Supporting Information for

5-Fluorouracil Cocrystals with Lipophilic Hydroxy-2-Naphthoic Acids: Crystal Structures, Theoretical computations, and Permeation Studies

Xia-Lin Dai, Alexander P. Voronin, Yong-Liang Huang, German L. Perlovich, Xing-Hua Zhao, Tong-Bu Lu, Jia-Mei Chen*

Table of Contents

Experimental Section

References

Table S1. Hydrogen Bonding Distances and Angles of 5FU-6HNA and 5FU-3HNA

Table S2. Metric and Electron Density Properties in Bond Critical Point of Noncovalent Interactions in 5FU-6HNA Obtained from Periodic DFT Calculations Followed by Bader Analysis of Periodic Electron Density

Table S3. Metric and Electron Density Properties in Bond Critical Point of Noncovalent Interactions in 5FU-3HNA (Conformation 1) Obtained from Periodic DFT Calculations Followed by Bader Analysis of Periodic Electron Density

Table S4. Metric and Electron Density Properties in Bond Critical Point of Noncovalent Interactions in 5FU-3HNA (Conformation 2) Obtained from Periodic DFT Calculations Followed by Bader Analysis of Periodic Electron Density

Table S5. Contributions of Different Noncovalent Interaction Types into the Lattice Energy of 5FU-3HNA and 5FU-6HNA.

Table S6. Metric and Electron Density Properties in Bond Critical Point of Noncovalent Interactions in 5FU (refcode FURACL14) Obtained from Periodic DFT Calculations Followed by Bader Analysis of Periodic Electron Density

Table S7. Metric and Electron Density Properties in Bond Critical Point of Noncovalent Interactions in 3HNA (refcode HNAPAC01) Obtained from Periodic DFT Calculations Followed by Bader Analysis of Periodic Electron Density

Table S8. Metric and Electron Density Properties in Bond Critical Point of Noncovalent Interactions in 6HNA (refcode JACDAV) Obtained from Periodic DFT Calculations Followed by Bader Analysis of Periodic Electron Density

Table S9. Total Electronic Energies of Crystals ($\boldsymbol{E}_{\text {total }}$), Zero-Point Energies (ZPE) and Thermal Corrections ($E_{\text {thetm }}$), Pressure-Volume Term ($\mathbf{p V}$), Entropy Corrections (TS), Total Free Gibbs Energies of Crystals ($\boldsymbol{G}_{\text {total }}$), Cocrystal Formation Energies ($E_{\text {form }}$) and Cocrystal Formation Gibbs Energies ($\boldsymbol{G}_{\text {form }}$) Obtained from Periodic DFT-D3 Calculations

Table S10. Cumulative Amount Per Unit Area Permeated (Q_{n}) in 8 h, Steady Penetration Rate (J_{s}) and Their Corresponding Ratio of Cocrystals to Parent 5FU

Table S11. Solubility Value ($\mathrm{mg} / \mathrm{mL}$) of 5FU cocrystals at $37^{\circ} \mathrm{C}$
Figure S1. PXRD patterns of the grinding and slurry outcome of (a) 5 FU and 1HNA, (b) 5FU and 6HNA and (c) 5FU and 3HNA

Figure S2. DSC-TG curves for (a) 5FU-6HNA and (b) 5FU-3HNA
Figure S3. IR spectrogram of 5FU and its cocrystals
Figure S4. PXRD patterns of cocrystals after permeation experiment
Figure S5. Cumulative permeated amount per unit area of 5FU and the physical mixture

Figure S6. PXRD patterns of cocrystals after solubility test in pH 6.8 phosphate buffer

Figure S7. PXRD patterns of cocrystals after dissolution experiment in IPM

Experimental Section

Materials and Reagents. 5FU was purchased from Suizhou hongqi Chemical Co. Ltd. 6-Hydroxy-2-naphthoic acid (6HNA), 3-hydroxy-2-naphthoic acid (3HNA), and 1-hydroxy-2-naphthoic acid (1HNA) were purchased from Energy Chemical Co. Ltd. Isopropyl myristate (IPM) was purchased from Macklin Reagent Co. Ltd. All other reagents and chemicals were commercially available and used directly.

General Characterization Methods. Elemental analyses were determined using

Elementar Vario EL elemental analyzer. Powder X-ray diffraction (PXRD) patterns were recorded on a Bruker D2 Phaser with $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($30 \mathrm{kV}, 10 \mathrm{~mA}$). Thermogravimetric (TG) analyses were recorded on a Netzsch TG 209 instrument and alumina crucible in nitrogen atmosphere from $37{ }^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$ at a heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$. Differential scanning calorimetry (DSC) was conducted on a Netzsch DSC 200 F3 instrument and aluminum sample pans in nitrogen atmosphere from $37^{\circ} \mathrm{C}$ at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. Infrared (IR) spectra were recorded on a Thermo Nicolet6700-Contiu $\mu \mathrm{m}$ spectrometer using KBr pellets. A total of 16 scans were collected over a range of 4000 to $400 \mathrm{~cm}^{-1}$ with a resolution of $0.09 \mathrm{~cm}^{-1}$ for each sample.

Screening of Cocrystals. In the present study, both neat grinding and liquid-assisted grinding were used to screen cocrystals of 5FU with xHNAs. A typical neat grinding experiment was conducted by adding an equimolar of $5 \mathrm{FU}(130 \mathrm{mg}, 1$ mmol) and xHNA ($188 \mathrm{mg}, 1 \mathrm{mmol}$) to a 25 mL stainless steel grinding jar. The mixture was then ground at a frequency of 20 Hz for 30 min . The liquid-assisted grinding procedure is similar to the neat grinding method, except adding $30 \mu \mathrm{~L}$ of solvent before grinding. A series of solvents with different polarity, including methanol, ethanol, acetone, acetonitrile, ethyl acetate, tetrahydrofuran, isopropyl ether, cyclohexane and dichloromethane, were attempted for 5 FU with 1 HNA , while only ethanol was sued for 5FU with 3HNA and 6HNA.

Preparation of Cocrystals. 5FU-3HNA was prepared by a slurry method. A mixture of $1 \mathrm{mmol} 5 \mathrm{FU}(130 \mathrm{mg})$ and $0.5 \mathrm{mmol} 3 \mathrm{HNA}(94 \mathrm{mg})$ was added to 1 mL
50% ethanol and stirred for 24 h . The resulting suspension was filtered and the filter cake was dried under vacuum at room temperature. Yield: 77\%. Anal. (\%) Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}: \mathrm{C}, 50.89$; H, 3.15; N, 12.49. Found: C, $50.82 ; \mathrm{H}, 3.24 ; \mathrm{N}, 12.67$. 5FU-6HNA was obtained by a similar slurry procedure to that of 5FU-3HNA, except using 1 mmol 6HNA (188 mg) instead of 0.5 mmol 3 HNA . Yield: 78%. Anal. (\%) Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{5}$: C, 56.60; H, 3.49; N, 8.80. Found: C, 56.02; H, 3.68; N, 8.84. Single crystals of both 5FU-3HNA and 5FU-6HNA were obtained from an evaporation process. A stoichiometric mixture of $5 \mathrm{FU}(130 \mathrm{mg}, 1 \mathrm{mmol})$ and 3HNA ($94 \mathrm{mg}, 0.5 \mathrm{mmol}$) or 6HNA ($188 \mathrm{mg}, 1 \mathrm{mmol}$) was added to $4 \mathrm{~mL} 50 \%$ ethanol and was then treated under ultrasonic irradiation for 20 min . The resulting suspension was filtered and the filtrate was left to slowly evaporate at room temperature. Block-shaped crystals of 5FU-3HNA and 5FU-6HNA were harvested after 2-3 days.

X-ray Crystal Structure Determination. Single crystal X-ray diffraction data were collected on an Agilent Technologies Gemini A Ultra system with graphite monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.54178 \AA$) at 150 K . Cell refinement and data reduction were applied using the program of CrysAlis PRO. ${ }^{1}$ The structures were solved by the direct method using the SHELX-97 program 2 and refined by the full-matrix least-squares method on F^{2}. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in calculated positions with fixed isotropic thermal parameters. For crystal structure of 5FU-3HNA, two crystallographically independent 3HNA molecules were found to be disordered over two positions with occupancy ratio of $0.75 / 0.25$ and $0.50 / 0.50$, respectively.

Membrane Permeation Experiments. The permeation experiments of pure 5FU, $6 \mathrm{HNA}, 3 \mathrm{HNA}$, the two cocrystals and their respective stoichiometric physical mixtures were conducted using Franz-type diffusion cells through silicon membrane ($120 \mu \mathrm{~m}$ thickness). All of the powder samples were sieved using standard mesh sieves to control the particle size within $75-150 \mu \mathrm{~m}$. The silicon membrane was pretreated with 95% ethanol for 30 min and dried under air before use. The silicon membrane was mounted between donor chamber and receptor chamber with an effective surface area of $3.14 \mathrm{~cm}^{2}$. The receptor chamber was filled with 17 mL of degassed phosphate buffer (pH 7.4) and maintained at $37.0 \pm 0.1^{\circ} \mathrm{C}$, and the receptor solution was stirred at 250 rpm for 30 min to reach system balance. Excess of powder samples (0.3 mmol) were added to 1 mL of IPM and mixed well. The resulting suspensions were placed on the silicon membrane as donor chamber. An aliquot of 0.2 mL of the receptor solution was withdrawn from the receptor chamber and filtered at predetermined time intervals. The receptor chamber solution volume was kept constant by replacing fresh medium. During the experiment, the receptor solution maintained at $37.0 \pm 0.1{ }^{\circ} \mathrm{C}$ and was continuously stirred at 250 rpm . The concentration of 5FU for each sample was analyzed by HPLC. After the permeation experiments, the remaining solids in donor chamber were collected and detected by PXRD to check the crystalline phase. All the permeation experiments were repeated three times $(n=3)$.

Solubility Study. The aqueous solubility of 5FU, 6HNA, 3HNA and two cocrystals in pH 6.8 phosphate buffer solution (PBS) were determined. All of the powder
samples were sieved using standard mesh sieves to control the particle size within $75-150 \mu \mathrm{~m}$. In each experiment, excess of sample ($200-500 \mathrm{mg}$) was added to 5 mL of 0.2 M pH 6.8 PBS which was equilibrated at $37{ }^{\circ} \mathrm{C}$, and the resulting slurry was stirred at 250 rpm on a magnetic stirrer. Aliquots were filtered after $1 \mathrm{~h}, 3 \mathrm{~h}$ and 5 h , respectively. Each filtered aliquot was diluted to the approximate concentration and was analyzed by HPLC. After the solubility determination, the remaining solids were collected and detected by PXRD. All the experiments were carried out in triplicate (n $=3$).

Powder dissolution experiments in IPM were also carried out for 5FU and two cocrystals. Excess of 5FU and its cocrystals (contains 100 mg of 5FU) with particle size within $75-150 \mu \mathrm{~m}$ were suspended in 5 mL of IPM, which were preheated at $37^{\circ} \mathrm{C}$ for 30 min . The suspensions were kept magnetic stirring at 150 rpm and $37^{\circ} \mathrm{C}$. An aliquot of the slurry was withdrawn at predetermined time intervals and filtered. The filtered aliquot was appropriately diluted and measured by HPLC to quantify 5 FU concentrations. After the dissolution, the remaining solids were collected and detected by PXRD. The experiments were carried out in triplicate $(n=3)$.

HPLC Analysis Method. HPLC analysis was performed on A Shimadzu LC-20A HPLC system with a C18 column (Inertsil ODS-3, $5 \mu \mathrm{~m} \times 4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$ column, GL Sciences Inc., Japan). UV detection wavelength of 266 nm was used for assay of 5FU and 3HNA while 237 nm for 6HNA. The mobile phase consisted of a mixture of methanol and aqueous phosphoric acid solutions (pH 2.40). The gradient elution was used with a flow rate of $0.7 \mathrm{~mL} / \mathrm{min}$. It was started with $10 \%(\mathrm{v} / \mathrm{v})$ methanol (6 min),
followed by an increase to $90 \%(\mathrm{v} / \mathrm{v})$ methanol (7 min), reserved at $90 \%(\mathrm{v} / \mathrm{v})$ methanol (23 min), and returned immediately to $10 \%(\mathrm{v} / \mathrm{v})$ methanol (23.5 min), and then reserved at $10 \%(\mathrm{v} / \mathrm{v})$ methanol (30 min).

Computational Details. Solid-state DFT computations were performed using CRYSTAL17 software 3 at the B3LYP-D3/6-31 $(\mathrm{F}+) \mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory. D3 dispersion correction proposed by Grimme ${ }^{4}$ with Becke-Jones dampening was used both in structure optimization and in wave function calculation for AIM analysis. For a more adequate description of fluorine-centered contacts in 5FU crystals, an additional polarization function was added to the fluorine atoms. ${ }^{5}$ The space groups and unit cell parameters of the both cocrystals obtained in the single crystal X-ray studies were fixed and structural relaxations were limited to the positional parameters of atoms. As the starting point in the solid-state DFT computations, the coordinates of heavy atoms were used directly from experiment with hydrogen atoms positions normalized to the standard X-H distances from neutron diffraction data. The default CRYSTAL options were used for the level of accuracy in evaluating the Coulomb and Hartree-Fock exchange series and a grid used in evaluating the DFT exchange-correlation contribution. Tolerance on energy controlling the self-consistent field convergence for geometry optimizations and frequencies computations was set to 10^{-10} hartree. The mixing coefficient of Hartree-Fock/Kohn-Sham matrices was set to 25%. The number of points in the numerical first derivative calculation of the analytic nuclear gradients equaled 2. The shrinking factor of the reciprocal space net was set to 3 . Frequencies of normal modes were calculated within the harmonic approximation by numerical
differentiation of the analytical gradient of the potential energy with respect to atomic position. ${ }^{6}$ Based on vibrational analysis, all the optimized structures were found to correspond to the minimum point on the potential energy surface.

Quantum topology analysis was performed in Topond software ${ }^{7}$ currently implemented into CRYSTAL suit. The search for $(3,-1)$ critical points was performed using a standard algorithm and the following quantities were computed in bond critical point (BCP): electron density, ρ_{b}, its Laplacian, $\nabla^{2} \rho_{b}$, and the positively defined local electronic kinetic energy G_{b}. The energy of a particular noncovalent interaction, $E_{\text {int }}$, was estimated using the correlation equation proposed by Mata et al: ${ }^{8}$

$$
\begin{equation*}
E_{\text {int }}(\mathrm{kJ} / \mathrm{mol})=1124 \cdot G_{b} \text { (atomic units) } \tag{S1}
\end{equation*}
$$

The lattice energy $E_{\text {latt }}$ was estimated as sum of energies of unique intermolecular interactions in an asymmetric unit: ${ }^{9}$

$$
\begin{equation*}
\mathrm{E}_{\text {latt }}(\mathrm{kJ} / \mathrm{mol})=\sum_{i} \sum_{j<i} E_{\mathrm{int}, j, i} \tag{S2}
\end{equation*}
$$

where j and i denote the atoms belonging to different molecules. Eq. (S2) is free of basis set superposition error (BSSE). For the sake of simplicity, indices j and i will be omitted below.

For a cocrystal (CC) of composition [API-CCF] (x:y), the formation energy can be estimated from the lattice energies according to the following equation:

$$
\begin{equation*}
E_{\text {form }}=\mathrm{x} E_{\text {latt }}(\mathrm{API})+\mathrm{y} E_{\text {latt }}(\mathrm{CCF})-E_{\text {latt }}(\mathrm{CC}) \tag{S3}
\end{equation*}
$$

An alternative way for $E_{\text {form }}$ estimation implies the use of the raw total energies and thermodynamic quantities of crystals obtained from periodic DFT-D3 calculations. In this case, the equation for formation energy has the following form:

$$
\begin{equation*}
E_{\text {form }}=E_{\text {total }}(\mathrm{CC})-\mathrm{x} E_{\text {total }}(\mathrm{API})-\mathrm{y} E_{\text {total }}(\mathrm{CCF}) \tag{S4}
\end{equation*}
$$

The estimations of heat capacity and entropy at 298.15 K in periodic DFT computations, although crude, allow one to compute the total Gibbs energy of crystal ($G_{\text {total }}$) and free Gibbs energy of the cocrystal formation reaction $\left(G_{\text {form }}\right)$:

$$
\begin{align*}
& G_{\text {total }}=E_{\text {total }}+\mathrm{ZPE}+E_{\text {therm }}+\mathrm{pV}-\mathrm{TS} \tag{S5}\\
& G_{\text {form }}=G_{\text {total }}(\mathrm{CC})-\mathrm{x} G_{\text {total }}(\mathrm{API})-\mathrm{y} G_{\text {total }}(\mathrm{CCF}) \tag{S6}
\end{align*}
$$

Since the vibration analysis was performed in a harmonic approximation, the values of heat capacities and entropy contributions obtained this way are less reliable than total energies at conventional zero Kelvin. For this reason, we present the values of both formation energies ($E_{\text {form }}$) and formation free Gibbs energies ($G_{\text {form }}$) in the manuscript. While the latter quantity is more physically meaningful, the former is more reliable.

REFERENCES

(1) CrysAlisPro; Agilent Technologies Inc.: Santa Clara, CA.
(2) Sheldrick, G. M. SHELXTL-97, Program for Crystal Structure Solution and Refinement. University of Göttingen: Göttingen, Germany, 1997.
(3) Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C. M.; Civalerri, B.; Maschio, L.; Rerat, M.; Casassa, S.; Baima, J.; Salustro, S.; Kirtman, B. "Quantum-mechanical using CRYSTAL17. WIREs" Comput. Mol. Sci. 2018, 8, e1360.
(4) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. "A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu" J. Chem. Phys. 2010, 132, 154104
(5) Levina, E. O.; Chernyshov, I. Y.; Voronin, A. P.; Alekseiko, L. N.; Stash, A. I.; Vener, M. V. "Solving the enigma of weak fluorine contacts in the solid state: a periodic DFT study of fluorinated organic crystals" RSC Adv. 2019, 9, 12520-12537.
(6) Pascale, F.; Zicovich-Wilson, C. M.; Gejo, F. L.; Civalleri, B.; Orlando, R.; Dovesi, R. "The calculation of vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code" J. Comput. Chem. 2004, 25, 888-897.
(7) Gatti, C.; Saunders, V. R.; Roetti, C. "Crystal field effects on the topological properties of the electron density in molecular crystals. The case of urea" J. Chem. Phys. 1994, 101, 10686-10696.
(8) Mata, I.; Alkorta, I.; Espinosa, E.; Molins, E. "Relationships between interaction energy, intermolecular distance and electron density properties in
hydrogen bonded complexes under external electric fields" Chem. Phys. Lett. 2011, 507, 185-189.
(9) Dominiak, P. M.; Espinosa, E.; Angyan, J. in Modern charge density analysis, ed. Gatti, C. and Macchi, P. Springer, Heidelberg, London, New York, 2012, pp. 387-433.

Table S1. Hydrogen Bonding Distances and Angles of 5FU-6HNA and 5FU-3HNA

hydrogen bond	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$	symmetry
5FU-6HNA				
N3-H3 $\cdots \mathrm{O} 2$	1.931	$2.787(18)$	173.58	$-\mathrm{x}-1 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+3 / 2$
N5-H5 $\cdots \mathrm{O} 2$	2.033	$2.845(18)$	157.10	$-\mathrm{x}-1 / 2, \mathrm{y}-1 / 2,-\mathrm{z}+3 / 2$
O7-H7 $\cdots \mathrm{O} 4$	1.963	$2.705(17)$	150.15	
O10-H10 $\cdots \mathrm{O} 16$	1.814	$2.633(17)$	176.38	$-\mathrm{x}+2,-\mathrm{y}+1,-\mathrm{z}+2$
5FU-3HNA				
O9-H9 $\cdots \mathrm{O} 10$	1.86	$2.600(3)$	145.4	
O11-H11 $\cdots \mathrm{O} 8$	1.87	$2.711(3)$	177.5	
O12-H12 $\cdots \mathrm{O} 13$	1.87	$2.603(6)$	144.9	
O14-H14 $\cdots \mathrm{O} 6$	1.88	$2.710(4)$	170.5	
O9A-H9A $\cdots \mathrm{O} 10 \mathrm{~A}$	1.91	$2.625(15)$	142.7	
O11A-H11A $\cdots \mathrm{O} 4$	2.10	$2.740(8)$	133.3	$+\mathrm{x},-1+\mathrm{y},-1+\mathrm{z}$
O12A-H12A $\cdots \mathrm{O} 13 \mathrm{~A}$	1.87	$2.609(5)$	145.7	
O14A-H14A $\cdots \mathrm{O} 2$	1.88	$2.712(4)$	169.3	$1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$
N1-H1A $\cdots \mathrm{O} 7$	1.92	$2.795(3)$	175.4	
N6-H6 $\cdots \mathrm{O} 3$	1.90	$2.778(3)$	173.1	

Table S2. Metric and Electron Density Properties in Bond Critical Point of Noncovalent Interactions in 5FU-6HNA Obtained from Periodic DFT Calculations Followed by Bader Analysis of Periodic Electron Density *

non-covalent interaction	$\begin{gathered} \mathrm{D} \cdots \mathrm{~A}(\AA) \mid \\ \mathrm{H} \cdots \mathrm{~A}(\AA) \end{gathered}$	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{~A}$ ${ }^{\circ}$)	ρ_{b} (a.u.)	$\nabla^{2} \rho_{\mathrm{b}}$ (a.u.)	$\begin{gathered} G_{\mathrm{b}} \\ \text { (a.u.) } \end{gathered}$	$\begin{gathered} E_{\text {int }} \\ (\mathrm{kJ} / \mathrm{mol}) \end{gathered}$
O10-10 \cdots O16 ${ }^{\text {a }}$	$2.605 \mid 1.595$	177.49	0.057	0.155	0.043	48.2
O7-H7 $\cdots{ }^{\text {b }}{ }^{\text {b }}$	$2.662 \mid 1.750$	152.69	0.037	0.124	0.029	33.2
N3-H3 ${ }^{-}{ }^{\text {O }}{ }^{\text {c }}$	$2.788 \mid 1.757$	174.49	0.039	0.117	0.029	32.6
$\mathrm{N} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\text {d }}$	2.821 \| 1.815	164.98	0.034	0.101	0.025	28.4
C22-H22 \cdots F1 ${ }^{\text {b }}$	$3.236 \mid 2.267$	147.90	0.011	0.044	0.010	11.5
C9-H9 \cdots O4 ${ }^{\text {e }}$	$3.436 \mid 2.462$	149.20	0.008	0.030	0.007	7.5
C20-H20 \cdots F1 ${ }^{\text {f }}$	$3.105 \mid 2.656$	104.20	0.006	0.030	0.006	6.6
N3 \cdots O10 ${ }^{\text {g }}$	3.114	-	0.008	0.024	0.006	6.5
C9-H9 - ${ }^{\text {O }}{ }^{\text {e }}$	3.395 \| 2.541	135.19	0.007	0.026	0.006	6.3
$\mathrm{C} 17 \cdots \mathrm{O} 16^{\text {f }}$	3.126	-	0.007	0.024	0.005	5.7
$\mathrm{H} 21 \cdots \mathrm{H} 13{ }^{\text {e }}$	2.189	-	0.007	0.025	0.005	5.4
C22-H22 $\cdots{ }^{\text {O }}{ }^{\text {h }}$	3.395 \| 2.735	119.01	0.006	0.023	0.005	5.4
$\mathrm{C} 13 \cdots \mathrm{C} 9^{\text {c }}$	3.218	-	0.008	0.021	0.004	4.8
O7 $\cdots \mathrm{F} 1^{\text {i }}$	3.198	-	0.004	0.021	0.004	4.7
$\mathrm{C} 18 \cdots \mathrm{O} 2^{\mathrm{j}}$	3.298	-	0.006	0.020	0.004	4.7
$\mathrm{C} 11 \cdots \mathrm{~N} 5^{\mathrm{j}}$	3.386	-	0.006	0.017	0.004	4.2
$\mathrm{C} 21 \cdots \mathrm{~N} 3^{\mathrm{j}}$	3.455	-	0.005	0.016	0.003	3.8
$\mathrm{H} 12 \cdots \mathrm{H} 21^{\mathrm{k}}$	2.534	-	0.005	0.018	0.003	3.8
C14 \cdots C $6^{\text {j }}$	3.370	-	0.005	0.017	0.003	3.7
$\mathrm{N} 5 \cdots \mathrm{O} 16^{1}$	3.399	-	0.004	0.015	0.003	3.6
O7 \cdots O10 ${ }^{\text {f }}$	3.412	-	0.003	0.015	0.003	3.5
$\mathrm{C} 19 \cdots \mathrm{C} 11^{\text {f }}$	3.477	-	0.005	0.013	0.003	3.0
$\mathrm{C} 14 \cdots \mathrm{C} 13{ }^{\text {f }}$	3.533	-	0.004	0.013	0.003	2.9
C11-H11 $\cdots{ }^{\text {O }}{ }^{\text {m }}$	3.781 \| 3.036	126.37	0.003	0.012	0.002	2.6
$\mathrm{H} 11 \cdots \mathrm{H} 21^{\text {e }}$	2.599	-	0.003	0.011	0.002	2.3
$\mathrm{H} 13 \cdots \mathrm{H} 12^{\text {e }}$	2.662	-	0.003	0.010	0.002	2.0
$E_{\text {latt }}(\mathrm{kJ} / \mathrm{mol})$						246.9

* The electron density ρ_{b}, Laplacian of electron density $\nabla^{2} \rho_{b}$ and local electronic kinetic energy density G_{b} at the bond critical point; the energy of the intermolecular noncovalent interaction $E_{\text {int }}$. The level of theory in the DFT computations is B3LYP-D3(BJ)/6-31(F+)G(d,p).
Symmetry codes: ${ }^{\text {a }} 2-x, 1-y,-z ;{ }^{\mathrm{b}} \mathrm{x}, \mathrm{y}, \mathrm{z} ;{ }^{\mathrm{c}}-1 / 2-\mathrm{x}, 1 / 2+\mathrm{y},-1 / 2-\mathrm{z} ;{ }^{\mathrm{d}}-1 / 2-\mathrm{x},-1 / 2+\mathrm{y},-1 / 2-\mathrm{z} ;{ }^{\mathrm{e}} \mathrm{x},-1+\mathrm{y}, \mathrm{z} ;{ }^{\mathrm{f}}$ $1-x, 1-y,-z ;{ }^{\mathrm{g}}-1+\mathrm{x}, \mathrm{y}, \mathrm{z} ;{ }^{\text {h }} 1 / 2-\mathrm{x},-1 / 2+\mathrm{y},-1 / 2-\mathrm{z} ;{ }^{\mathrm{i}} \mathrm{x}, 1+\mathrm{y}, \mathrm{z} ;{ }^{\text {j }} 1 / 2-\mathrm{x}, 1 / 2+\mathrm{y},-1 / 2-\mathrm{z} ;{ }^{\text {k }} 1-\mathrm{x}, 2-\mathrm{y},-\mathrm{z} ;{ }^{1}-1+\mathrm{x}$, $-1+y, z ;{ }^{m} 1+x, y, z$

Table S3. Metric and Electron Density Properties in Bond Critical Point of Noncovalent Interactions in 5FU-3HNA (Conformation 1) Obtained from Periodic DFT Calculations Followed by Bader Analysis of Periodic Electron Density *

non-covalent interaction	$\begin{gathered} \mathrm{D} \cdots \mathrm{~A}(\AA) \mid \\ \mathrm{H} \cdots \mathrm{~A}(\AA) \end{gathered}$	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{~A}$ ${ }^{\circ}$)	ρ_{b} (a.u.)	$\begin{aligned} & \nabla^{2} \rho_{\mathrm{b}} \\ & \text { (a.u.) } \end{aligned}$	$\begin{gathered} G_{\mathrm{b}} \\ \text { (a.u.) } \end{gathered}$	$\begin{gathered} E_{\mathrm{int}} \\ (\mathrm{~kJ} / \mathrm{mol}) \end{gathered}$
O12-H12 \cdots O13 ${ }^{\text {a }}$	2.587 \| 1.697	147.89	0.048	0.140	0.037	41.4**
O9-H9 $\cdots{ }^{\text {O }} 0^{\text {a }}$	2.591 \| 1.703	147.27	0.047	0.138	0.036	40.9**
O14-H14 $\cdots{ }^{\text {O }}{ }^{\text {b }}$	2.665 \| 1.663	178.31	0.048	0.137	0.035	39.6
O11-H11 \cdots O8 ${ }^{\text {c }}$	2.677 \| 1.674	176.64	0.046	0.132	0.034	37.8
N6-H6 ${ }^{\text {O }}{ }^{\text {a }}{ }^{\text {d }}$	$2.748 \mid 1.715$	176.39	0.043	0.131	0.032	36.4
N8-H8 $\cdots{ }^{\text {e }}$	2.759 \| 1.727	175.62	0.042	0.125	0.031	35.3
N1-H1A $\cdots 7^{\text {f }}$	$2.767 \mid 1.732$	177.15	0.041	0.124	0.031	34.8
N3-H3 $\cdots{ }^{\text {a }}$	2.781 \| 1.749	178.71	0.039	0.120	0.030	33.4
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 3^{\mathrm{g}}$	$2.862 \mid 1.838$	172.73	0.032	0.094	0.023	26.4
$\mathrm{N} 7-\mathrm{H} 7 \cdots \mathrm{O} 1^{\text {h }}$	$2.872 \mid 1.853$	170.00	0.031	0.090	0.022	25.3
$\mathrm{N} 4-\mathrm{H} 4 \cdots{ }^{\text {a }}{ }^{\text {a }}$	2.897 \| 1.880	167.52	0.029	0.082	0.021	23.6
N5-H5 ${ }^{\text {O }}{ }^{\text {7 }}$	2.955 \| 1.939	170.10	0.026	0.071	0.018	20.7
C13-H13 \cdots O $4^{\text {e }}$	$3.170 \mid 2.113$	163.97	0.018	0.055	0.014	15.3
C25-H25 \cdots F4 ${ }^{\text {e }}$	$3.030 \mid 2.182$	133.40	0.013	0.055	0.013	14.2
C36-H36 \cdots F3 ${ }^{\text {j }}$	3.070 \| 2.231	132.76	0.013	0.050	0.012	13.2
C9-H9A $\cdots{ }^{\text {O }}{ }^{\text {e }}$	3.243 \| 2.227	155.07	0.014	0.044	0.011	12.0
C5-H5A \cdots O10 ${ }^{\text {k }}$	3.131 \| 2.285	133.51	0.013	0.043	0.010	11.5
O14 \cdots F3 ${ }^{\text {b }}$	2.787	-	0.009	0.045	0.010	10.9
$\mathrm{H} 26 \cdots \mathrm{H} 26^{1}$	1.961	-	0.012	0.043	0.009	10.3
$\mathrm{O} 13 \cdots \mathrm{~F} 1^{\mathrm{m}}$	2.840	-	0.009	0.038	0.009	9.7
O11 \cdots F $4^{\text {c }}$	2.845	-	0.008	0.039	0.008	9.4
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 13{ }^{\mathrm{m}}$	$3.218 \mid 2.414$	129.84	0.010	0.035	0.008	8.8
C17-H17 \cdots O9 ${ }^{\text {k }}$	$3.447 \mid 2.418$	157.95	0.010	0.033	0.008	8.8
O10 \cdots F2 ${ }^{\text {k }}$	2.900	-	0.008	0.035	0.008	8.6
C13 $\cdots{ }^{\text {a }}{ }^{\text {a }}$	2.931	-	0.008	0.034	0.007	8.1
$\mathrm{C} 28-\mathrm{H} 28 \cdots \mathrm{O} 2^{\text {n }}$	$3.498 \mid 2.507$	151.67	0.009	0.029	0.007	7.5
$\mathrm{H} 28 \cdots \mathrm{H} 28^{\text {n }}$	2.149	-	0.008	0.031	0.006	6.7
$\mathrm{O} 9 \cdots \mathrm{O} 1^{\mathrm{k}}$	3.176	-	0.006	0.025	0.006	6.3
$\mathrm{O} 10 \cdots \mathrm{~N} 7^{\mathrm{k}}$	3.165	-	0.007	0.025	0.006	6.3
O14 $\cdots \mathrm{N} 1^{\text {b }}$	3.184	-	0.007	0.024	0.005	6.1
$\mathrm{C} 8 \cdots 2^{\text {a }}$	3.101	-	0.007	0.025	0.005	6.0
$\mathrm{C} 18 \cdots \mathrm{O} 1^{\mathrm{k}}$	3.166	-	0.006	0.025	0.005	5.9
H37 $\cdots 3$ H ${ }^{\circ}$	2.185	-	0.007	0.026	0.005	5.7
C $5 \cdots \mathrm{~F} 1^{\text {a }}$	3.143	-	0.005	0.025	0.005	5.5
$\mathrm{C} 13 \cdots \mathrm{O} 2^{\text {a }}$	3.219	-	0.006	0.024	0.005	5.5
C9-H9A \cdots O4 ${ }^{\text {e }}$	3.269 \| 2.749		0.006	0.023	0.005	5.1
O6 $\cdots{ }^{\text {a }}{ }^{\text {a }}$	3.251	-	0.005	0.024	0.005	5.1
C35 \cdots O11 ${ }^{\text {j }}$	3.215	-	0.006	0.021	0.004	4.9
C36-H36 \cdots O10 ${ }^{\text {j }}$	3.324 \| 2.834	107.55	0.006	0.021	0.004	4.7

$\mathrm{C} 26 \cdots \mathrm{O} 5^{\text {e }}$	3.307	-	0.006	0.020	0.004	4.7
$\mathrm{C} 31 \cdots \mathrm{O} 7^{\text {b }}$	3.259	-	0.006	0.020	0.004	4.6
$\mathrm{C} 29 \cdots \mathrm{O} 4^{\text {e }}$	3.246	-	0.006	0.020	0.004	4.6
C16 ${ }^{\text {O }}$ 6 $^{\text {a }}$	3.258	-	0.005	0.019	0.004	4.5
C15 \cdots C $33^{\text {n }}$	3.251	-	0.006	0.021	0.004	4.5
$\mathrm{C} 34 \cdots 3^{\text {d }}$	3.291	-	0.006	0.019	0.004	4.5
$\mathrm{C} 22 \cdots \mathrm{~N} 8^{\text {a }}$	3.336	-	0.006	0.018	0.004	4.5
C26-H26 ${ }^{\text {a }}{ }^{\text {e }}{ }^{\text {e }}$	$3.516 \mid 2.828$	121.46	0.006	0.019	0.004	4.5
C1-H1 $\cdots \mathrm{O}^{\text {b }}$	$3.670 \mid 2.684$	151.12	0.005	0.019	0.004	4.4
$\mathrm{C} 24 \cdots \mathrm{~N} 8^{\text {e }}$	3.319	-	0.006	0.017	0.004	4.3
$\mathrm{C} 23 \cdots \mathrm{O} 13{ }^{\text {e }}$	3.312	-	0.005	0.018	0.004	4.3
$\mathrm{C} 21 \cdots \mathrm{~N} 7^{\text {c }}$	3.407	-	0.006	0.017	0.004	4.2
$\mathrm{H} 17 \cdots \mathrm{H} 17^{\mathrm{k}}$	2.370	-	0.005	0.020	0.004	4.1
C37 \cdots O8 ${ }^{\circ}$	3.404	-	0.005	0.017	0.004	4.0
$\mathrm{C} 5 \cdots \mathrm{C} 2^{\text {a }}$	3.310	-	0.005	0.018	0.004	4.0
C $32 \cdots \mathrm{~N} 2^{\text {e }}$	3.414	-	0.006	0.016	0.004	4.0
$\mathrm{O} 14 \cdots \mathrm{~F} 2^{\text {e }}$	3.285	-	0.003	0.018	0.004	4.0
$\mathrm{C} 28 \cdots \mathrm{~N} 1^{\text {n }}$	3.497	-	0.005	0.016	0.004	4.0
$\mathrm{C} 35-\mathrm{H} 35 \cdots \mathrm{O}^{\text {d }}$	$3.798 \mid 2.780$	155.94	0.005	0.017	0.003	3.8
$\mathrm{C} 1 \cdots \mathrm{C} 22^{\text {p }}$	3.393	-	0.005	0.017	0.003	3.8
$\mathrm{C} 23 \cdots \mathrm{O}{ }^{\text {a }}$	3.368	-	0.005	0.016	0.003	3.7
C24-H24 ${ }^{\text {- }}$ O $4^{\text {a }}$	3.759 \| 2.799	147.39	0.004	0.016	0.003	3.7
C37-H37 ${ }^{\text {C }}{ }^{\text {q }}$	$3.534 \mid 2.925$	115.70	0.005	0.017	0.003	3.7
H20 \cdots H26 ${ }^{1}$	2.445	-	0.005	0.017	0.003	3.6
C23-H23 $\cdots{ }^{\text {F }}{ }^{\text {a }}$	$3.726 \mid 2.740$	150.88	0.004	0.017	0.003	3.6
H31 \cdots H37 ${ }^{\circ}$	2.417	-	0.005	0.016	0.003	3.4
C35 \cdots N2 ${ }^{\text {d }}$	3.482	-	0.005	0.014	0.003	3.4
$\mathrm{C} 20-\mathrm{H} 20 \cdots{ }^{\text {e }}$	3.493 \| 2.986	108.98	0.004	0.015	0.003	3.2
C28-H28 $\cdots{ }^{\text {N }}{ }^{\text {a }}$	3.651 \| 2.992	119.69	0.004	0.014	0.003	3.2
C34-H34 \cdots O12 ${ }^{\text {n }}$	3.801 \| 2.909	139.58	0.004	0.014	0.003	3.0
C5-H5A $\cdots{ }^{\text {O }}{ }^{\text {h }}$	$3.800 \mid 2.859$	145.26	0.003	0.014	0.003	3.0
C19 \cdots C $9^{\text {a }}$	3.532	-	0.005	0.013	0.003	3.0
$\mathrm{C} 2 \cdots \mathrm{C} 25^{\text {p }}$	3.530	-	0.005	0.013	0.003	2.9
C36 $\cdots{ }^{\text {O }}{ }^{\text {e }}$	3.584	-	0.003	0.012	0.002	2.8
$E_{\text {latt }}(\mathrm{kJ} / \mathrm{mol})$						333.5

* The electron density ρ_{b}, Laplacian of electron density $\nabla^{2} \rho_{b}$ and local electronic kinetic energy density G_{b} at the bond critical point; the energy of the intermolecular noncovalent interaction E_{int}. The level of theory in the DFT computations is B3LYP-D3(BJ)/6-31(F+)G(d,p).
${ }^{* *}$ Intramolecular contact. The energy of this interaction does not count in the total $E_{\text {latt }}$ value.
 $1-x,-1-y,-z ;{ }^{i} \quad x, y,-1+z ;{ }^{j}-x,-y, 1-z ;{ }^{k} 1-x,-y,-z ;{ }^{1}-x, 1-y,-z ;{ }^{m}-x,-1-y,-z ;{ }^{n}-x,-1-y, 1-z ;{ }^{\circ}-1-x,-y, 1-z ;{ }^{p}$ $x,-1+y, z ;{ }^{q}-1+x, y, 1+z$.

Table S4. Metric and Electron Density Properties in Bond Critical Point of Noncovalent Interactions in 5FU-3HNA (Conformation 2) Obtained from Periodic DFT Calculations Followed by Bader Analysis of Periodic Electron Density *

non-covalent interaction	$\begin{gathered} \mathrm{D} \cdots \mathrm{~A}(\AA) \mid \\ \mathrm{H} \cdots \mathrm{~A}(\AA) \end{gathered}$	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{~A}$ $\left(^{\circ}\right)$	ρ_{b} (a.u.)	$\begin{gathered} \nabla^{2} \rho_{\mathrm{b}} \\ \text { (a.u.) } \end{gathered}$	$\begin{gathered} G_{\mathrm{b}} \\ \text { (a.u.) } \end{gathered}$	$\begin{gathered} E_{\mathrm{int}} \\ (\mathrm{~kJ} / \mathrm{mol}) \end{gathered}$
O9-H9 \cdots O10 ${ }^{\text {a }}$	$2.592 \mid 1.709$	146.66	0.047	0.137	0.036	40.3**
O14-H14 $\cdots{ }^{\text {a }}$	2.663 \| 1.662	176.67	0.048	0.138	0.035	39.8
O12-H12 \cdots O13 ${ }^{\text {a }}$	$2.600 \mid 1.712$	147.24	0.046	0.135	0.035	39.6**
O11-H11 \cdots O8 ${ }^{\text {b }}$	$2.670 \mid 1.667$	178.39	0.047	0.135	0.035	39.0
N6-H6 ${ }^{\text {co }}{ }^{\text {c }}$	$2.730 \mid 1.695$	176.58	0.045	0.137	0.034	38.5
N7-H7 ${ }^{\text {a }}$ O1 ${ }^{\text {d }}$	2.737\|1.704	175.21	0.044	0.133	0.033	37.5
N1-H1A $\cdots{ }^{\text {O }}{ }^{\text {e }}$	$2.773 \mid 1.738$	176.31	0.041	0.122	0.030	34.0
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{O} 1^{\text {a }}$	$2.777 \mid 1.752$	172.82	0.039	0.121	0.030	33.5
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 3^{\text {f }}$	$2.850 \mid 1.824$	173.91	0.033	0.098	0.024	27.5
N3-H3 $\cdots 5^{\text {a }}$	$2.876 \mid 1.846$	173.03	0.032	0.089	0.023	25.4
N8-H8 ${ }^{\text {- }}{ }^{5}{ }^{\text {g }}$	2.899 \| 1.877	172.20	0.029	0.084	0.021	23.8
$\mathrm{N} 5-\mathrm{H} 5 \cdots \mathrm{O} 7^{\text {h }}$	$2.951 \mid 1.937$	169.26	0.026	0.072	0.018	20.8
C13-H13 ${ }^{\text {a }} 4^{\text {g }}$	$3.149 \mid 2.078$	168.13	0.019	0.058	0.015	16.4
C25-H25 \cdots F4 ${ }^{\text {g }}$	$3.050 \mid 2.147$	139.41	0.014	0.057	0.013	15.1
C $36-\mathrm{H} 36 \cdots$ F1 ${ }^{\text {i }}$	$3.035 \mid 2.220$	130.35	0.013	0.052	0.012	13.6
C1-H1 $\cdots \mathrm{O}^{\text {d }}$	$3.226 \mid 2.200$	156.87	0.015	0.047	0.011	12.6
C5-H5A \cdots O10 ${ }^{\text {j }}$	$3.118 \mid 2.254$	135.22	0.014	0.045	0.011	12.1
F1 \cdots O14 ${ }^{\text {a }}$	2.776	-	0.009	0.045	0.010	11.0
F3 \cdots O13 ${ }^{\text {g }}$	2.812	-	0.009	0.040	0.009	10.2
$\mathrm{H} 26 \cdots \mathrm{H} 26^{\text {k }}$	1.935	-	0.012	0.040	0.009	10.0
O11 \cdots F $4^{\text {b }}$	2.838	-	0.008	0.041	0.009	9.7
C28-H28 ${ }^{-}{ }^{\text {O }} 2^{1}$	$3.457 \mid 2.443$	155.30	0.010	0.032	0.007	8.4
O10 $\cdots{ }^{\text {F }}{ }^{\text {i }}$	2.928	-	0.007	0.034	0.007	8.3
O9-H9 \cdots F2 ${ }^{\text {i }}$	$3.086 \mid 2.422$	124.00	0.007	0.035	0.007	8.1
C9-H9A $\cdots{ }^{\text {O }}$ - ${ }^{\text {a }}$	$3.683 \mid 2.694$	151.49	0.009	0.032	0.007	8.0
C13 $\cdots{ }^{\text {F }}{ }^{\text {a }}$	2.958	-	0.008	0.033	0.007	7.8
H37 \cdots H37 ${ }^{\text {i }}$	2.082	-	0.009	0.032	0.007	7.4
C17-H17 ${ }^{\text {O }} \mathrm{O}^{\text {j }}$	$3.510 \mid 2.512$	152.75	0.009	0.029	0.007	7.3
O11 \cdots O13 ${ }^{\text {g }}$	3.129	-	0.007	0.025	0.006	6.4
O10 $\cdots{ }^{\text {N }}{ }^{\text {j }}$	3.203	-	0.007	0.025	0.005	6.1
$\mathrm{N} 2 \cdots \mathrm{O} 4^{\text {a }}$	3.208	-	0.007	0.023	0.005	5.9
$\mathrm{C} 8 \cdots{ }^{\text {a }}{ }^{\text {a }}$	3.123	-	0.007	0.024	0.005	5.9
$\mathrm{C} 5 \cdots \mathrm{~F} 1^{\text {a }}$	3.101	-	0.006	0.026	0.005	5.9
H17 \cdots H17 ${ }^{\text {j }}$	2.205	-	0.007	0.027	0.005	5.8
O6 \cdots F $4^{\text {a }}$	3.209	-	0.005	0.026	0.005	5.7
H28 \cdots H28 ${ }^{1}$	2.242	-	0.007	0.026	0.005	5.4
C5-H5A $\cdots{ }^{\text {O }}{ }^{1}$	3.263 \| 2.777	107.00	0.006	0.024	0.005	5.3
C18… ${ }^{\text {l }}{ }^{\text {j }}$	3.205	-	0.006	0.023	0.005	5.3
$\mathrm{C} 26 \cdots \mathrm{O} 5^{\text {g }}$	3.327	-	0.006	0.021	0.004	5.0

$\mathrm{C} 30 \cdots \mathrm{O} 8^{\text {n }}$	3.286	-	0.006	0.020	0.004	4.8
C16 ${ }^{\text {O }} 6^{\text {a }}$	3.229	-	0.006	0.020	0.004	4.8
C37-H37 ${ }^{\text {C }}$ C13 ${ }^{\text {h }}$	3.378 \| 2.825	111.58	0.006	0.021	0.004	4.5
$\mathrm{C} 21 \cdots \mathrm{~N} 7^{\text {b }}$	3.379	-	0.006	0.018	0.004	4.4
C9-H9A $\cdots{ }^{\text {O }}{ }^{\text {g }}$	3.683 \| 2.694	151.49	0.005	0.019	0.004	4.3
$\mathrm{C} 24-\mathrm{H} 24 \cdots 4^{\text {a }}$	$3.730 \mid 2.730$	153.06	0.005	0.019	0.004	4.3
$\mathrm{C} 33 \cdots \mathrm{~N} 2^{\text {f }}$	3.429	-	0.006	0.018	0.004	4.3
C9-H9A $\cdots{ }^{\text {O }}{ }^{\text {g }}$	$3.324 \mid 2.831$	107.64	0.005	0.020	0.004	4.3
$\mathrm{C} 22 \cdots \mathrm{~N} 8^{\text {a }}$	3.380	-	0.006	0.017	0.004	4.2
$\mathrm{C} 37 \cdots \mathrm{O} 4^{\text {f }}$	3.380	-	0.005	0.017	0.004	4.1
C31 $\cdots 3^{\text {a }}$	3.334	-	0.005	0.017	0.004	4.0
$\mathrm{H} 20 \cdots \mathrm{H} 26^{\text {n }}$	2.372	-	0.005	0.019	0.003	3.9
$\mathrm{C} 34 \cdots{ }^{\circ}{ }^{\circ}$	3.393	-	0.005	0.017	0.003	3.9
$\mathrm{C} 28 \cdots 6^{\text {f }}$	3.430	-	0.005	0.018	0.003	3.9
$\mathrm{C} 28 \cdots{ }^{\circ}{ }^{\circ}$	3.408	-	0.004	0.016	0.003	3.8
$\mathrm{C} 32 \cdots \mathrm{~N} 1^{\text {n }}$	3.441	-	0.005	0.015	0.003	3.7
H31 \cdots H37 ${ }^{\text {i }}$	2.407	-	0.005	0.017	0.003	3.7
C23-H23 $\cdots{ }^{\text {F }}{ }^{\text {a }}$	$3.685 \mid 2.737$		0.004	0.017	0.003	3.6
$\mathrm{C} 19 \cdots \mathrm{C} 9^{\text {a }}$	3.414	-	0.006	0.016	0.003	3.6
$\mathrm{C} 24 \cdots \mathrm{~N} 8^{\text {g }}$	3.417	-	0.005	0.015	0.003	3.6
C24-H24 \cdots C36 ${ }^{\text {f }}$	$3.632 \mid 2.937$	122.09	0.005	0.017	0.003	3.5
$\mathrm{C} 34 \cdots \mathrm{C} 8^{\text {f }}$	3.404	-	0.005	0.016	0.003	3.5
O10 \cdots O12 ${ }^{\text {g }}$	3.415	-	0.003	0.015	0.003	3.4
C35-H35 ${ }^{\text {- }} \mathrm{O6}^{\circ}$	$3.835 \mid 2.842$	152.08	0.004	0.015	0.003	3.3
C34 $\cdots \mathrm{N} 1^{\circ}$	3.492	-	0.005	0.014	0.003	3.3
C26-H26 ${ }^{\text {- }}{ } 3^{\text {g }}$	3.678 \| 2.984	122.25	0.004	0.014	0.003	3.2
C17-H17 ${ }^{\text {O }} \mathrm{O}^{\text {j }}$	$3.508 \mid 3.065$	105.20	0.004	0.014	0.003	3.2
$\mathrm{C} 1-\mathrm{H} 1 \cdots 8^{\text {d }}$	$3.520 \mid 2.964$	112.15	0.003	0.015	0.003	3.1
C2 \cdots C $26^{\text {p }}$	3.609	-	0.005	0.013	0.003	3.0
$\mathrm{C} 23 \cdots \mathrm{O} 5^{\text {a }}$	3.499	-	0.003	0.013	0.003	2.9
$\mathrm{C} 20-\mathrm{H} 20 \cdots \mathrm{O} 2^{\mathrm{g}}$	$3.605 \mid 3.016$	114.61	0.003	0.013	0.003	2.8
C5-H5A $\cdots{ }^{\text {O }}{ }^{\text {d }}$	3.828 \| 2.894	144.58	0.003	0.013	0.002	2.8
C17-H17 $\cdots{ }^{\text {d }}$	3.666 \| 3.122	111.94	0.004	0.012	0.002	2.8
C23-H23 ${ }^{\text {- }} \mathrm{O}^{\text {j }}$	3.851 \| 2.966	138.90	0.003	0.012	0.002	2.7
C35-H35 \cdots C $23{ }^{\text {f }}$	$3.839 \mid 3.159$	121.30	0.003	0.011	0.002	2.3
$E_{\text {latt }}(\mathrm{kJ} / \mathrm{mol})$						338.0

* The electron density ρ_{b}, Laplacian of electron density $\nabla^{2} \rho_{b}$ and local electronic kinetic energy density G_{b} at the bond critical point; the energy of the intermolecular noncovalent interaction E_{int}. The level of theory in the DFT computations is B3LYP-D3(BJ)/6-31(F+)G(d,p).
${ }^{* *}$ Intramolecular contact. The energy of this interaction does not count in the total $E_{\text {latt }}$ value.
Symmetry codes: ${ }^{\mathrm{a}} \mathrm{x}, \mathrm{y}, \mathrm{z} ;{ }^{\mathrm{b}} \mathrm{x}, 1+\mathrm{y}, \mathrm{z} ;{ }^{\mathrm{c}} \mathrm{x}, \mathrm{y}, 1+\mathrm{z} ;{ }^{\mathrm{d}} 1-\mathrm{x},-1-\mathrm{y},-\mathrm{z} ;{ }^{\mathrm{e}} 1-\mathrm{x},-1-\mathrm{y}, 1-\mathrm{z} ;{ }^{\mathrm{f}}-\mathrm{x},-\mathrm{y},-1-\mathrm{z} ;{ }^{\mathrm{g}}-\mathrm{x},-\mathrm{y},-\mathrm{z} ;{ }^{\mathrm{h}}$ $\mathrm{x}, \mathrm{y},-1+\mathrm{z} ;{ }^{\mathrm{i}}-\mathrm{x},-1-\mathrm{y},-1-\mathrm{z} ;{ }^{\mathrm{j}} 1-\mathrm{x},-\mathrm{y},-\mathrm{z} ;{ }^{\mathrm{k}}-\mathrm{x}, 1-\mathrm{y},-\mathrm{z} ;{ }^{1}-1-\mathrm{x},-\mathrm{y},-1-\mathrm{z} ;{ }^{\mathrm{m}} 1+\mathrm{x}, \mathrm{y}, \mathrm{z} ;{ }^{\mathrm{n}}-\mathrm{x},-1-\mathrm{y},-\mathrm{z} ;{ }^{\circ}-1+\mathrm{x}, \mathrm{y},-1+\mathrm{z} ;{ }^{\mathrm{p}}$ $\mathrm{x},-1+\mathrm{y}, \mathrm{z}$.

Table S5. Contributions of Different Noncovalent Interaction Types into the Lattice Energy of 5FU-3HNA and 5FU-6HNA*

Crystal	5FU-3HNA (conformation 1)	5FU-3HNA (conformation 2)	5FU-3HNA (averaged)	5FU-6HNA
$\boldsymbol{E}_{\text {latt }}$	$\mathbf{3 3 3 . 5}$	$\mathbf{3 3 8 . 0}$	$\mathbf{3 3 5 . 7}$	$\mathbf{2 4 6 . 9}$
5FU-5FU	$154.5(46.3 \%)$	$157.3(46.5 \%)$	$155.9(46.4 \%)$	$68.5(27.7 \%)$
5FU-HNA	$145.4(43.6 \%)$	$145.6(43.1 \%)$	$145.5(43.3 \%)$	$102.0(41.3 \%)$
HNA-HNA	$33.5(10.1 \%)$	$35.1(10.4 \%)$	$34.3(10.2 \%)$	$76.5(31.0 \%)$
Classical H-bonds	$156.7(47.0 \%)$	$164.0(48.5 \%)$	$160.3(47.8 \%)$	$142.4(57.7 \%)$
$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts	$47.4(14.2 \%)$	$50.6(15.0 \%)$	$49.0(14.6 \%)$	$21.8(8.8 \%)$
$\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contacts	$3.8(1.2 \%)$	$3.0(0.9 \%)$	$3.4(1.0 \%)$	$0(0 \%)$
$\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ contacts	$15.5(4.6 \%)$	$16.2(4.8 \%)$	$15.8(4.7 \%)$	$18.1(7.3 \%)$
$\mathrm{C}-\mathrm{H} \cdots \pi$ contacts	$1.9(0.6 \%)$	$5.2(1.5 \%)$	$3.5(1.0 \%)$	$0(0 \%)$
$\mathrm{X} \cdots \mathrm{F}$ contacts	$30.7(9.2 \%)$	$29.2(8.6 \%)$	$29.9(8.9 \%)$	$4.7(1.9 \%)$
$\pi-$-stacking	$60.6(18.2 \%)$	$51.8(15.3 \%)$	$56.2(16.7 \%)$	$46.3(18.8 \%)$
$\mathrm{H} \cdots \mathrm{H}$ contacts	$16.9(5.1 \%)$	$18.1(5.4 \%)$	$17.5(5.2 \%)$	$13.5(5.5 \%)$
Intralayer contacts	$249.3(74.8 \%)$	$259.0(76.6 \%)$	$254.1(75.7 \%)$	$182.2(73.8 \%)$
Interlayer contacts	$84.2(25.2 \%)$	$79.0(23.4 \%)$	$81.6(24.3 \%)$	$64.7(26.2 \%)$

*All values are given in $\mathrm{kJ} / \mathrm{mol}$ and $\%$ of the $E_{\text {latt }}$ value.

Table S6. Metric and Electron Density Properties in Bond Critical Point of Noncovalent Interactions in 5FU (refcode FURACL14) Obtained from Periodic DFT Calculations Followed by Bader Analysis of Periodic Electron Density *

non-covalent interaction	$\begin{gathered} \mathrm{D} \cdots \mathrm{~A}(\AA) \mid \\ \mathrm{H} \cdots \mathrm{~A}(\AA) \end{gathered}$	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{~A}$ $\left.{ }^{\circ}{ }^{\circ}\right)$	ρ_{b} (a.u.)	$\nabla^{2} \rho_{\mathrm{b}}$ (a.u.)	$\begin{gathered} G_{\mathrm{b}} \\ \text { (a.u.) } \end{gathered}$	$\begin{gathered} E_{\text {int }} \\ (\mathrm{kJ} / \mathrm{mol}) \end{gathered}$
N6-H8 $\cdots{ }^{\text {O }}$	2.796 \| 1.761	175.60	0.039	0.114	0.028	32.0
N5-H7 \cdots O1 ${ }^{\text {b }}$	2.798 \| 1.768	171.83	0.035	0.115	0.027	30.7
$\mathrm{N} 4-\mathrm{H} 5 \cdots \mathrm{O} 2^{\text {c }}$	2.817 \| 1.785	174.57	0.037	0.108	0.027	30.1
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 4^{\text {d }}$	2.819 \| 1.790	174.39	0.036	0.107	0.027	30.0
N8-H11 \cdots O6 $^{\text {a }}$	2.823 \| 1.797	172.77	0.036	0.106	0.026	29.6
$\mathrm{N} 3-\mathrm{H} 4 \cdots 5^{\text {e }}$	2.847 \| 1.820	175.07	0.031	0.100	0.024	26.9
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 7^{\mathrm{f}}$	$2.850 \mid 1.830$	171.02	0.030	0.098	0.023	26.3
N7-H10 $\cdots{ }^{\text {O }}{ }^{\text {g }}$	2.861 \| 1.843	170.20	0.030	0.094	0.023	25.5
C11-H9 - ${ }^{\text {O }} 4^{\text {h }}$	3.103 \| 2.062	159.46	0.021	0.060	0.016	17.6
C2-H3 $\cdots{ }^{\text {O }}{ }^{\text {h }}$	$3.132 \mid 2.088$	160.55	0.020	0.057	0.015	16.7
C6-H6 ${ }^{\text {- }}{ }^{\text {O }}{ }^{\text {i }}$	$3.126 \mid 2.109$	154.77	0.020	0.055	0.014	16.1
C14-H12 ${ }^{-} \mathrm{O}^{2}{ }^{\mathrm{j}}$	3.167 \| 2.142	156.43	0.018	0.052	0.013	15.0
N5 \cdots F $4^{\text {i }}$	2.919	-	0.009	0.035	0.008	9.0
N3 \cdots F1 ${ }^{\text {k }}$	3.042	-	0.007	0.029	0.006	7.1
C $8 \cdots \mathrm{~F} 4^{\text {h }}$	3.084	-	0.007	0.029	0.006	6.5
O3 $\cdots{ }^{\text {7 }}{ }^{\text {a }}$	3.152	-	0.006	0.027	0.006	6.3
$\mathrm{C} 2 \cdots \mathrm{O} 5^{\text {f }}$	3.084	-	0.007	0.025	0.005	6.1
$\mathrm{C} 3 \cdots \mathrm{O} 3^{\mathrm{k}}$	3.093	-	0.007	0.026	0.005	5.9
$\mathrm{O} 7 \cdots \mathrm{O}^{\text {b }}$	3.412	-	0.006	0.024	0.005	5.9
F4 $\cdots{ }^{2}{ }^{\text {j }}$	3.003	-	0.004	0.026	0.005	5.8
F4 $\cdots{ }^{1}{ }^{\text {j }}$	3.010	-	0.004	0.026	0.005	5.7
F2 \cdots F3 ${ }^{\text {h }}$	3.015	-	0.004	0.026	0.005	5.7
$\mathrm{O} 2 \cdots \mathrm{~N} 1^{\text {b }}$	3.234	-	0.006	0.021	0.005	5.3
$\mathrm{C} 8 \cdots \mathrm{C} 6^{\text {h }}$	3.167	-	0.007	0.024	0.005	5.2
$\mathrm{N} 7 \cdots \mathrm{O} 4^{\text {h }}$	3.271	-	0.006	0.021	0.005	5.2
$\mathrm{C} 4 \cdots \mathrm{~N} 2^{\text {b }}$	3.246	-	0.007	0.021	0.004	5.1
C8 \cdots C12 ${ }^{1}$	3.241	-	0.007	0.023	0.004	5.0
O6 $\cdots \mathrm{N} 4^{1}$	3.294	-	0.005	0.020	0.004	4.9
C12 $\cdots \mathrm{N}^{\text {a }}$	3.251	-	0.006	0.021	0.004	4.9
N3 \cdots O6 ${ }^{1}$	3.319	-	0.005	0.020	0.004	4.9
C16 $\cdots{ }^{\text {j }}$	3.259	-	0.006	0.021	0.004	4.8
O7 $\cdots{ }^{\text {m }}$	3.277	-	0.005	0.020	0.004	4.7
N5 $\cdots{ }^{\text {a }}{ }^{\text {a }}$	3.329	-	0.005	0.019	0.004	4.6
$\mathrm{N} 1 \cdots \mathrm{O} 1^{\text {n }}$	3.285	-	0.005	0.019	0.004	4.6
O4 $\cdots{ }{ }^{1}$	3.234	-	0.004	0.020	0.004	4.5
$\mathrm{C} 14 \cdots{ }^{\circ}{ }^{\circ}$	3.307	-	0.005	0.019	0.004	4.2
$\mathrm{N} 8 \cdots \mathrm{O} 4^{\text {h }}$	3.419	-	0.004	0.017	0.004	4.1
C $11 \cdots \mathrm{~N} 8^{1}$	3.497	-	0.004	0.013	0.003	2.9
$E_{\text {latt }}(\mathrm{kJ} / \mathrm{mol})$						108.9

* The electron density ρ_{b}, Laplacian of electron density $\nabla^{2} \rho_{b}$ and local electronic kinetic energy density G_{b} at the bond critical point; the energy of the intermolecular noncovalent interaction E_{int}. The level of theory in the DFT computations is B3LYP-D3(BJ)/6-31(F+)G(d,p).
Symmetry codes: ${ }^{\mathrm{a}}-\mathrm{x},-1-\mathrm{y},-\mathrm{z} ;{ }^{\mathrm{b}}-\mathrm{x},-\mathrm{y},-1-\mathrm{z} ;{ }^{\mathrm{c}} \mathrm{x}, \mathrm{y}, 1+\mathrm{z} ;{ }^{\mathrm{d}} \mathrm{x}, \mathrm{y},-1+\mathrm{z} ;{ }^{\mathrm{e}} 1-\mathrm{x},-1-\mathrm{y},-\mathrm{z} ;{ }^{\mathrm{f}} \mathrm{x}, 1+\mathrm{y}, \mathrm{z} ;{ }^{\mathrm{g}}-1+\mathrm{x}, \mathrm{y},-1+\mathrm{z} ;{ }^{\mathrm{h}}$ $-x,-y,-z ;{ }^{i} 1+x, y, z ;{ }^{j}-1+x, y, z ;{ }^{k} 1-x,-y,-z ;{ }^{1} x, y, z ;{ }^{m}-1-x,-1-y,-1-z ;{ }^{n}-x, 1-y,-1-z ;{ }^{0}-1-x,-y,-1-z$.

Table S7. Metric and Electron Density Properties in Bond Critical Point of Noncovalent Interactions in 3HNA (refcode HNAPAC01) Obtained from Periodic DFT Calculations Followed by Bader Analysis of Periodic Electron Density *

non-covalent interaction	$\begin{gathered} \mathrm{D} \cdots \mathrm{~A}(\AA) \mid \\ \mathrm{H} \cdots \mathrm{~A}(\AA) \end{gathered}$	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{~A}$ ${ }^{\circ}$)	ρ_{b} (a.u.)	$\nabla^{2} \rho_{\mathrm{b}}$ (a.u.)	$\begin{gathered} G_{\mathrm{b}} \\ \text { (a.u.) } \end{gathered}$	$\begin{gathered} E_{\text {int }} \\ (\mathrm{kJ} / \mathrm{mol}) \end{gathered}$
O11-H11 $\cdots{ }^{\text {O }}{ }^{\text {a }}$	2.637 \| 1.634	176.62	0.051	0.145	0.038	42.9
$\mathrm{O} 3-\mathrm{H} 10 \cdots \mathrm{O} 2^{\text {b }}$	2.618 \| 1.735	147.62	0.043	0.130	0.034	37.9**
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{C} 1^{\text {c }}$	$3.700 \mid 2.633$	168.29	0.009	0.027	0.006	6.4
C9-H9 ${ }^{\text {a }} \mathrm{O}^{\text {d }}$	$3.614 \mid 2.628$	150.81	0.007	0.024	0.005	6.0
H8* ${ }^{\text {c }} 8^{\text {e }}$	2.304	-	0.006	0.025	0.005	5.2
C6-H6 ${ }^{\text {O }} 1^{\text {f }}$	3.272 \| 2.746	109.47	0.006	0.023	0.005	5.2
$\mathrm{C} 9 \cdots \mathrm{Ol}^{\mathrm{g}}$	3.291	-	0.006	0.019	0.004	4.5
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 2^{\text {h }}$	3.517 \| 2.810	122.84	0.005	0.019	0.004	4.3
$\mathrm{C} 2 \cdots \mathrm{O} 3^{\text {i }}$	3.387	-	0.005	0.018	0.004	4.0
C5 \cdots C 1^{j}	3.327	-	0.006	0.018	0.004	4.0
C9 ${ }^{\text {c }} \mathrm{C}^{\mathrm{j}}$	3.370	-	0.006	0.016	0.003	3.7
C6-H6 ${ }^{\text {C }} 8^{\text {c }}$	4.012 \| 2.948	166.79	0.005	0.015	0.003	3.5
$\mathrm{C} 7 \cdots \mathrm{C} 11^{\mathrm{j}}$	3.463	-	0.004	0.013	0.003	2.8
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 2^{\mathrm{k}}$	3.859 \| 2.994	136.81	0.003	0.012	0.002	2.6
C1-H1 $\cdots \mathrm{C} 4^{1}$	4.098 \| 3.123	149.94	0.003	0.010	0.002	2.2
$E_{\text {latt }}(\mathrm{kJ} / \mathrm{mol})$						97.3

* The electron density ρ_{b}, Laplacian of electron density $\nabla^{2} \rho_{b}$ and local electronic kinetic energy density G_{b} at the bond critical point; the energy of the intermolecular noncovalent interaction $E_{\text {int }}$. The level of theory in the DFT computations is B3LYP-D3(BJ)/6-31G(d,p).
${ }^{* *}$ Intramolecular contact. The energy of this interaction does not count in the total $E_{\text {latt }}$ value.
Symmetry codes: ${ }^{\text {a }}-\mathrm{x},-1-\mathrm{y},-\mathrm{z} ;{ }^{\mathrm{b}} \mathrm{x}, \mathrm{y}, \mathrm{z} ;{ }^{\text {c }} \mathrm{x},-1 / 2-\mathrm{y},-1 / 2+\mathrm{z}$; ${ }^{\text {d }}-1-\mathrm{x},-1 / 2+\mathrm{y},-1 / 2-\mathrm{z}$; e $-2-\mathrm{x},-1-\mathrm{y},-1-\mathrm{z}$; ${ }^{\mathrm{f}}$
$-1-x, 1 / 2+y,-1 / 2-z ;{ }^{\text {g }}-1-x,-1-y,-z ;{ }^{h}-1+x, y, z ;{ }^{i} \quad x,-1 / 2-y, 1 / 2+z ;{ }^{j}-1-x,-1-y,-1-z ;{ }^{k}-1+x,-1 / 2-y,-1 / 2+z ;{ }^{1}$
$-1-x,-1 / 2+y,-1 / 2-z$.

Table S8. Metric and Electron Density Properties in Bond Critical Point of Noncovalent Interactions in 6HNA (refcode JACDAV) Obtained from Periodic DFT Calculations Followed by Bader Analysis of Periodic Electron Density *

non-covalent interaction	$\begin{gathered} \mathrm{D} \cdots \mathrm{~A}(\AA) \mid \\ \mathrm{H} \cdots \mathrm{~A}(\AA) \end{gathered}$	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{~A}$ $\left(^{\circ}\right)$	ρ_{b} (a.u.)	$\begin{aligned} & \nabla^{2} \rho_{\mathrm{b}} \\ & \text { (a.u.) } \end{aligned}$	$\begin{gathered} G_{\mathrm{b}} \\ \text { (a.u.) } \end{gathered}$	$\begin{gathered} E_{\text {int }} \\ (\mathrm{kJ} / \mathrm{mol}) \end{gathered}$
O12-H12 ${ }^{\text {a }}$ O13 ${ }^{\text {a }}$	2.641 \| 1.654	167.93	0.050	0.141	0.037	41.3
O14-H14 \cdots O13 ${ }^{\text {b }}$	$2.850 \mid 1.895$	164.96	0.026	0.080	0.020	22.1
C5-H5 \cdots O12 ${ }^{\text {c }}$	$3.514 \mid 2.521$	151.72	0.008	0.027	0.006	6.8
$\mathrm{H} 7 \cdots \mathrm{H} 7^{\text {d }}$	2.165	-	0.008	0.030	0.006	6.5
C7-H7 \cdots O14 ${ }^{\text {d }}$	$3.564 \mid 2.652$	141.54	0.006	0.023	0.005	5.6
$\mathrm{O} 14 \cdots \mathrm{O} 13^{\text {e }}$	3.254	-	0.005	0.021	0.004	5.0
$\mathrm{O} 14 \cdots \mathrm{O} 2^{\text {f }}$	3.234	-	0.005	0.021	0.004	5.0
$\mathrm{H} 1 \cdots \mathrm{H} 4^{\mathrm{g}}$	2.275	-	0.006	0.021	0.004	4.5
$\mathrm{H} 1 \cdots \mathrm{H} 4^{\text {h }}$	2.450	-	0.006	0.021	0.004	4.3
C3-H3 \cdots O14 ${ }^{\text {i }}$	3.763 \| 2.754	154.82	0.004	0.017	0.003	3.9
H8 $\cdots{ }^{\text {H }}{ }^{\text {h }}$	2.513	-	0.005	0.019	0.003	3.9
C6 ${ }^{\circ} \mathrm{O} 13{ }^{\text {e }}$	3.349	-	0.005	0.017	0.003	3.8
$\mathrm{C} 7 \cdots \mathrm{O} 12^{\text {e }}$	3.392	-	0.005	0.016	0.003	3.7
H8 $\cdots{ }^{\text {H }}{ }^{\text {h }}$	2.454	-	0.005	0.017	0.003	3.6
$\mathrm{C} 5 \cdots \mathrm{C} 2^{\text {e }}$	3.559	-	0.005	0.014	0.003	3.2
C3-H3 ${ }^{\text {- }}$ O12 ${ }^{\text {j }}$	$3.710 \mid 2.916$	130.23	0.004	0.015	0.003	3.2
$\mathrm{C} 1 \cdots \mathrm{C} 9^{\text {e }}$	3.523	-	0.004	0.013	0.003	2.9
H8 \cdots H4g	2.675	-	0.004	0.014	0.003	2.9
$\mathrm{C} 4 \cdots \mathrm{C} 10^{\text {e }}$	3.654	-	0.004	0.011	0.002	2.6
$\mathrm{C} 2 \cdots \mathrm{C} 8^{\text {e }}$	3.655	-	0.004	0.011	0.002	2.5
$E_{\text {latt }}(\mathrm{kJ} / \mathrm{mol})$						137.4

* The electron density ρ_{b}, Laplacian of electron density $\nabla^{2} \rho_{b}$ and local electronic kinetic energy density G_{b} at the bond critical point; the energy of the intermolecular noncovalent interaction $E_{\text {int }}$. The level of theory in the DFT computations is B3LYP-D3(BJ)/6-31G(d,p).
Symmetry codes: ${ }^{\mathrm{a}}-1-\mathrm{x},-\mathrm{y},-1-\mathrm{z} ;{ }^{\mathrm{b}}-\mathrm{x},-1 / 2+\mathrm{y},-1 / 2-\mathrm{z} ;{ }^{\mathrm{c}} 1+\mathrm{x},-1 / 2-\mathrm{y}, 1 / 2+\mathrm{z} ;{ }^{\mathrm{d}}-1-\mathrm{x},-1-\mathrm{y},-1-\mathrm{z} ;{ }^{\mathrm{e}} \mathrm{x},-1 / 2-\mathrm{y}, 1 / 2+\mathrm{z} ;{ }^{\mathrm{f}}$ $-1-x,-1 / 2+y,-1 / 2-z ;{ }^{g}-1+x,-1 / 2-y,-1 / 2+z ;{ }^{\text {h }}-1+x, y, z ;{ }^{i}-x, 1 / 2+y,-1 / 2-z ;{ }^{j} 1+x, y, z$.

Table S9. Total Electronic Energies of Crystals ($E_{\text {total }}$), Zero-Point Energies (ZPE) and Thermal Corrections ($E_{\text {thetm }}$), Pressure-Volume Term (p V), Entropy Corrections (TS), Total Free Gibbs Energies of Crystals ($G_{\text {total }}$), Cocrystal Formation Energies ($E_{\text {form }}$) and Cocrystal Formation Gibbs Energies ($G_{\text {form }}$) Obtained from Periodic DFT-D3 Calculations

Crystal	5FU	3HNA	6HNA
Z	8	4	4
$\boldsymbol{E}_{\text {total }}$, a.u./cell	-4111.0300960778	-2597.8047106328	-2597.8171292864
ZPE, a.u./cell	0.6506264996	0.6779523388	0.6773718352
$\boldsymbol{E}_{\text {therm, }}$ a.u./cell	0.0621567288	0.0444294205	0.0445606489
pV, a.u./cell	0.0000224342	0.0000200140	0.0000195203
TS, a.u./cell	0.1229399300	0.0862086865	0.0858781941
$\boldsymbol{G}_{\text {total, }}$ a.u./cell	-4110.4402303451	-2597.1685175461	-2597.1810554761
Crystal	$\begin{gathered} \text { 5FU-3HNA } \\ \text { (conformation 1) } \end{gathered}$	5FU-3HNA (conformation 2)	5FU-6HNA
Z	4	4	4
$\boldsymbol{E}_{\text {total }}$, a.u./cell	-6708.8362882610	-6708.8364863387	-4653.3368656022
ZPE, a.u./cell	1.3281201675	1.3281035777	1.0021664922
$\boldsymbol{E}_{\text {therm, }}$ a.u./cell	0.1092585034	0.1094005632	0.0767691508
pV, a.u./cell	0.0000420309	0.0000420309	0.0000312033
TS, a.u./cell	0.2197707359	0.2202886324	0.1513643468
$\boldsymbol{G}_{\text {total, }}$ a.u./cell	-6707.6186382951	-6707.6192287992	-4652.4092631026
$\boldsymbol{E}_{\text {form, }}, \mathrm{kJ} / \mathrm{mol}$	-1.3		-3.4
$\boldsymbol{G}_{\text {form, }}, \mathrm{kJ} / \mathrm{mol}$	-6.7		-5.3

Table S10. Cumulative Amount Per Unit Area Permeated (Q_{n}) in 8 h, Steady Penetration Rate (J_{s}) and Their Corresponding Ratio of Cocrystals to Parent 5FU

sample	$Q_{\mathrm{n}}\left(\mu \mathrm{g} / \mathrm{cm}^{2}\right)$	ratio of Q_{n}	$J_{\mathrm{s}}\left(\mu \mathrm{g} / \mathrm{cm}^{2} / \mathrm{h}\right)$	ratio of J_{s}
5FU*	14.57(1.38)	1	1.84(0.02)	1
5FU-3HBA*	20.70(0.32)	1.42	$2.55(0.03)$	1.39
5FU-4ABA*	24.00(1.22)	1.65	3.02(0.03)	1.64
5FU-CA*	27.28(0.73)	1.87	$3.37(0.07)$	1.83
$5 \mathrm{FU}^{* *}$	9.72(0.36)	1	1.24(0.01)	1
5FU-3HBA**	13.61(0.55)	1.40	1.72(0.02)	1.39
5FU-4HBA I**********	13.84(0.13)	1.42	1.72(0.02)	1.39
5FU-4HBA II**	15.92(0.82)	1.64	1.98(0.01)	1.60
5FU-SA**	11.11(0.40)	1.14	$1.38(0.02)$	1.11
5FU-3HNA**	11.43(0.21)	1.18	$1.35(0.03)$	1.08
5FU-6HNA**	16.90(0.56)	1.74	1.99(0.06)	1.60

*The receptor chamber was filled with 8 mL of degassed pH 7.4 phosphate buffer
${ }^{* *}$ The receptor chamber was filled with 17 mL of degassed pH 7.4 phosphate buffer

Table S11. Solubility Value ($\mathrm{mg} / \mathrm{mL}$) of 5FU cocrystals at $37^{\circ} \mathrm{C}$

sample	Solubility $(\mathrm{mg} / \mathrm{mL})$
5FU	$19.20(12)^{*}$
5FU/3HBA	$21.13(36)^{*}$
5FU/4ABA	$18.99(28)^{*}$
5FU/CA	$18.07(12)^{*}$
5FU	$21.19(53)^{* *}$
5FU-3HBA	$22.40(62)^{* *}$
5FU-SA	$17.88(23)^{* *}$
5FU-4HBA I	$21.98(37)^{* *}$
5FU-4HBA II	$24.41(50)^{* *}$
5FU-6HNA	$7.91(12)^{* *}$
5FU-3HNA	$23.37(14)^{* *}$

* The solubility value was tested in pH 7.4 phosphate buffer
${ }^{* *}$ The solubility value was tested in pH 6.8 phosphate buffer
(a)

(b)

(c)

Figure S1. PXRD patterns of the grinding and slurry outcome of (a) 5 FU and 1 HNA , (b) 5 FU and 6 HNA and (c) 5 FU and 3 HNA .

Figure S2. DSC-TG curves for (a) 5FU-6HNA and (b) 5FU-3HNA.

Figure S3. IR spectrogram of 5FU and its cocrystals.

Figure S4. PXRD patterns of cocrystals after permeation experiment.

Figure S5. Cumulative permeated amount per unit area of 5 FU and the physical mixtures.

Figure S6. PXRD patterns of cocrystals after solubility test in pH 6.8 phosphate buffer.

Figure S7. PXRD patterns of cocrystals after dissolution experiment in IPM.

