.4, 124.2, 118.8, 26.9, 25.7, 20.2 (d, J
= 12.0 Hz). '°F NMR (376 MHz, CDCls) 5 -183.96. HRMS (APCI) m/z calcd for C21HasFNO4SSi
[M*] 435.1330, found 435.1329.
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2.5 Synthesis of benzothiophene-peptide conjugates

N
NH 1BUO,C 2 Z o 0? rcoszu
= CoH N AN o F/ COH
H Ho C 1
HoN N .K\JJ\N NN CO,Bu

N \)“ i fw
H 2 - N
© \H © DIPEA, DMF B”OZC \\ j\
SMe 23°C,12h,91% I\L

H-Trp-Met-Asp-Phe-NH, CO,Bu 14
13

tris(z-butyl)  DOTA-Gastrin conjugate (14). To a stirred solution of gastrin tetrapeptide (H-Trp-
Met-Asp-Phe-NH;) 13 (7.31 mg, 12.25 umol) in DMF (0.15 mL) was added DOTA-mono-NHS
tris(z-Bu ester) (10 mg, 12.25 pmol) and DIPEA (4.2 pL, 24.50 pmol) at 0 °C. Reaction mixture
was stirred at room temperature for 12 h. The crude product was purified by semi-preparative
reverse phase HPLC (10% to 90% CH3CN in water (both with 0.1% TFA) over 30 minutes, 4
mL/min flow rate; UV 220 nm). The product fractions were lyophilized to obtain desired peptide
conjugate 14 (12.8 mg, 91%) as a white solid. The identity of the conjugate was confirmed by
HRMS. HRMS (ESI) m/z caled for Cs7Hg7N10013S [M+H]* 1151.6175, found 1151.6178.

NHBoc

rco2 Bu c02 - OJ‘O
COozH /\,(o\/} NHBoc NH
N\ Ny 1 %“ L e o JL
BUOC \ N j\ W\Ej HATU, DIPEA, DMF fBuOQC
N 23°C, 12 h, 90%
S

CO,Bu 14 CO Bu 15-Boc

N-boc-PEGylated tris(z-butyl) DOTA-Gastrin conjugate (15-Boc). To a solution of peptide
conjugate 14 (14 mg, 12.16 umol) in DMF (0.2 mL) cooled to 0- 4 °C (in ice bath), was added
HATU (5.54 mg, 14.59 umol). The contents were stirred at 0 - 4 °C for 5 min. To the reaction
mixture, was added tert-butyl (2-(2-(2-(2-aminoethoxy) ethoxy)ethoxy)ethyl)carbamate (7.12 mg,
14.59 umol) and DIPEA (6.3 uL, 36.47 pmol) and the reaction was stirred at room temperature
for 18 hrs. The crude reaction was purified by semi-preparative HPLC (10% to 90% CH3CN in
water (both with 0.1 % TFA) over 30 minutes, 4 mL/min flow rate; UV 220 nm). The product
fractions were lyophilized to get PEGylated peptide conjugate 15-Boc (15.7 mg, 90%) as a white
solid. The identity of the conjugate was confirmed by HRMS. HRMS (ESI) m/z calcd for
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C70H112N12017SNa [M+Na]+ 1447.7886 found 1447.7916 5 and [1\/[/2‘*’H]2+ calcd 713.4067, found
713.4096.

CF3c009
NH3
NHBoc O
COZH

COZ’Bu
\\ \)L /c; CF3COZH, CH,Cl, HoC

N 2

tBuOZC j\ 23 uCY 8h N
SMe

. SMe COQH

COZ Bu 15-Boc

PEGylated DOTA-Gastrin conjugate (15). Boc protected peptide conjugate 15-Boc (15.4 mg)
was taken in dichloromethane (0.2 mL) and trifluoroacetic acid (0.5 mL) and stirred at room
temperature for 8 h. The solvent was evaporated under reduced pressure and crude residue was
used in the following reaction without any purification. HRMS (ESI) m/z calcd for Cs3HgiN12015S
[M+H]" 1157.5665, found 1157.5687.

COZH

/
CF3C00 (I?H O\A‘ON ’Bu
3 Bu
‘Bu I
gm ko - \\)L JL L

/_/
C \N\)\\ 16 HO,

COZH

HO; T oreaowr

23°C,20h
54% 17

Benzothiophene-SiFA-peptide conjugate (17). To a stirred solution of PEGylated DOTA-
Gastrin conjugate 15 (6 mg, 4.76 pmol) in 150 pL. DMF and 2.5 pL DIPEA was added N-
hydroxysuccinimidyl ester 16 (2 mg, 4.53 umol) at 0 °C. The crude reaction was stirred at room
temperature for 20 h. The crude residue was purified by semi-preparative HPLC (10% to 90%
CH3CN in water (both with 0.1 % TFA) over 30 minutes, 4 mL/min flow rate; UV 220 nm). The
product fractions were lyophilized to afford benzothiophene-SiFA-peptide conjugate 17 (3.7 mg,
54%) and recovered NHS-ester 16. The identity of the conjugates were confirmed by HRMS.
HRMS (ESI) calcd for C70H101FN12016S2S1 [M-H] 1475.6580 found 1475.6617 and m/z calcd for
C70H101FN12016S2Si1 [M/2+H]** 739.3399, found 739.3410.
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Figure S1: Analytical HPLC chromatograph of purified benzothiophene-SiF A-peptide
conjugate 17. HPLC mobile phase: 10% acetonitrile in water (both with 0.1% TFA) to 90%

over 18 min then 95% acetonitrile up to 25 min with flow rate 1.2 mL/min at UV 254 nm.

3. Radiochemistry
3.1 General Materials and Methods

No-carrier-added ['*F]fluoride was produced by the '*O(p,n)'®F nuclear reaction in a Siemens
RDS-112 cyclotron at 11 MeV using a 1 mL tantalum target with havar foil. The solvents and
reagents were commercially available and used without further purification. HPLC grade
acetonitrile and trifluoroacetic acid were purchased from Fisher Scientific. Anhydrous acetonitrile,
dimethyl sulfoxide and tetracthylammonium bicarbonate were purchased from Sigma-Aldrich.
Sterile product vials were purchased from Hollister-Stier. QMA-light Sep-Paks and tC18 light
cartridges were purchased from Waters Corporation. Radio-TLCs were analyzed using a
miniGITA* TLC scanner. HPLC purifications were performed on a Knauer Smartline HPLC
system with inline Knauer UV (254 nm) detector and gamma-radiation coincidence detector and
counter (Bioscan Inc.). Semi-preprative HPLC was performed using Phenomenex reverse-phase
Luna column (10 % 250 mm, 5 pm) with a flow rate of 4 mL/min. Final purity and identity of
compounds were determined by analytical HPLC analysis performed with a Phenomenex reverse-
phase Luna column (4.6 x 250 mm, 5 um) with a flow rate of 1.2 mL/min or 1 mL/min. All
chromatograms were collected by a GinaStar (Raytest) analog to digital converter and GinaStar

software.
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Preparation of ['8F]tetraethylammonium fluoride (['*F]TEAF)

Dry ['®F]TEAF was prepared using an ELIXYS automated radiosynthesizer (Sofie Biosciences).
['8F]Fluoride was delivered to the ELIXYS in ['®*O]H,O (1 mL) via nitrogen gas push and trapped
on a QMA cartridge to remove the ['*O]H,O. Trapped ['*F]fluoride was subsequently eluted into
the reaction vial using a solution containing Et4aNHCO3 (1.8-2.0 mg, ~10 pmol) in acetonitrile and
water (1 mL, 8:2) (QMA cartridge was flipped before elution step). Contents in the reaction vial
were evaporated by heating the vial to 110 °C while applying a vacuum for 3.5 min, with stirring.
Acetonitrile (1.3 mL) was passed through the QMA cartridge to wash remaining activity into the
reaction vial. The combined contents in the reaction vial were dried by azeotropic distillation
(heating to 110 °C under vacuum) for 2 min. Anhydrous acetonitrile (1.3 mL) was directly added
to the reaction vial and azeotropic distillation was repeated once more until dryness, approximately
3-4 min. The reaction vial was cooled to 30 °C under nitrogen pressure and acetonitrile (1 mL)

was added to provide anhydrous ['*F]TEAF which was used for subsequent reactions.

*Note: In some cases, an alternate protocol using methanol as the eluent was employed to obtain
dry ["®F]TEAF. Briefly, the QMA cartridge washed with 1 mL methanol followed by 5 mL air.
['8F]Fluoride was trapped on the QMA and eluted with a solution of tetracthylammonium
bicarbonate (1.5-2 mg) in methanol (0.8 mL, cartridge was flipped while elution). Additional
methanol (0.8 mL) was eluted through the QMA and the methanol was evaporated at 70 °C, under
vacuum to obtain dry ['*F]TEAF.

3.2 Isotopic exchange reactions and characterization of '*F-labeled compounds

t t
—~ o ['8Ffluoride ~ oY
N—o | Et4NHCO;3 ot |
Bu  CHsCN, 23°C vonr . BU
1 ['8F]-1

General experimental procedure: Isotopic exchange reactions were conducted in 1 mL
Eppendorf tube containing hetroarylfluorosilanes 1 in dry acetonitrile (3 mM stock solution, 50
uL). To the Eppendorf tube, was added 0.5 - 1 mCi of ['®F]TEAF in 100-150 pL of dry acetonitrile
and the contents were left at room temperature for 2 min without stirring. An aliquot of the crude

reaction mixture was spotted on a silica gel coated TLC plate, developed in a glass chamber using
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acetonitrile (100 %) or acetonitrile:water (95:5) as the eluent and analyzed by radio-TLC using a
miniGITA* TLC scanner. The radiochemical conversion (RCC) was calculated by dividing the
integrated area of the ®F-fluorinated product peak by the total integrated area of all peaks on the
TLC and multiplying by 100 to convert to percentage units. Isotopic exchange and purity was
confirmed by analytical HPLC by co-injecting with the °F-reference standard (UV absorbance at
254 nm). An aliquot of the crude reaction mixture (10 uL) was added to the '°F-reference standard

(1 mg/mL) in acetonitrile (10 pL) and the sample was injected into the analytical HPLC.

3.3 Optimization Screening

High base vs Low Base. ['SF]TEAF was obtained by eluting fluoride ion with high base or low
base, following the protocol described above. Elution with high base led to the formation of
hydrolyzed products as seen in analytical HPLC (UV impurities) and the radiochemical

conversions dropped over time.

Table S1. Reactions were conducted with HetSiFA 6 using 50 umol EtsNHCO:s.

High Base
Concentration 2 min 5 min 15 min 30 min | 60 min
nmol (run)
150(1) 93.45 88.15 83.25 78.24 74.23
150(2) 94.67 88.12 82.24 76.14 70.12
150(3) 96.46 89.14 81.47 75.49 71.35
Average 94.86 88.47 82.32 76.62 71.9
Standard Dev. 1.51 0.58 0.89 1.43 2.11
100(1) 95.73 90.12 81.12 75.23 70.25
100(2) 94.23 90.26 79.53 73.15 69.42
100(3) 94.38 89.92 78.47 75.24 68.28
Average 94.78 90.1 79.70 74.54 69.32
Standard Dev. 0.83 0.17 1.33 1.20 0.98
50(1) 88.15 85.21 78.21 72.12 68.36
50(2) 88.2 84.56 77.63 71.25 66.72
50(3) 85.21 81.03 76.41 70.52 65.23
Average 87.18 83.60 77.41 71.29 66.77
Standard Dev. 1.71 2.25 0.92 0.80 1.57
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Table S2. Reactions were conducted with HetSiFA 6 using 5.75 pumol Et4NHCO:s.

Low Base
Concentration 2 min 15 min 30 min
nmol (run)
150(1) 92.84 94.11 95.39
150(2) 94.33 96.11 95.66
150(3) 92.21 92.05 97.45
150(4) 94.67
Average 93.51 94.09 96.16
Standard Dev. 1.18 2.03 1.11
100(1) 92.13 91.21 91.82
100(2) 92.77 93.1 93.39
100(3) 92.12 93.85 93.69
100(4) 89.92 90.85 92.53
Average 91.74 92.25 92.85
Standard Dev. 1.25 1.45 0.84
50(1) 88.97 93.44 95.43
50(2) 89.52 94.48 93.83
50(3) 90.83 93.85 93.03
Average 89.77 93.92 94.09
Standard Dev. 0.95 0.523 1.22
10(1) 83.52 87.52 93.51
10(2) 82.54 85.86 92.26
10(3) 85.52 88.87 90.94
Average 83.86 87.42 92.23
Standard Dev. 1.52 1.50 1.29
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Table S3. Reactions were conducted with HetSiFA 12.

Ets2NHCO3 Elution solvent Elution Time RCC (%)
mg (umol) efficiency (min)®
(%)
9.0 (47.1) Acetonitrile/water 96 2 93
15 85
30 65
5.0 (26.2) Acetonitrile/water 78 2 90
15 80
30 75
4.0 (20.9) Methanol 502 2 88
15 82
30 76
2.0 (10.5) Methanol 350 2 92
15 90
30 90
2.0 (10.5) Acetonitrile/water 64° 2 95
15 97
30 97
60 95
1.5 (7.8) Acetonitrile/water 60? 2 91
1.1 (5.8) Acetonitrile/water 552 2 88

3QMA cartridge was flipped to elute in the opposite direction as ['*F]fluoride was trapped.
®Reactions were conducted with 150 nmol HetSiFA 12 and left at room temperature without
stirring.

Table S4. Stability screen of HetSiFA ['®F]-12 in acetonitrile with 1.8 mg (9.4 umol)
Et4NHCO3 used for elution.

Time (min) RCC (%)*
2 95
5 96
15 97
30 97
60 97

®Reaction was conducted at room temperature.
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Table S5. Effect of precursor concentration of HetSiFA 12 on RCC.

Precursor amount (nmol) RCC (%)*
5 58
25 83
50 86
100 94
150 96

aReaction conditions: E4sNHCO3 (1.8 mg, 9.4 umol) in 150 pL acetonitrile. RCCs
were obtained after 2 min standing at room temperature.

3.4 Radio-TLC/Radio-HPLC analysis of '*F-labeled HetSiFAs

C/mm *1000

0.50 = N">co,Me
‘ Run ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ mean ‘ Standard deviation ‘
‘ Radio TLC yield (%) ‘ 92 ‘ 93 ‘ 92 ‘ 90 ‘ 92 ‘ 1 ‘

Figure S2. Isotopic exchange and characterization of methyl ((2-(di-tert-
butylfluoroesilyl)benzo[b]thiophen-7-yl)methyl)glycinate (['*F]-6). Radio-TLC scan (left).
Radio-HPLC (right) with 254 nm UV trace of '°F reference standard (upper chromatogram) and
radioactivity trace of reaction mixture (lower chromatogram). HPLC mobile phase: 30%
Acetonitrile in water (both with 0.1% TFA) to 90% acetonitrile in water over 10 min; then to

95 % acetonitrile in water from 13 min to 18 min.
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Figure S3. Isotopic exchange and characterization of 2-(di-zert-butylfluorosilyl)-1-methyl-
1H-indole (['®F]-7). Radio-TLC scan (left). Radio-HPLC (right) with 254 nm UV trace of °F
reference standard (upper chromatogram) and radioactivity trace of reaction mixture (lower
chromatogram). HPLC mobile phase: 10% Acetonitrile in water to 95% acetonitrile in water over

8 min; then to 95 % acetonitrile in water from 8 min to 25 min.

0.90

0.80

0.70

0.60

5.00 10100 15100 20.00 min

0.50

0.40

B u |§Z

0.20 s tBIU

['8F]-8
‘ ‘ ‘ mean . Standafd deviaﬁon ‘
‘ Radio TLC yield (%) ‘ 93 ‘ 91 ‘ 90 ‘ 89 ‘ 91 ‘ 1 ‘

Figure S4. Isotopic exchange and characterization of benzo[b]thiophen-2-yldi-tert-
butylfluorosilane (['®F]-8). Radio-TLC scan (left). Radio-HPLC (right) with 254 nm UV trace

of 'F reference standard (upper chromatogram) and radioactivity trace of reaction mixture (lower
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chromatogram). HPLC mobile phase: 10% Acetonitrile in water to 95% acetonitrile in water over

8 min; then to 95 % acetonitrile in water from 8 min to 25 min.
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Figure S5. Isotopic exchange and characterization of 2-(di-zert-butylfluorosilyl)-1-methyl-
1H-pyrrolo[2,3-b]pyridine (['®F]-9). Radio-TLC scan (left). Radio-HPLC (right) with 254 nm
UV trace of '°F reference standard (upper chromatogram) and radioactivity trace of reaction
mixture (lower chromatogram). HPLC mobile phase: 10% Acetonitrile in water to 95% acetonitrile

in water over 10 min; then to 95 % acetonitrile in water from 10 min to 25 min.
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Figure S6. Isotopic exchange and characterization of di-zert-butylfluoro(5-pentylfuran-2-
yDsilane (['®F]-10). Radio-TLC scan (left). Radio-HPLC (right) with 254 nm UV trace of '°F
reference standard (upper chromatogram) and radioactivity trace of reaction mixture (lower
chromatogram). HPLC mobile phase: 10% Acetonitrile in water to 95% acetonitrile in water over

10 min; then to 95 % acetonitrile in water from 10 min to 25 min.
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Figure S7. Isotopic exchange and characterization of 1-benzyl-2-(di-fert-butylfluorosilyl)-
1H-pyrrole (['®F]-11). Radio-TLC scan (left). Radio-HPLC (right) with 254 nm UV trace of '°F
reference standard (upper chromatogram) and radioactivity trace of reaction mixture (lower
chromatogram). HPLC mobile phase: 10% Acetonitrile in water to 95% acetonitrile in water over

8 min; then to 95 % acetonitrile in water from 8 min to 25 min.
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Figure S8. Isotopic exchange and characterization of 2-(di-tert-
butylfluorosilyl)benzo[b]thiophene-7-carboxylic acid (['®F]-12). Radio-TLC scan (left).
Radio-HPLC (right) with 254 nm UV trace of '°F reference standard (upper chromatogram) and
radioactivity trace of reaction mixture (lower chromatogram). HPLC mobile phase: 10%
Acetonitrile in water to 95% acetonitrile in water over 12 min; then to 95 % acetonitrile in water

from 12 min to 25 min.
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3.5 Automated radiolabeling of benzothiophene-SiFA-Peptide conjugate 17
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23 °C, 2 min
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Using an ELIXYS radiosynthesis module, benzothiophene-SiFA-Peptide conjugate 17 in
acetonitrile (1 mM solution, 250 uL) was added to anhydrous ['*F]TEAF (~ 12 mCi) and contents
were kept at 23 °C for 2 min without stirring. The crude mixture was diluted with 10 mL 0.01 M
HEPES (pH = 4) and passed through a C18 cartridge to afford ['®F]-17. Residual solvent and
['8F]fluoride were removed by flushing the C18 cartridge with water (~2 mL). ['8F]-17 was eluted
with ethanol (250 - 500 pL) and diluted with saline to a final formulation of 5-8% ethanol in saline.

Table S6. Isotopic exchange of peptide conjugate 17 to afford ['¥F]-17.

EtsNHCO3 Initial [*F]TEAF for | Final Activity % RCC® % RCY®
mg (umol)? IEX reaction after (isolated, non-
(mCi) formulation decay
(mCi) corrected)

1.8(9.4) 11.5 7.5 95 65
1.8 (9.4) 12.5 6.6 93 53
1.5(7.8) 11.2 6.2 95 55

94+1 58 + 6

aStandard elution with acetonitrile:water as described above

PRCC determined by radio-TLC, before formulation

“Isolated RCY calculated after formulation; formulation was not optimized
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Figure S9. Crude ['®F]-17. Radio-HPLC with 254 nm UV trace (top) and radioactivity trace
(lower) of crude reaction mixture after 2 min. HPLC mobile phase: 10% acetonitrile in water (both

with 0.1% TFA) to 95% over 15 min then 95% acetonitrile up to 25 min with flow rate 1.2 mL/min.
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Figure S10. Formulated ['®F]-17 . Radio-HPLC of formulated peptide ['F]-17 with 254 nm UV
trace (top) and radioactivity trace (lower). HPLC mobile phase: 10% acetonitrile in water (both

with 0.1% TFA) to 90% over 18 min then to 95% acetonitrile at 25 min with flow rate 1.2 mL/min.

0.00 5.00 10.00 15100 min
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Figure S11. Co-injection of formulated ['*F]-17 with reference standard. Radio-HPLC with
254 nm UV trace of reference standard 17 (top) and radioactive trace of ['8F]-17 (lower). HPLC
mobile phase: 10% acetonitrile in water (both with 0.1% TFA) to 90% over 18 min then to 95%

acetonitrile at 25 min with flow rate 1.2 mL/min.

3.6 Molar Activity of benzothiophene-SiFA-Peptide conjugate ['*F]-17

A calibration curve was generated from standard solutions of 17, by measuring the UV absorbance
at different concentrations. The activity of ['8F]-17 injected divided by the concentration of the
product measured from the calibration curve afforded the molar activity. The molar activity of

['8F]-17 was calculated to be 0.032 + 0.015 Ci/umol.

2000

1800

1600 y = 196190x + 93.784
2 _

1400 R? = 0.9989

1200
1000
800
600
400
200

0
0.00E+00  2.00E-03  4.00E-03  6.00E-03  8.00E-03  1.00E-02

Moles injected (umol)

Absorbance (mAu*s)

Volume Activity Absorbance Moles from Specific Activity
Injected (nL) Injected (nCi) (mAu¥s) Curve (umol) (Ci/pmol)
25 65 789 3.54E-03 1.83E-02
25 50 392 1.52E-03 3.29E-02
10 70 331 1.21E-03 5.79E-02
25 85 632 2.74E-03 3.10E-02
60 100 1024 4.74E-03 2.11E-02
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4. MicroPET/CT in vivo imaging experiments
4.1 Methods

Animal studies were approved by the UCLA Animal Research Committee and carried out
according to the guidelines of the Department of Laboratory Animal Medicine at UCLA. Female
C57BL6 mice were injected intravenously via tail vein with approximately 2.2 MBq (60 uCi) of
['8F]-17. Animals were kept warm on heating pads throughout the imaging procedures. At 1 and
2 h after tracer injection, mice were anesthetized with 2% isoflurane in oxygen and placed in
dedicated Genisys8 imaging chambers for PET/CT imaging on the Genisys8 PET/CT (Sofie
Biosciences). PET scans were acquired for 10 min with an energy window of 150-650 keV
reconstructed using ML-EM, followed by CT acquisition. All PET images were corrected for CT-
based photon attenuation, detector normalization and radioisotope decay (scatter correction was
not applied) and converted to units of percent injected dose per gram (%ID/g). Images were

analyzed by drawing regions-of-interest (ROI) in select tissues using AMIDE v1.0.5.3

Organ 1h 2h
Gl 107 £+ 24 122 + 48
Bladder 35+12 30+7
Gallbladder 33+ 14 28+9
Bone (knee) 8.0+ 0.65 8.2+ 0.56
Liver 5.0 £ 0.07 241047
Kidney 29+ 0.62 22+0.38
Heart 2.0+ 0.25 1.2+ 0.26
Brain 0.44 + 0.06 0.33+ 0.03
Muscle 0.36 £ 0.06 0.27+0.11

Table S7. Biodistribution of ['¥F]-17 in C57BL6 mice following PET quantification (%ID/g), 1

and 2 h post-injection.
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6. NMR Spectra

H NMR for 3 (400 MHz, CDCls)
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H NMR for 4 (400 MHz, CDCls)
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MR for 5 (400 MHz, CDCls)
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Jul31-2019-schanger

H NMR for 6 (400 MHz, CDCls)
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"9F NMR for 6 (376 MHz, CDCL)
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13C NMR for 7 (100 MHz, CDCls)
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H NMR for 8 (400 MHz, CDCls)
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19F NMR for 8 (376 MHz, CDCl3)
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3CNMR for 9 (100 MHz, CDCls)
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H NMR for 10 (400 MHz, CDCls)
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19F NMR for 10 (376 MHz, CDCl3)
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13C NMR for 11 (100 MHz, CDCl3)
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19F NMR for 11 (376 MHz, CDCl3)
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H NMR for 18 (400 MHz, CDCls)
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H NMR for 12 (400 MHz, CDCls)
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19F NMR for 12 (376 MHz, CDCl3)
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13C NMR for 16 (100 MHz, CDCl3)
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7. HRMS

tris(-butyl) DOTA-Gastrin conjugate (14)

dota-gstrinprotected

19 0419 narayanam? 15 (0.827) Cm (15:17) 1: TOF MS ES+
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B
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1201123 77.3033 8753851 9314521 987.5182 111755939
4922208, 1 \ i 505.2863 \l l Pmc,ssm
ool i \Il\\‘ b ; ‘l . Y ' ‘ ; ; . miz
200 400 600 800 1000 1200 1400 1600 1800

N-boc-PEGylated tris(z-butyl) DOTA-Gastrin conjugate (15-Boc).

DOTA-(tbutyl)gastrin-PEG-amin-boc-19min
18 1016 NARAYANAM2 22 (1.218)

1: TOF MS ES+
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DOTA-(tbutyl)gastrin-PEG-amin-boc-19min
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PEGylated DOTA-Gastrin conjugate (15).

DOTA-(Gastrin)PEG-amine-tfa-13.5min
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Benzothiophene-SiFA-peptide conjugate (17)

DOTA-(Gastrin)PEG-amine-BTisifa-21min
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