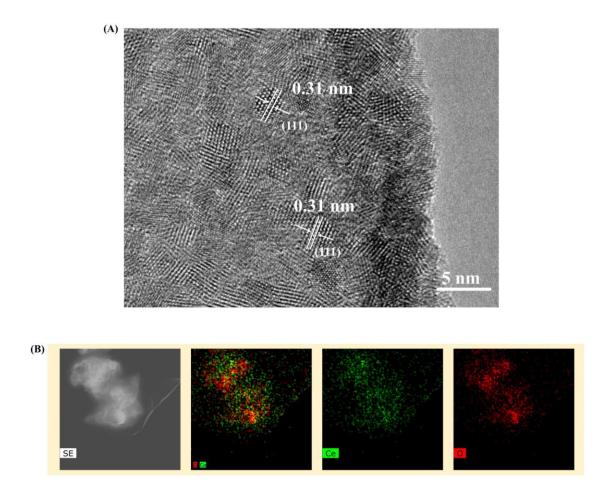
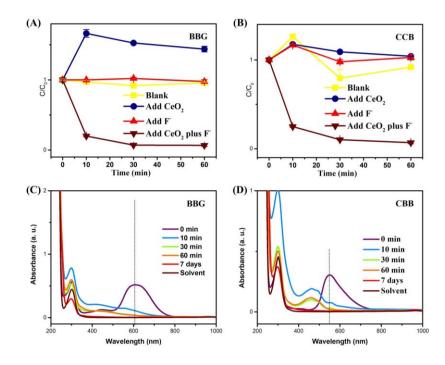
Supporting Information

Synergistically Boosted Degradation of Organic Dyes by CeO₂ Nanoparticles with Fluoride at low pH


Yawen Wang^{1,2}*, Tongtong Liu¹ and Juewen Liu²*

1. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

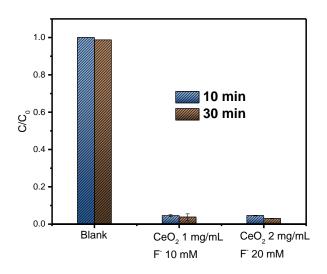
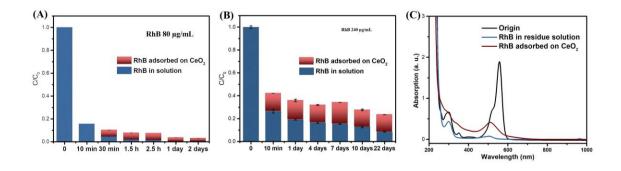
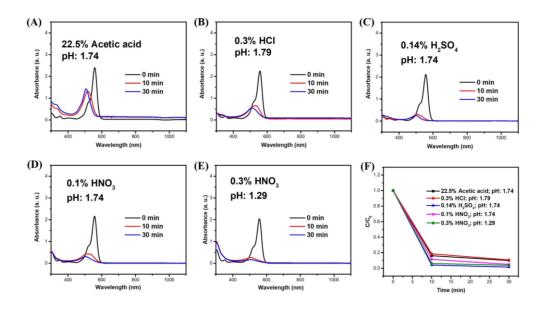

Email: wangyawen@tyut.edu.cn

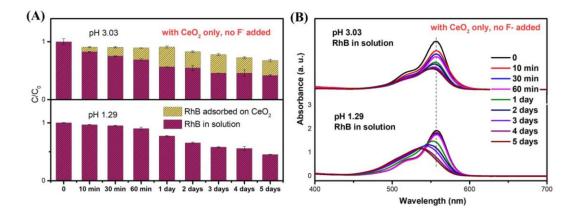
2. Department of Chemistry, Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, Ontario, N2L 3G1, Canada

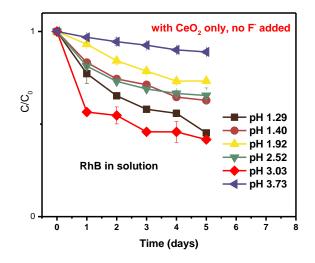
Email: liujw@uwaterloo.ca

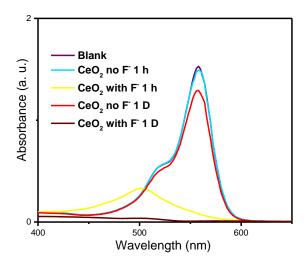
Figure S1. (A) A high resolution TEM micrograph, and (B) EDX element mapping of the CeO₂ nanoparticles used in this work.

Figure S2. Kinetics of degradation of (A) BBG; and (B) CBB with CeO₂ under different conditions at pH 1.29. UV-vis spectra of (C) BBG; and (D) CBB with CeO₂ plus F⁻ at pH 1.29 with time. Concentration of dyes: 10 μ g/mL each; concentration of CeO₂: 0.2 mg/mL; concentration of F⁻: 2 mM.


Figure S3. Effect of CeO₂ and F⁻ concentration on the degradation of 10 µg/mL RhB at pH 1.29


Figure S4. Dye degradation efficiency by CeO₂ (0.2 mg/mL) plus F^- (2 mM) at pH 1.29 in the presence of (A) 80 µg/mL and (B) 240 µg/mL RhB. (C) UV-vis absorption spectra of RhB (80 µg/mL each) in solution and adsorbed on CeO₂ (0.2 mg/mL) after aged for 1 day with F^- (2 mM) Although CeO₂ adsorbed some degraded products, this was not the main reason of decoloration. A significant amount of degradation occurred. The original RhB peak not only decreased, but also shifted. With 3-fold more RhB added, the fraction of decoloration decreased, although the absolute amount of decolored RhB was higher. The amount of RhB adsorbed on CeO₂ was calculated by the following method. After the reaction, the samples were centrifuged and the precipitate was treated twice with NaOH (1 mL, 1 M) and ultrasonic at 40 °C for 1 h. The RhB can be washed out by NaOH. Then the concentration of RhB in NaOH at each time pointed was measured by UV-vis spectrometry. Accordingly, the amount of RhB adsorbed on CeO₂ could be obtained.


Figure S5. Effect of different types of acids on RhB degradation performance: (A) acetic acid; (B) HCl; (C) H_2SO_4 ; (D) 0.1% HNO₃; and (E) 0.3% HNO₃. (F) A comparison of the degradation kinetics. Concentration of CeO₂: 0.2 mg/mL; concentration of F⁻: 2 mM; concentration of RhB: 10 µg/mL

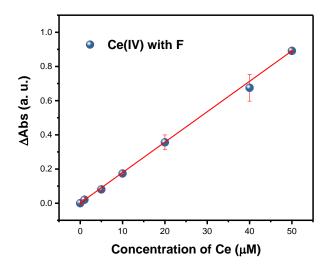

Figure S6. (A) degradation efficiency by CeO₂; and (B) the UV-Vis spectra of RhB of the samples at pH 3.03 and 1.29 in the absence of F^- . Concentration of RhB: 10 µg/mL; no fluoride added here. At pH 3.03, we mainly observed adsorption without much peak shift, while at pH 1.29, we observed more degradation. Overall, the efficiency was much lower without F^- .

Figure S7. Kinetics of RhB (10 μ g/mL) degradation by CeO₂ (0.2 mg/mL) at different pH values in the absence of F⁻.

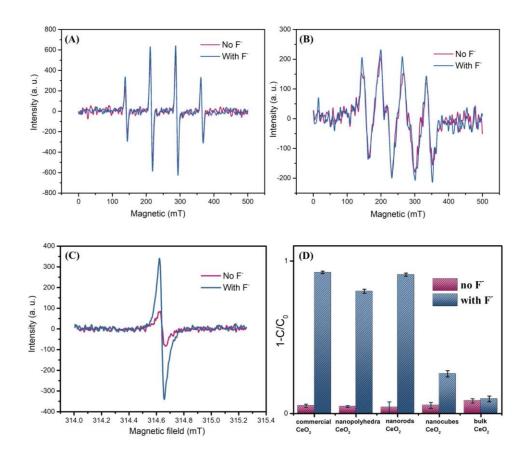


Figure S8. UV-vis absorption spectra of $10 \,\mu$ g/mL RhB incubated with 0.2 mg/mL CeO₂ nanorods at different conditions at pH 1.29 for 1 h or 1 day. Concentration of F⁻: 0 or 2 mM.

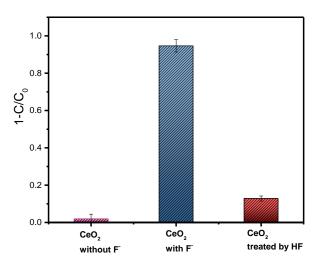


Figure S9. Effect of Ce⁴⁺ (prepared by dissolving Ce(NH₄)₂(NO₃)₆ in Milli-Q water) concentration on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) (0.2 mM) oxidation monitored at 415 nm within 15 min in the presence of 400 μ M F⁻. The regression equation is Y= 0.0178X+0.0019, r² = 0.999.

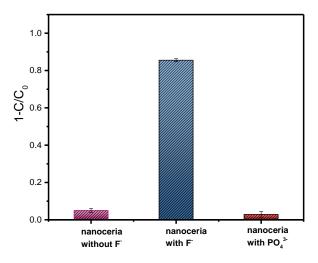

The test procedure was as follows: pH 1.29 HNO₃ containing the CeO₂ nanorods (0.2 mg/mL) was respectively soaked without and with F⁻ (2 mM) for 1 h. We then centrifuged the solutions for 10 min to precipitate the CeO₂. The supernatant was collected for testing. Typically, 10 μ L of the prepared Ce⁴⁺ solution or supernatant from soaking of CeO₂, 10 μ L F⁻ solution, and 10 μ L ABTS were successively added to 470 μ L of acetate buffer (pH 4, 20 mM). After 15 min reaction, the resulting solutions were measure to get the UV-vis spectra using a spectrometer (Agilent 8453A). The Δ Abs (Δ Abs = At - Ao, where At and Ao are the absorbance at 415 nm of the resulting solution in the presence and absence of Ce⁴⁺ solution, respectively) was used to calculate the oxidation of ABTS. All the experiments were conducted at least in duplicate and the average values were reported. The obtained average Δ Abs for the supernatant in absence of F⁻ was 0.002, while in the presence of F⁻ was 0.081.

Figure S10. ESR spectra of radical adducts trapped by (A) DMPO-•OH; (B) DMPO-•O₂⁻ in the CeO₂ nanoparticle dispersion (pH 1.29). (C) EPR spectra of CeO₂ nanoparticles without and with 2 mM F⁻ in pH 1.29 solution. (D) Quantification of the decrease of the UV-vis spectra absorption peaks of RhB (10 μ g/mL) for different CeO₂ (0.2 mg/mL) after 1 h. Concentration of F⁻: 2 mM. Three kind of nanoscale CeO₂ (nanopolyhedra in the size of 11.5±1.8 nm, nanorods with a uniform diameter in 9.6±1.2 nm and a less-uniform length within 50-200 nm and nanocubes in size of 36.1±7.1 nm) and one large size bulk CeO₂ were prepared according to the literature.¹ The results indicated in presence of F⁻, the bulk CeO₂ had no activity to degrade RhB. All nanoscale CeO₂ had the enhanced effect, but the degree of enhancement was different.

Figure S11: Quantification of the decrease of the UV-vis absorption peaks of RhB ($10 \mu g/mL$) for CeO₂ nanorods (0.2 mg/mL) at different conditions after 1 h. Concentration of F⁻: 2 mM.

Figure S12: Quantification of the decrease of the UV-vis absorption peaks of RhB ($10 \mu g/mL$) for nanoceria (0.2 mg/mL) at different conditions after 1 h. The concentrations of F⁻ and PO₄³⁻ were both 2 mM.

Preparation of CeO₂ nanomaterials.

The nanoscale CeO₂ and bulk CeO₂ samples were prepared by the method of Mai et al.¹ For the nanoscale CeO₂, 0.868 g of Ce(NO₃)₃,6H₂O and NaOH were dissolved in 40 mL of deionized water, and kept stirring for 30 min with the formation of a milky slurry. Then the slurry was transferred to Teflon-lined autoclave to hydrothermal treatment. The concentration of NaOH and hydrothermal temperature for fabricating nanopolyhedra, nanorods and nanocubes were 0.01 M (100°C), 6 M (100°C) and 6 M (180 °C), respectively. After the hydrothermal treatment, fresh white precipitates were separated by centrifugation, washed with deionized water and ethanol several times, followed by drying at 60 °C in air overnight. The bulk CeO₂ powder was prepared by the precipitation route at pH 11 at room temperature, using 0.868 g of Ce(NO₃)₃·6H₂O and NH₄OH as the starting materials, followed by separation, washing, drying, and calcining at 650 °C for 4 h.

Analytical methods.

Room temperature electron spin resonant (ESR) and low-temperature electron paramagnetic resonance (EPR) spectra were recorded on a Bruker model JES-FA200 spectroscopy. Samples were prepared by dispersing CeO₂ (0.2 mg/mL) nanoparticles with or without NaF (2 mM) in pH 1.29 testing solution. 5, 5-dimeyhyl-1-pyrroline-N-oxide (DMPO) was used as the spin trap. HNO₃ was used to adjust the pH of the solution.

Additional references

1. Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H., Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes. *J. Phys. Chem. B* **2005**, *109* (51), 24380-24385.