Supporting Information

Design and Optimization of 3'-(imidazo[1,2-a]pyrazin-3-yl)-[1,1'-biphenyl]-3-carboxa mides as Selective DDR1 Inhibitors

 Zheng-Chao Tu ${ }^{\ddagger}$, Yong Xu^{\ddagger}, Xiaomei Ren ${ }^{\dagger, *}$, Ke Ding ${ }^{\dagger, *}$, Xiaoyun Lu ${ }^{\dagger}$,*
${ }^{\dagger}$ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
*Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
${ }^{\xi}$ Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States

Contents of SI

Synthetic procedures for compounds 8a-8w	S1-23
The results of the selectivity profiling study of compound 8v	S24-28
Active-site dependent competition binding assay-Kinome ${ }^{\text {scan }}$ Screening	S29
In vitro kinase assay	S29-30
Colony formation assay	S30
Inhibition on H1299 cell proliferation by MTT assay	S30-31
Wound healing assay	S31
Transwell assay	S32
Computational study	S32-33
The ${ }^{\mathbf{1}}$ H and ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR spectra of compounds 8a-8w	S33-54

Synthetic procedures for compounds 8a-8w.
Synthesis of the designed compounds $\mathbf{8 a - 8 1}$ and $\mathbf{8 n - 8 w}$ was outlined in Scheme S1.
Briefly, the substituted methyl 3'-bromo-[1,1'-biphenyl]-3-carboxylate $\mathbf{1 3}$ was prepared by coupling substituted 3-bromophenylboronic acid $\mathbf{9 a - 9 h}, \mathbf{9 k}$ and $\mathbf{9 n - 9 w}$ with substituted methyl 3 -iodobenzoate $\mathbf{1 0 a}, \mathbf{1 0 g}$ and $\mathbf{1 0 h}$ or by coupling substituted
1-bromo-3-iodobenzene 11i, 11j and $\mathbf{1 1 \mathbf { l }}$ with methyl

4-ethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate $\mathbf{1 2} \mathbf{1 3}$ was further reacted with bis(pinacolato)diboron to give the intermediate 14, which underwent the classical Suzuki coupling reaction to yield the key intermediate substituted methyl 3'-(imidazo[1,2-a]pyrazin-3-yl)-[1,1'-biphenyl]-3-carboxylate 15. The designed compounds $\mathbf{8 a - 8 l}$ and $\mathbf{8 n - 8 w}$ were obtained by amidation of intermediate $\mathbf{1 5}$ with different anilines under basic condition in good or moderate yields.

Scheme 1. Synthesis of Compounds 8a-8l and 8n-8w.

 9k: $\mathrm{R}_{5}=\mathrm{Me}$

10a-10f, 10t-10w: $\mathrm{R}_{1}=\mathrm{Et}$
10g: $\mathrm{R}_{1}=\mathrm{Me}$ 10h: $R_{1}=i-P r$

11

12

11i: 2'-Me 11I: 6 '-Me 11p: 5 '-OMe 11s: 5 '-Cl
11j: 4'-Me 11n: 5'-i-Pr 11q: 5'-CN 11k: 5'-Me 110: 5'-t-Bu 11r:5'-F
\qquad

15

13

14

8a: $\mathrm{R}_{3}=3$ '-CF ${ }_{3}$, 5'-(4-methylpiperazin-1-yl)methyl
8b: $\mathrm{R}_{3}=3$ '-(4-methylpiperazin-1-yl)methyl
$\mathbf{8 c}, \mathbf{8 g}, \mathbf{8 h}, \mathbf{8 i}-\mathbf{8 s}: \mathrm{R}_{3}=3^{\prime}-\mathrm{CF}_{3} \quad \mathbf{8 t}: \mathrm{R}_{3}=3^{\prime}-\mathrm{CF}_{3}, 2^{\prime}-\mathrm{F}$
8d: $\mathrm{R}_{3}=4{ }^{\prime}-\mathrm{CF}_{3}$
8e: $\mathrm{R}_{3}=2 \mathrm{I}^{-}-\mathrm{CF}_{3}$
8f: $R_{3}=H$

8u: $\mathrm{R}_{3}=3^{\prime}-\mathrm{CF}_{3}, 4^{\prime}-\mathrm{F}$ 8v: $\mathrm{R}_{3}=3^{\prime}-\mathrm{CF}_{3}, 5^{\prime}-\mathrm{F}$ $8 \mathbf{w}: \mathrm{R}_{3}=3^{\prime}-\mathrm{CF}_{3}, 6^{\prime}-\mathrm{F}$

Reagents and conditions: (a1) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{PhMe} / \mathrm{H}_{2} \mathrm{O}(3: 1), \mathrm{Ar}, 90^{\circ} \mathrm{C}$, overnight, $58-98 \%$; (a2) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{3} \mathrm{PO}_{4}$, Dioxane, $\mathrm{Ar}, 90^{\circ} \mathrm{C}$, overnight, $55-91 \%$; (b) $\mathrm{Pd}(\mathrm{dffp}) \mathrm{Cl}_{2}, \mathrm{KOAc}, \mathrm{Bis}($ pinacolato $)$ diboron, Dioxane, $\mathrm{Ar}, 90^{\circ} \mathrm{C}$, overnight, $64-92 \%$; (c) 3-bromoimidazo[1,2-a]pyrazine, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{PhMe} / \mathrm{H}_{2} \mathrm{O}(3: 1), \mathrm{Ar}, 90^{\circ} \mathrm{C}$, overnight, $42-82 \%$; (d) t-BuOK, anilines, dry THF, $-20^{\circ} \mathrm{C}, 4-79 \%$.

Synthesis of the designed compound $\mathbf{8 m}$ was outlined in Scheme S2.
Scheme S2. Synthesis of the compound $\mathbf{8 m}$.

Reagents and conditions: (a) BH_{3} (1 M THF solution), THF, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 12 \mathrm{~h}, 79 \%$; (b) Dess-Martin periodinane, $\mathrm{DCM}, 0^{\circ} \mathrm{C}$ to rt, $1 \mathrm{~h}, 90 \%$; (c) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{3} \mathrm{PO}_{4}$, Dioxane, $\mathrm{Ar}, 90^{\circ} \mathrm{C}$, overnight, 64%; (d) Methyltriphenylphosphonium bromide, n - $\mathrm{BuLi}(2.4 \mathrm{M}$ THF solution), THF, $-20^{\circ} \mathrm{C}$ for 0.5 h , overnight at $\mathrm{rt}, 50 \%$; (e) $\mathrm{Pd}(\mathrm{dffp}) \mathrm{Cl}_{2}, \mathrm{KOAc}$, $\operatorname{Bis}\left(\right.$ pinacolato)diboron, \quad Dioxane, $\mathrm{Ar}, \quad 90^{\circ} \mathrm{C}$, overnight, 38%; 3-bromoimidazo[1,2-a]pyrazine, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{PhMe} / \mathrm{H}_{2} \mathrm{O}(3: 1), \mathrm{Ar}, 90^{\circ} \mathrm{C}$, overnight, 79%; (g) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}, \mathrm{rt}, 4 \mathrm{~h}, ~ 50 \%$; (h) t-BuOK, 3-(trifluoromethyl)aniline, dry THF, $-20^{\circ} \mathrm{C}, 8 \%$.

General Methods for Chemistry. All reagents and solvents were purchased from commercial sources without further purification. Flash chromatography was performed using 300 mesh silica gel. All reactions were monitored by thin-layer chromatography (TLC) using silica gel plates with fluorescence F254 and UV light visualization. 1H NMR spectra were recorded on a Bruker AV-400 spectrometer at 400 MHz or a Bruker AV-500 spectrometer at $500 \mathrm{MHz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV-500 spectrometer at 125 MHz . Coupling constants (J) are expressed in hertz (Hz). Chemical shifts (δ) of NMR are reported in parts per million (ppm) units relative to an internal standard (TMS). Low resolution ESI-MS were recorded on an Agilent 1200 HPLC-MSD mass spectrometer and high resolution ESI-MS on an Applied Biosystems Q-STAR Elite ESI-LC-MS/MS mass spectrometer. Purity of compounds was determined by reverse-phase high
performance liquid chromatography [HPLC, Dionex Summit HPLC (Column: Diamonsil C18, $5.0 \mu \mathrm{~m}, 4.6 \times 250 \mathrm{~mm}$ (Dikma Technologies); detector: PDA-100 photodiode array; injector: ASI-100 autoinjector; pump: p-680A)] to be $>95 \%$. A flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ was used with mobile phase of $85 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$ with 0.1% modifier (ammonia, v / v).

Methyl 3'-bromo-6-ethyl-[1,1'-biphenyl]-3-carboxylate (13a)

To a solution of methyl 4-ethyl-3-iodo-benzoate ($6.0 \mathrm{~g}, 20.66 \mathrm{mmol}, 1.0 \mathrm{eq}$) in toluene/water (v/v, 3:1, 40 mL) was added 3-bromophenylboronic acid (4.36 g, 21.69 $\mathrm{mmol}, 1.05 \mathrm{eq}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.2 \mathrm{~g}, 1.03 \mathrm{mmol}, 0.05 \mathrm{eq}), \mathrm{Na}_{2} \mathrm{CO}_{3}(6.58 \mathrm{~g}, 61.99 \mathrm{mmol}$, 3.0 eq). The mixture was degassed and purged again with argon, then heated at $90^{\circ} \mathrm{C}$ overnight. After cooling, the solvent was evaporated under reduced pressure. The residue was dissolved in DCM, washed with water and saturated salt water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated and purified by column chromatography (PE/EA) through silica gel afforded the intermediate 13a (3.8 g, yield: 58\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 7.98$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.85 ($\mathrm{s}, 1 \mathrm{H}$), 7.51 (d, $J=8.0$ Hz, 1H), 7.47 (s, 1H), 7.38 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (d, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{q}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Methyl 6-ethyl-3'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1'-biphenyl]-3carboxylate (14a)

To a solution of $\mathbf{1 3 a}(2.61 \mathrm{~g}, 8.17 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry dioxane (14 mL) was added bis(pinacolato)diboron $(3.11 \mathrm{~g}, 12.26 \mathrm{mmol}, 1.5 \mathrm{eq}), \operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(0.30 \mathrm{~g}, 0.41 \mathrm{mmol}$, 0.05 eq), KOAc ($2.41 \mathrm{~g}, 24.52 \mathrm{mmol}, 3.0 \mathrm{eq}$). The mixture was degassed and purged again with argon, then heated at $90^{\circ} \mathrm{C}$ overnight. After cooling, the solvent was evaporated under reduced pressure. The residue was dissolved in DCM and filtered.

The filtrate was concentrated and purified by column chromatography (PE/EA) to give the intermediate 14a (1.91 g , yield: 64%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H})$, $7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{q}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.35(\mathrm{~s}, 12 \mathrm{H}), 1.10(\mathrm{t}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Methyl 6-ethyl-3'-(imidazo[1,2-a]pyrazin-3-yl)-[1,1'-biphenyl]-3-carboxylate (15a)

To a solution of $\mathbf{1 4 a}(1.91 \mathrm{~g}, 5.23 \mathrm{mmol}, 1.0 \mathrm{eq})$ and 3-bromoimidazo[1,2-a]pyrazine $(0.98 \mathrm{~g}, 4.96 \mathrm{mmol}, 0.95 \mathrm{eq})$ in Toluene/water ($\mathrm{v} / \mathrm{v}, 3: 1,20 \mathrm{ml}$) was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(0.30 \mathrm{~g}, 0.26 \mathrm{mmol}, 0.05 \mathrm{eq})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.66 \mathrm{~g}, 15.68 \mathrm{mmol}, 3.0 \mathrm{eq})$. The mixture was degassed and purged again with argon, then heated at $90^{\circ} \mathrm{C}$ overnight. After cooling, the solvent was evaporated under reduced pressure. The residue was dissolved in DCM and filtered. The filtrate was concentrated and purified by column chromatography (PE/EA) through silica gel to give the intermediate $\mathbf{1 5 a}(0.96 \mathrm{~g}$, yield: 52%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 9.16$ (s, 1H), 8.29 (d, $J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.91(\mathrm{~m}, 3 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~s}$, $1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.10(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H})$.

3-((4-methylpiperazin-1-yl)methyl)-5-(trifluoromethyl)phenyl-6-ethyl-3'-(imidaz o[1,2-a]pyrazin-3-yl)-[1,1'-biphenyl]-3-carboxylate (8a)

To a solution of $\mathbf{1 5 a}(0.14 \quad \mathrm{~g}, \quad 0.39 \mathrm{mmol}, \quad 1.0 \quad \mathrm{eq}) ~$ and 3-((4-methylpiperazin-1-yl)methyl)-5-(trifluoromethyl)aniline ($0.11 \mathrm{~g}, 0.39 \mathrm{mmol}, 1.0$ eq) in dry THF (5.0 mL) was added t - $\mathrm{BuOK}(0.17 \mathrm{~g}, 1.56 \mathrm{mmol}, 4.0 \mathrm{eq})$ in portions at $-20^{\circ} \mathrm{C}$. The ice bath was removed after 1 hr . The reaction mixture was stirred at rt for
another 2 h . The mixture was diluted with EA, washed with water and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated. Purification by column chromatography (DCM/Methanol) through silica gel afforded the intermediate (0.077 g , yield: 33%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.91(\mathrm{~m}, 3 \mathrm{H}), 7.88(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80$ (s, 2H), 7.65-7.59 (m, 2H), $7.53(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.2$ $\mathrm{Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 2.71(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{br}, 8 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.64$, $146.08,144.39,142.22,141.26,140.87,140.45,138.75,134.54,131.93,131.24$, 129.99, 129.77, 129.43, 129.29, 128.74, 128.30, 127.78, 126.86, 126.60, 123.84, $123.68,121.34,116.29,115.90,62.21,54.83,52.77,45.73,26.24,15.33$. MS (ESI), m/z: $599[\mathrm{M}+\mathrm{H}]^{+}$. Purity: 98.18%, Rt 9.78 min .

6-ethyl-3'-(imidazo[1,2-a]pyrazin-3-yl)-N-(3-((4-methylpiperazin-1-yl)methyl)phe nyl)-[1,1'-biphenyl]-3-carboxamide (8b)

Compound $\mathbf{8 b}$ was prepared following similar procedure of $\mathbf{8 a}$, yield 20%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.10(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.89$ (d, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.53$ (s, 1H), $7.50(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{dd}, J=10.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{q}, ~ J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{br}, 8 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$, 1.15 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 165.49, 145.87, 144.67, 142.48, $141.49,141.05,139.34,138.14,134.80,132.67,130.17,129.94$, $129.58,129.38,129.04,128.82,128.54,128.02,126.77,125.53,120.96,119.25$, 116.44, 62.94, 55.07, 53.12, 46.01, 26.40, 15.54. HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: \quad 531.2866$; found 531.2858 . HPLC purity $=96.36 \%$, Rt 13.26 min .

nyl]-3-carboxamide (8c)

Compound $\mathbf{8 c}$ was prepared following similar procedure of $\mathbf{8 a}$, yield 72%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.14(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H})$, 7.91-7.93 (m, 3H), 7.86-7.89 (m, 2H), 7.78 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), ~ 7.66-7.60(\mathrm{~m}, 2 \mathrm{H})$, 7.53-7.44 (m, 4H), 7.40 (d, $J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 165.70, 146.35, 144.67, 142.38, $141.50,141.18,138.76,134.77,132.12,130.20,129.93,129.74,129.64,129.53$, $128.85,128.49,128.04,126.88,126.83,126.76,123.44,121.17,121.14,117.11$, 117.08, 116.42, 26.45, 15.51. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 487.1740; found 487.1747. HPLC purity $=97.96 \%$, Rt 6.57 min .

6-ethyl-3'-(imidazo[1,2-a]pyrazin-3-yl)-N-(4-(trifluoromethyl)phenyl)-[1,1'-biphe nyl]-3-carboxamide (8d)

Compound $\mathbf{8 c}$ was prepared following similar procedure of $\mathbf{8 a}$, yield 72%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.11(\mathrm{~s}, 1 \mathrm{H}), 8.27-8.26(\mathrm{~s}, 2 \mathrm{H}), 7.91-7.86(\mathrm{~m}, 3 \mathrm{H})$, 7.79-7.77 (m, 3H), 7.63-7.58 (m, 4H), 7.49-7.46 (m, 2H), 7.44-7.42 (m, 1H), 2.70 (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $165.88,146.33,144.55,142.35,141.41,141.07$, 134.68, 132.13, 130.15, 129.91, $129.53,128.93,128.38,127.92,127.00,126.74,126.36,126.13,125.26,123.10$, 120.00, 116.41, 26.41, 15.49. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 487.1740; found 487.1747. HPLC purity= 97.12%, Rt 11.14 min .

6-ethyl-3'-(imidazo[1,2-a]pyrazin-3-yl)-N-(2-(trifluoromethyl)phenyl)-[1,1'-biphe nyl]-3-carboxamide (8e)

Compound $\mathbf{8 d}$ was prepared following similar procedure of $\mathbf{8 a}$, yield 63%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.17$ (s, 1H), 8.42 (d, $\left.J=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.31$ (d, $J=4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.55(\mathrm{~s}$, $1 \mathrm{H}), 7.51$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $165.27,146.52,144.75,142.31,141.50,135.63,134.87,133.17,132.05,130.19$, 129.91, 129.62, 129.07, 128.50, 128.15, 126.94, 126.74, 126.28, 124.67, 124.42, 116.42, 26.45, 15.49. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 487.1740; found 487.1744. HPLC purity $=97.96 \%$, Rt 6.57 min .

6-ethyl-3'-(imidazo[1,2-a]pyrazin-3-yl)- N-phenyl-[1,1'-biphenyl]-3-carboxamide (8f)

Compound $\mathbf{8 f}$ was prepared following similar procedure of $\mathbf{8 a}$, yield $47 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.13(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.01-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.85(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-$ 7.59 (m, 4H), 7.52 (s, 1H), 7.44 (dd, $J=11.8,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.63,145.79,144.58,142.46,141.42,140.96,138.17$, $134.73,132.68,130.12,129.92,129.54,129.31,129.11,128.87,128.45,127.93$, 126.98, 126.61, 124.60, 120.45, 116.42, 26.36, 15.53. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 419.1866; found 419.1863. HPLC purity $=96.36 \%$, Rt 13.26 min.

3'-(imidazo[1,2-a]pyrazin-3-yl)-6-methyl-N-(3-(trifluoromethyl)phenyl)-[1,1'-bip henyl]-3-carboxamide (8g)

Compound 8 g was prepared following similar procedure of $\mathbf{8 a}$, yield 65%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 9.14(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H})$, 7.92-7.91 (m, 3H), $7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 2 \mathrm{H})$, $7.53(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 165.70,144.65,142.37,141.49,141.19,138.76,134.75$, $132.37,131.23,130.19,129.92,129.73,129.68,128.69,128.52,128.09,126.87$, $126.77,126.59,123.46,121.16,117.10,116.43,20.74 . \mathrm{MS}(\mathrm{ESI}), \mathrm{m} / \mathrm{z}: 507[\mathrm{M}+\mathrm{Cl}]+$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 473.1584; found 473.1578. Purity: 96.03\%, Rt 6.82 min .

3'-(imidazo[1,2-a]pyrazin-3-yl)-6-isopropyl-N-(3-(trifluoromethyl)phenyl)-[1,1'-b iphenyl]-3-carboxamide (8h)

Compound $\mathbf{8 h}$ was prepared following similar procedure of $\mathbf{8 a}$, yield 7%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.03(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=4.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dt}, J=15.3,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=11.5,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.13-3.08(\mathrm{~m}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 165.79$, $151.04,144.60,142.49,141.45,140.50,138.83,134.71,131.84,131.63,131.38$, $130.16,129.99,129.64,128.86,128.45,127.92,127.20,126.75,126.73,125.04$, 123.47, 122.87, 121.08, 117.11, 116.40, 29.93, 24.16. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]+: 501.1897$; found 501.1919 . HPLC purity $=96.77 \%$, Rt 11.95 min.

6-ethyl-3'-(imidazo[1,2-a]pyrazin-3-yl)-2'-methyl-N-(3-(trifluoromethyl)phenyl)-[

1,1'-biphenyl]-3-carboxamide (8 i)

The title compound was synthesized following the procedure for compound 8a substituting 13a with 13i (prepared by the method outlined below).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.14(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}$, $1 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=4.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{dd}, J=6.8,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.58-2.44 (m, 2H), $1.82(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 165.81,146.58,144.25,142.02,141.06,140.89,138.82,136.13$, 135.22, 132.11, 131.36, 1301.49, 129.89, 129.70, 129.11, 128.55, 127.41, 126.76, 126.31, 125.03, 123.58, 122.86, 121.07, 117.28, 116.75, 26.39, 17.49, 14.92. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 501.1897$; found 501.1914. HPLC purity $=$ 99.57%, Rt 8.08 min .
methyl 3'-bromo-6-ethyl-2'-methyl-[1,1'-biphenyl]-3-carboxylate (13i)

methyl 4-ethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (12)

The title compound was synthesized following the procedure of compound 14a starting with methyl 4-ethyl-3-iodobenzoate. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $8.41(\mathrm{~s}, 1 \mathrm{H}), 8.0(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{q}, J$ $=7.6,2 \mathrm{H}), 1.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
methyl 3'-bromo-6-ethyl-2'-methyl-[1,1'-biphenyl]-3-carboxylate (13i)

To
a
solution
of
methyl
4-ethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate
(1.95g,
$6.72 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dioxane (11 mL) was added 1-bromo-3-iodo-2-methylbenzene $(2.0 \mathrm{~g}, 6.72 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.39 \mathrm{~g}, 0.34 \mathrm{mmol}, 0.05 \mathrm{eq}), \mathrm{K}_{3} \mathrm{PO}_{4}(5.38 \mathrm{~g}$, $20.16 \mathrm{mmol}, 3.0 \mathrm{eq})$. The mixture was degassed and purged again with argon, then heated at $90^{\circ} \mathrm{C}$ overnight. After cooling, the solvent was evaporated under reduced pressure. The residue was dissolved in DCM, washed with water and saturated salt water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated. Purification by column chromatography (PE/EA) through silica gel afforded the intermediate $\mathbf{1 3 i}$ (1.8 g , yield: 80.37\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.97-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H})$, $7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{q}, J=8.0,2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$, $0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$.

6-ethyl-3'-(imidazo[1,2-a]pyrazin-3-yl)-4'-methyl- N-(3-(trifluoromethyl)phenyl)-[1,1'-biphenyl]-3-carboxamide ($\mathbf{8 j}$)

Compound $\mathbf{8 j}$ was prepared following similar procedure of $\mathbf{8 i}$, yield 13%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.13$ (d, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $8.12(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.88$ (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.83 (dd, $J=7.3,2.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.78 (dd, $J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}$, $2 \mathrm{H}), 7.31(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.85,146.35,144.29,140.95$, $139.29,138.83,137.24,135.20,132.06,131.63,131.26,130.65,129.90,129.68$, 129.38, 129.01, 126.71, 125.82, 125.03, 123.48, 122.86, 121.06, 117.11, 116.73, 26.42, 19.62, 15.47. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 501.18967; found 501.18929. HPLC purity $=99.89 \%$, Rt 8.52 min .

6-ethyl-3'-(imidazo[1,2-a]pyrazin-3-yl)-5'-methyl- N-(3-(trifluoromethyl)phenyl)-[1,1'-biphenyll-3-carboxamide (8k)

Compound $\mathbf{8 k}$ was prepared following similar procedure of $\mathbf{8 a}$, yield $4 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.07(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.24$ (dd, $J=4.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (s, 1H), $7.90-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.78(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.39-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}$, $3 \mathrm{H}), 1.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.86,146.25$, $144.53,142.28,141.38,141.21,139.65,138.89,134.63,132.04,130.75,130.09$, $129.69,129.41,128.84,127.77,127.48,126.91,125.45,123.47,121.05,117.12$, 116.49, 26.43, 21.62, 15.51. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 501.1897; found 501.1893 . HPLC purity $=99.47 \%$, Rt 9.66 min .

6-ethyl-5'-(imidazo[1,2-a]pyrazin-3-yl)-2'-methyl- N-(3-(trifluoromethyl)phenyl)-[1,1'-biphenyl]-3-carboxamide (81)

Compound $\mathbf{8 k}$ was prepared following similar procedure of $\mathbf{8 a}$, yield 4%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.99(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=4.6$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=11.1,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.77(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=14.9,8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 2.56-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 166.04,146.77$, 144.64, 141.87, 141.50, 140.66, $139.09,137.64,134.63,132.31,132.07,131.82,131.55,131.30,130.22,129.87$, $129.38,128.77,128.59,127.30,127.00,125.32,125.24,123.69,123.07,121.22$, 120.91, 117.35, 116.62, 26.55, 20.25, 15.17. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 501.1897; found 501.1892. HPLC purity $=98.73 \%$, Rt 8.76 min .

)-[1,1'-biphenyl]-3-carboxamide (8n)

Compound $\mathbf{8 n}$ was prepared following similar procedure of $\mathbf{8 i}$, with 1-bromo-3-iodo-5-isopropylbenzene as starting material, yield $6 \% .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 9.10(\mathrm{~s}, 1 \mathrm{H}), 8.30-8.21(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 6 \mathrm{H}$), $1.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.87$, $150.66,146.33,144.55,142.30,141.44,138.85,134.64,132.07,131.64,131.38$, $130.09,129.69,129.45,128.86,128.62,128.25,127.85,127.13,126.82,125.85$, 125.10, 123.48, 122.88, 121.04, 117.12, 116.47, 34.32, 26.48, 24.08, 15.58. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 529.2209; found 529.2211. HPLC purity $=$ 99.55%, Rt 11.40 min .

1-bromo-3-iodo-5-isopropylbenzene

a. To a solution of 2-bromo-4-isopropylaniline ($10 \mathrm{~g}, 46.72 \mathrm{mmol}, 1.0 \mathrm{eq}$) in DCM $(66.6 \mathrm{~mL}) / \mathrm{MeOH}(26.65 \mathrm{ml})$ was added $\mathrm{CaCO}_{3}(8.13 \mathrm{~g}, 81.30 \mathrm{mmol}, 1.74 \mathrm{eq})$ and benzyltrimethylammonium dichloroiodate ($21.77 \mathrm{~g}, 2.60 \mathrm{mmol}, 1.34 \mathrm{eq}$). The mixture was stirred at reflux for 3 h then cooled to ambient temperature, filtered. The filtration was concentrated under vacuum. Purification by column chromatography (PE/EA) through silica gel afforded the desired product 2-bromo-6-iodo-4-isopropylaniline (5.0 g , yield: 31%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H})$, 4.43 (brs, 2H), 2.69-2.78 (m, 1H), 1.18 (d, $J=7 \mathrm{~Hz}, 6 \mathrm{H}$).
b. To a solution of 2-bromo-6-iodo-4-isopropylaniline ($5.0 \mathrm{~g}, 14.83 \mathrm{mmol}, 1.0 \mathrm{eq}$) in toluene (7.8 mL) and $\mathrm{EtOH}\left(23.6 \mathrm{~mL}\right.$) was slowly added conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(2.2 \mathrm{ml})$ and
$\mathrm{NaNO}_{2}(2.23 \mathrm{~g}, 32.63 \mathrm{mmol}, 2.2 \mathrm{eq})$. The mixture was stirred at reflux for 1.5 h . The solvent was evaporated. The residue was dissolved in EA, then washed with water. The organic layer was concentrated under vacuum. Purification by column chromatography (PE/EA) through silica gel afforded the desired product 1-bromo-3-iodo-5-isopropylbenzene (2.31 g , yield: 48%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}$ $=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.

3'-(tert-butyl)-6-ethyl-5'-(imidazo[1,2-a]pyrazin-3-yl)-N-(3-(trifluoromethyl)phen yl)-[1,1'-biphenyl]-3-carboxamide (80)

Compound $\mathbf{8 0}$ was prepared following similar procedure of $\mathbf{8 i}$ using1-bromo-3-(tert-butyl)-5-iodobenzene as starting material, yield $62 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.10(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 2 \mathrm{H}), 7.91-7.87(\mathrm{~m}, 5 \mathrm{H}), 7.81(\mathrm{~s}$, $1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 2 . .69$ (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 166.08,153.15,146.57,144.72,142.16,141.85,141.54,139.04,134.79$, 132.27, 132.06, 131.80, 131.54, 131.29, 130.28, 129.88, 129.68, 129.08, 127.77, 127.54, 125.74, 125.23, 124.24, 123.70, 13.06, 121.25, 117.30, 116.62, 35.35, 31.63, 26.69, 15.83. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 543.2366; found 543.2364 . HPLC purity $=99.90 \%$, Rt 14.22 min .

1-bromo-3-(tert-butyl)-5-iodobenzene

n -BuLi (1.6 M THF solution, $11.77 \mathrm{~mL}, 18.83 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added to the solution of 1,3-dibromo-5-(tert-butyl)benzene ($5.0 \mathrm{~g}, 17.12 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dry THF $(142 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 1 h , then a solution of 1,2-diiodoethane ($5.85 \mathrm{~g}, 20.54 \mathrm{mmol}, 1.2 \mathrm{eq}$) in dry THF (7.0 ml) was slowly added to the mixture. The temperature was allowed to rise to $-45^{\circ} \mathrm{C}$ in 4.5 h . Then, the cool bath was removed, and the mixture was stirred at room temperature for 2.5 h .

After that, the reaction was quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution, extracted with EA, washed with water and sat. NaCl aqueous solution. The organic layer was concentrated under vacuum. Purification by column chromatography (PE/EA) through silica gel afforded the desired product 1-bromo-3-iodo-5-isopropylbenzene (2.15 g , yield: 37%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H})$, 7.46 ($\mathrm{s}, 1 \mathrm{H}$), 1.28 ($\mathrm{s}, 9 \mathrm{H}$).

6-ethyl-3'-(imidazo[1,2-a]pyrazin-3-yl)-5'-methoxy- N -(3-(trifluoromethyl)phenyl)

-[1,1'-biphenyl]-3-carboxamide (8p)

Compound $\mathbf{8 p}$ was prepared following similar procedure of $\mathbf{8 i}$, yield $12 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.10(\mathrm{~s}, 1 \mathrm{H}), 8.29-8.26(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.86$ (m, 4H), 7.79 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-$ $7.09(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=2.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.85$, $160.34,146.21,144.50,143.70,141.41,141.04,138.91,134.69,132.06,131.61$, $131.35,130.14,129.67,129.46,128.96,128.69,127.05,126.71,125.04,123.51$, $122.88,121.04,120.67,117.15,116.57,115.30,112.68,55.70,26.42,15.56$. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 517.1846; found 517.1847. HPLC purity $=$ 99.85%, Rt 8.09 min .

3'-cyano-6-ethyl-5'-(imidazo[1,2-a]pyrazin-3-yl)-N-(3-(trifluoromethyl)phenyl)-[1 ,1'-biphenyl]-3-carboxamide (8q)

Compound $\mathbf{8 p}$ was prepared following similar procedure of $\mathbf{8 i}$ using3-bromo-5-iodobenzonitrile as starting material, yield 20%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta(\mathrm{ppm}) 9.21(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=$
$4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.90(\mathrm{~m}, 4 \mathrm{H}), 7.82-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 165.16, 146.17, 145.12, $143.82,141.93,139.07,138.49,135.63,132.93,132.37,131.83,131.57,130.92$, $129.84,128.94,127.41,125.02,124.45,123.47,121.43,117.82,117.11,116.08$, 114.34, 26.43, 15.46. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 512.1692; found 512.1693. HPLC purity $=99.44 \%$, Rt 6.61 min .

3-bromo-5-iodobenzonitrile

3-bromo-5-iodobenzoic acid ($5.82 \mathrm{~g}, 17.80 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in SOCl_{2} $(25 \mathrm{~mL})$. The resulting mixture was stirred at $81^{\circ} \mathrm{C}$ for 2 h , then concentrated. The residual liquid was poured into ammonium hydroxide solution $(\sim 28 \%, 100 \mathrm{~mL})$ and stirred at room temperature for 3 h . After that, the reaction mixture was filtrated, and the filter cake was dried under vacuum. Then, the dried solid was dissolved in SOCl_{2} $(25 \mathrm{~mL})$, and the resulting mixture was stirred under reflux for 18 h . After that, the reaction mixture was concentrated, and the residue was dissolved in EA and washed with sat. sodium bicarbonate aqueous solution. The organic layer was concentrated under vacuum. Purification by column chromatography (PE/EA) through silica gel afforded the desired product 1-bromo-3-iodo-5-isopropylbenzene (4.25 g , yield: 77 \%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H})$.

6-ethyl-3'-fluoro-5'-(imidazo[1,2-a]pyrazin-3-yl)-N-(3-(trifluoromethyl)phenyl)-[

1,1'-biphenyl]-3-carboxamide (8r)

Compound $\mathbf{8 r}$ was prepared following similar procedure of $\mathbf{8 i}$, yield 79%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.15(\mathrm{~d}, ~ J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.12(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 165.43,163.88,161.89,146.05,144.63,144.49,144.42$, $141.51,139.88,138.57,134.98,132.10,131.55,131.29,130.37,129.79,129.72$, 129.61, 129.47, 128.61, 127.09, 125.47, 124.88, 124.10, 123.36, 122.72, 121.07, 117.54, 116.98, 116.95, 116.87, 116.70, 113.59, 113.41, 26.25, 15.33. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 505.1646; found 505.1649. HPLC purity $=99.98 \%$, Rt 12.9 min.

3'-chloro-6-ethyl-5'-(imidazo[1,2-a]pyrazin-3-yl)-N-(3-(trifluoromethyl)phenyl)-[

 1,1'-biphenyl]-3-carboxamide (8s)

Compound $\mathbf{8 s}$ was prepared following similar procedure of $\mathbf{8 i}$, yield 15%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.15(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.13(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 2 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.46$ (m, 2H), 7.43-7.39 (m, 3H), $2.70(\mathrm{q}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.58$, $146.15,144.71,144.00,141.60,139.77,138.72,135.56,135.10,132.23,131.52$, 131.37, 131.07, 130.50, 129.92, 129.39, 128.78, 127.33, 126.58, 125.40, 125.01, 123.51, 122.85, 121.16, 117.14, 116.34, 26.38, 15.44. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 521.1351; found 521.1347. HPLC purity= 99.71%, Rt 9.9 min.

Compounds $\mathbf{8 t - 8 w}$ were synthesize according to procedures for compound $\mathbf{8 k}$ with corresponding substituted aniline.

6-ethyl- N-(2-fluoro-3-(trifluoromethyl)phenyl)-3'-(imidazo[1,2-a]pyrazin-3-yl)-5' -methyl-[1,1'-biphenyl]-3-carboxamide (8t)

Compound $\mathbf{8 t}$ was prepared following similar procedure of $\mathbf{8 k}$, yield 71%. ${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.14(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ (dd, $J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}$, 1H), 7.77 (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}$, $3 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.41,146.74,144.68,142.13,141.53,139.67$, $134.80,131.63,130.71,130.10,129.52,128.91,128.13,127.72,127.60,126.85$, 126.67, 125.81, 125.62, 124.64, 121.58, 120.96, 116.49, 26.47, 21.63, 15.48. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 519.1803; found 519.1811. HPLC purity $=$ 97.31%, Rt 8.03 min .

6-ethyl- N-(4-fluoro-3-(trifluoromethyl)phenyl)-3'-(imidazo[1,2-a]pyrazin-3-yl)-5' -methyl-[1,1'-biphenyl]-3-carboxamide (8u)

Compound $\mathbf{8 t}$ was prepared following similar procedure of $\mathbf{8 k}$, yield $40 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.08(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=4.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.82(\mathrm{~m}, 5 \mathrm{H}), 7.77(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{q}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 165.94, 157.15, $155.13,146.33,144.42,142.25,141.25,139.66,134.54,131.77$, 130.74, 130.07, 129.40, 128.85, 127.69, 127.45, 126.94, 125.84, 125.39, 123.50, 121.33, 119.22, 117.56, 117.39, 116.50, 26.41, 21.59, 15.47. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 519.1803; found 519.1798. HPLC purity $=97.99 \%$, Rt 9.25 min.

6-ethyl- N-(3-fluoro-5-(trifluoromethyl)phenyl)-3'-(imidazo[1,2-a]pyrazin-3-yl)-5' -methyl-[1,1'-biphenyl]-3-carboxamide (8v)

Compound $\mathbf{8 t}$ was prepared following similar procedure of $\mathbf{8 k}$, yield $61 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.09(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=4.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.85$ (m, 4H), 7.76 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.58 ($\mathrm{s}, 1 \mathrm{H}), 7.48$ (d, $J=8.1$ Hz, 1H), 7.39 (s, 1H), 7.26 (s, 1H), 7.24 (s, 1H), 7.09 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.51(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.99,163.87,161.90,146.52,144.42,142.20,141.25,140.79,139.69$, $134.52,131.68,130.73,130.09,129.47,128.86,127.68,127.48,127.01,125.34$, $116.49,112.55,110.96,110.75,108.32,108.21,107.83,26.43,21.61,15.47$. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 519.1803; found 519.1816. HPLC purity $=$ 98.07%, Rt 11.37 min .

6-ethyl- N-(2-fluoro-5-(trifluoromethyl)phenyl)-3'-(imidazo[1,2-a]pyrazin-3-yl)-5' -methyl-[1,1'-biphenyl]-3-carboxamide (8w)

Compound $\mathbf{8 t}$ was prepared following similar procedure of $\mathbf{8 k}$, yield $58 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.14(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{bs}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.26-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.36,155.25,153.28,146.78,144.69,142.13$, $141.53,139.70$, $134.81,131.56,130.74,130.12,129.54,128.90,128.00,127.62$, $127.33,126.86,126.62,125.62,124.79,122.62,121.73,119.47,116.50,115.52$, 115.36, 26.48, 21.64, 15.50. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 519.1803; found 519.1815 . HPLC purity $=97.85 \%$, Rt 8.12 min .

Synthesis of compound 8m

3-bromo-5-iodobenzaldehyde (18)

a. To a solution of 3-bromo-5-iodobenzoic acid ($10 \mathrm{~g}, 30.59 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dry THF under Ar at $0^{\circ} \mathrm{C}$ was added $1 \mathrm{M} \mathrm{BH}_{3} \cdot$ THF solution ($92 \mathrm{ml}, 92 \mathrm{mmol}, 3.0 \mathrm{eq}$). After addition, the ice bath was removed. The mixture was stirred at room temperature overnight. The reaction was quenched by added saturated sodium bicarbonate aqueous solution dropwise. The mixture was extracted with EA. The organic lay was concentrated. Purification by column chromatography (PE/EA) through silica gel afforded the (3-bromo-5-iodophenyl)methanol 17 (6.99 g , yield: 72%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H})$, 4.64 (s, 2H).
b. To a solution of (3-bromo-5-iodophenyl)methanol (17) ($1.0 \mathrm{~g}, 3.19 \mathrm{mmol}, 1.0 \mathrm{eq}$) in DCM was added Dess-Martin periodinane ($1.63 \mathrm{~g}, 3.83 \mathrm{mmol}, 1.2 \mathrm{eq}$) in portions. After addition, the ice bath was removed. The mixture was stirred at rt for 1 h , and then filtered. The filtrate was concentrated. Purification by column chromatography (PE/EA) through silica gel afforded the 3-bromo-5-iodobenzaldehyde (18) 0.8993 g , yield: 89%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{t}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.10(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$. methyl 3'-bromo-6-ethyl-5'-formyl-[1,1'-biphenyl]-3-carboxylate (19)

Compound 19 was prepared following similar procedure of $13 i$, yield 64%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 10.00(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (s, 1H), $7.75(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
methyl 3'-bromo-6-ethyl-5'-vinyl-[1,1'-biphenyl]-3-carboxylate (20)

To a solution of methyltriphenylphosphonium bromide ($0.95 \mathrm{~g}, 2.65 \mathrm{mmol}, 3.0 \mathrm{eq}$) in dry THF (12 mL) under Ar at $-20^{\circ} \mathrm{C}$ was added $\mathrm{n}-\mathrm{BuLi}$ ($2.66 \mathrm{mmol}, 2.4 \mathrm{M}, 3.0 \mathrm{eq}$) dropwise. The mixture was stirred at this temperature for 0.5 h . Then a solution of methyl 3'-bromo-6-ethyl-5'-formyl-[1,1'-biphenyl]-3-carboxylate (19) (0.31 g , $0.88 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry THF $(1.6 \mathrm{~mL})$ was added to the reaction mixture dropwise. After addition, the cool bath was removed, and the mixture was stirred at rt overnight. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to the mixture dropwise. The mixture was extracted with EA. The organic layer was concentrated. Purification by column chromatography (PE/EA) through silica gel afforded methyl 3'-bromo-6-ethyl-5'-vinyl-[1,1'-biphenyl]-3-carboxylate (20) (0.1530g, yield: 50\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.98(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.68$ (dd, $J=17.6 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.63(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Methyl6-ethyl-3'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5'-vinyl-[1,1'-biph enyl]-3-carboxylate (21)

The title compound was synthesized following the procedure of compound 14a substituting 13a with methyl 3'-bromo-6-ethyl-5'-vinyl-[1,1'-biphenyl]-3-carboxylate (19).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.96(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H})$, $7.84(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=17.6$ $\mathrm{Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$,
$2.63(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 12 \mathrm{H}), 1.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Methyl 6-ethyl-3'-(imidazo[1,2-a]pyrazin-3-yl)-5'-vinyl-[1,1'-biphenyl]-3carboxylate (22)

The title compound was synthesized following the procedure of compound 15a substituting 14a with methyl 6-ethyl-3'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5'-vinyl-[1,1'-biphenyl]-3-car boxylate (21). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.16$ (s, 1H), 8.28 (s, 1H), 8.01 (dd, $J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.94-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.45$ (m, 2H), $7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=17.6 \mathrm{~Hz}, 10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{q}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Methyl 3',6-diethyl-5'-(imidazo[1,2-a]pyrazin-3-yl)-[1,1'-biphenyl]-3-carboxylate

 (23)

To
a
solution of
methyl
6-ethyl-3'-(imidazo[1,2-a]pyrazin-3-yl)-5'-vinyl-[1,1'-biphenyl]-3-carboxylate $\quad(0.9 \mathrm{~g}$, $2.34 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{MeOH}(8 \mathrm{ml})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(0.090 \mathrm{~g})$. The mixture was degassed and purged with hydrogen and stirred at rt overnight. The solution was filtered and concentrated. Purification by column chromatography (PE/EA) through silica gel afforded the intermediate 23 (0.456 g , yield: 51%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta(\mathrm{ppm}) 9.30(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.99(\mathrm{~m}, 3 \mathrm{H}), 7.92(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H})$.

3',6-diethyl-5'-(imidazo[1,2-a]pyrazin-3-yl)-N-(3-(trifluoromethyl)phenyl)-[1,1'-b iphenyl]-3-carboxamide (8 m)

Compound $\mathbf{8 m}$ was prepared following similar procedure of $\mathbf{8 a}$, yield 8%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.10(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.23(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.79(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}$, 2H), $7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{q}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.72,146.18,145.85,144.40,142.20,141.26,141.24$, $138.73,134.51,131.93,131.52,131.27,129.96,129.56,129.49,129.30,128.73$, 127.73, 126.91, 126.71, 126.29, 125.59, 124.93, 1243.35, 122.77, 120.93, 117.08, 116.37, 28.83, 26.33, 15.46, 15.40. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 515.2053; found 515.2058 . HPLC purity $=97.85 \%$, Rt 11.10 min .

Table S1 The results of the selectivity profiling study of compound $\mathbf{8 v}$

Gene Symbol	\%Ctrr @ 200nM
AAK1	100
ABL1(E255K)-phosphorylated	98
ABL1(F3171)-nonphosphorylated	72
ABL1(F3171)-phosphorylated	100
ABL1(F317L)-nonphosphorylated	73
ABL1(F317L)-phosphorylated	56
ABL1(H396P)-nonphosphorylated	95
ABL1(H396P)-phosphorylated	84
ABL1(M351T)-phosphorylated	74
ABL1(Q252H)-nonphosphorylated	85
ABL1(Q252H)-phosphorylated	79
ABL1(T3151)-nonphosphorylated	87
ABL1(T3151)-phosphorylated	62
ABL1(Y253F)-phosphorylated	79
ABL1-nonphosphorylated	94
ABL1-phosphorylated	82
ABL2	97
ACVR1	69
ACVR1B	80
ACVR2A	100
ACVR2B	100
ACVRL1	73
ADCK3	65
ADCK4	58
AKT1	69
AKT2	74
AKT3	100
ALK	91
ALK(C1156Y)	89
ALK(L1196M)	97
AMPK-alpha 1	95
AMPK-alpha2	89
ANKK1	91
ARK5	89
ASK1	95
ASK2	82
AURKA	79
AURKB	97
AURKC	95
AXL	77
BIKE	100
BLK	91
BMPR1A	78
BMPR1B	80
BMPR2	99
BMX	58
BRAF	77
BRAF(V600E)	60

Gene Symbol	\%Ctr @ 200nM
BRK	80
BRSK1	75
BRSK2	94
BTK	99
BUB1	99
CAMK1	77
CAMK1B	91
CAMK1D	0.9
CAMK1G	93
CAMK2A	90
CAMK2B	93
CAMK2D	83
CAMK2G	97
CAMK4	78
CAMKK1	95
CAMKK2	88
CASK	77
CDC2L1	94
CDC2L2	92
CDC2L5	100
CDK11	84
CDK2	71
CDK3	92
CDK4	100
CDK4-cyclinD1	32
CDK4-cyclinD3	48
CDK5	74
CDK7	72
CDK8	82
CDK9	93
CDKL1	86
CDKL2	83
CDKL3	90
CDKL5	84
CHEK1	74
CHEK2	100
CIT	93
CLK1	71
CLK2	92
CLK3	73
CLK4	18
CSF1R	90
CSF1R-autoinhibited	93
CSK	91
CSNK1A1	92
CSNK1A1L	72
CSNK1D	63
CSNK1G1	97

Gene Symbol	\%Ctrl @ 200nM
CSNK1G2	95
CSNK1G3	72
CSNK2A1	68
CSNK2A2	67
CTK	70
DAPK1	100
DAPK2	93
DAPK3	98
DCAMKL1	100
DCAMKL2	86
DCAMKL3	76
DDR1	0
DDR2	15
DLK	100
DMPK	96
DMPK2	75
DRAK1	100
DRAK2	99
DYRK1A	87
DYRK1B	81
DYRK2	73
EGFR	89
EGFR(E746-A750del)	75
EGFR(G719C)	96
EGFR(G719S)	96
EGFR(L747-E749del, A750P)	82
EGFR(L747-S752del, P753S)	79
EGFR(L747-T751del,Sins)	99
EGFR(L858R)	83
EGFR(L858R,T790M)	100
EGFR(L861Q)	93
EGFR(S752-1759del)	92
EGFR(T790M)	95
EIF2AK1	90
EPHA1	71
EPHA2	60
EPHA3	80
EPHA4	71
EPHA5	71
EPHA6	67
EPHA7	99
EPHA8	75
EPHB1	100
EPHB2	92
EPHB3	75
EPHB4	65
EPHB6	11
ERBB2	91
ERBB3	99

Gene Symbol	\%Ctrl @ 200nM
ERBB4	100
ERK1	97
ERK2	67
ERK3	76
ERK4	78
ERK5	94
ERK8	81
ERN1	75
FAK	79
FER	79
FES	84
FGFR1	93
FGFR2	88
FGFR3	70
FGFR3(G697C)	69
FGFR4	82
FGR	72
FLT1	97
FLT3	86
FLT3(D835H)	89
FLT3(D835V)	92
FLT3(D835Y)	97
FLT3(ITD)	100
FLT3(ITD,D835V)	100
FLT3(ITD,F691L)	100
FLT3(K663Q)	92
FLT3(N8411)	78
FLT3(R834Q)	95
FLT3-autoinhibited	94
FLT4	92
FRK	69
FYN	76
GAK	95
GCN2(Kin.Dom.2,S808G)	87
GRK1	94
GRK2	73
GRK3	96
GRK4	72
GRK7	73
GSK3A	96
GSK3B	89
HASPIN	86
HCK	99
HIPK1	96
HIPK2	100
HIPK3	100
HIPK4	74
HPK1	97
HUNK	98

Gene Symbol	\%Ctrl @ 200nM	Gene Symbol	\%Ctri @ 200nM
ICK	98	MAPKAPK2	70
IGF1R	93	MAPKAPK5	70
IKK-alpha	100	MARK1	99
IKK-beta	98	MARK2	95
IKK-epsilon	100	MARK3	62
INSR	90	MARK4	97
INSRR	87	MAST1	98
IRAK1	100	MEK1	90
IRAK3	95	MEK2	99
IRAK4	97	MEK3	96
ITK	100	MEK4	96
JAK1(JH1domain-catalytic)	87	MEK5	100
JAK1(JH2domain-pseudokinase)	100	MEK6	85
JAK2(JH1domain-catalytic)	100	MELK	87
JAK3(JH1domain-catalytic)	100	MERTK	78
JNK1	97	MET	100
JNK2	79	MET(M1250T)	73
JNK3	96	MET(Y1235D)	74
KIT	41	MINK	95
KIT(A829P)	100	MKK7	100
KIT(D816H)	100	MKNK1	100
KIT(D816V)	73	MKNK2	96
KIT(L576P)	57	MLCK	98
KIT(V559D)	39	MLK1	100
KIT(V559D,T670I)	93	MLK2	74
KIT(V559D,V654A)	100	MLK3	84
KIT-autoinhibited	97	MRCKA	76
LATS1	98	MRCKB	82
LATS2	100	MST1	89
LCK	95	MST1R	69
LIMK1	64	MST2	95
LIMK2	76	MST3	93
LKB1	80	MST4	84
LOK	58	MTOR	100
LRRK2	100	MUSK	83
LRRK2(G2019S)	100	MYLK	92
LTK	93	MYLK2	96
LYN	95	MYLK4	94
LZK	84	MYO3A	87
MAK	100	MYO3B	90
MAP3K1	100	NDR1	90
MAP3K15	76	NDR2	96
MAP3K2	100	NEK1	92
MAP3K3	99	NEK10	98
MAP3K4	83	NEK11	100
MAP4K2	99	NEK2	94
MAP4K3	82	NEK3	98
MAP4K4	100	NEK4	76
MAP4K5	100	NEK5	93

Gene Symbol	\%Ctrl @ 200nM
NEK6	78
NEK7	79
NEK9	77
NIK	74
NIM1	96
NLK	49
OSR1	92
p38-alpha	87
p38-beta	91
p38-delta	56
p38-gamma	100
PAK1	86
PAK2	82
PAK3	70
PAK4	100
PAK6	87
PAK7	89
PCTK1	94
PCTK2	71
PCTK3	94
PDGFRA	98
PDGFRB	69
PDPK1	97
PFCDPK1(P.falciparum)	76
PFPK5(P.falciparum)	65
PFTAIRE2	68
PFTK1	89
PHKG1	56
PHKG2	97
PIK3C2B	100
PIK3C2G	85
PIK3CA	100
PIK3CA(C420R)	97
PIK3CA(E542K)	84
PIK3CA(E545A)	97
PIK3CA(E545K)	88
PIK3CA(H1047L)	85
PIK3CA(H1047Y)	94
PIK3CA(1800L)	78
PIK3CA(M10431)	94
PIK3CA(Q546K)	89
PIK3CB	100
PIK3CD	81
PIK3CG	100
PIK4CB	100
PIKFYVE	100
PIM1	94
PIM2	74
P1M3	87

Gene Symbol	\%Ctrl @ 200nM
PIP5K1A	89
PIP5K1C	86
PIP5K2B	98
PIP5K2C	99
PKAC-alpha	88
PKAC-beta	90
PKMYT1	76
PKN1	100
PKN2	91
PKNB(M.tuberculosis)	91
PLK1	97
PLK2	93
PLK3	100
PLK4	89
PRKCD	94
PRKCE	100
PRKCH	55
PRKCI	54
PRKCQ	75
PRKD1	74
PRKD2	96
PRKD3	96
PRKG1	98
PRKG2	87
PRKR	89
PRKX	44
PRP4	75
PYK2	57
QSK	81
RAF1	53
RET	83
RET(M918T)	81
RET(V804L)	95
RET(V804M)	96
RIOK1	100
RIOK2	64
RIOK3	99
RIPK1	97
RIPK2	79
RIPK4	99
RIPK5	89
ROCK1	95
ROCK2	91
ROS1	75
RPS6KA4(Kin.Dom.1-N-terminal)	84
RPS6KA4(Kin.Dom.2-C-terminal)	72
RPS6KA5(Kin.Dom.1-N-terminal)	71
RPS6KA5(Kin.Dom.2-C-terminal)	93
RSK1(Kin.Dom.1-N-terminal)	100

Gene Symbol	\%Ctri@ 200nM		
RSK1(Kin.Dom.2-C-terminal)	92		
RSK2(Kin.Dom.1-N-terminal)	100		
RSK2(Kin.Dom.2-C-terminal)	89		
RSK3(Kin.Dom.1-N-terminal)	72		
RSK3(Kin.Dom.2-C-terminal)	80		
RSK4(Kin.Dom.1-N-terminal)	100		
RSK4(Kin.Dom.2-C-terminal)	100		
S6K1	99		
SBK1	100		
SGK	80		
SgK110	82		
SGK2	99		
SGK3	87		
SIK	85		
SIK2	82		
SLK	99		
SNARK	93		
SNRK	84		
SRC	90		
SRMS	100	Target	D2454
SRPK1	91	Gene Symbol	\%Ctrl @ 200nM
SRPK2	96	TRPM6	88
SRPK3	73	TSSK1B	67
STK16	100	TSSK3	97
STK33	92	TTK	0
STK35	81	TXK	91
STK36	96	TYK2(JH1domain-catalytic)	100
STK39	97	TYK2(JH2domain-pseudokinase)	97
SYK	93	TYRO3	84
TAK1	98	ULK1	95
TAOK1	100	ULK2	98
TAOK2	100	ULK3	98
TAOK3	100	VEGFR2	91
TBK1	91	VPS34	78
TEC	100	VRK2	94
TESK1	77	WEE1	100
TGFBR1	71	WEE2	69
TGFBR2	78	WNK1	99
TIE1	76	WNK2	97
TIE2	83	WNK3	98
TLK1	93	WNK4	87
TLK2	88	YANK1	73
TNIK	93	YANK2	90
TNK1	70	YANK3	65
TNK2	81	YES	86
TNNI3K	51	YSK1	81
TRKA	94	YSK4	79
TRKB	100	ZAK	70
TRKC	90	ZAP70	84

Table S2. S-score table for $\mathbf{8 v}$

Compd	Selectivity Score Type	Number of hits	Number of Non-Muta nt Kinases	Screening Concentrat ion ($\mathbf{n M}$)	Selectivity Score
8v	S(35)	7	403	200	0.017
	S(10)	4	403	200	0.01
	S(1)	3	403	200	0.007

Active-site dependent competition binding assay-Kinome ${ }^{\text {scan }}$ Screening
The binding affinity of $\mathbf{8 v}$ with DDR1 was analyzed by KINOME scan system conducted by Ambit Bioscience (San Diego, USA). Briefly, kinases were tagged with DNA. The ligands were biotinylated and immobilized to streptavidin-coated beads. The binding reactions were assembled by incubating DNA-tagged kinases, immobilized ligands, and test compounds in binding reactions (20% SeaBlock, $0.17 \times$ PBS, 0.05% tween-20, 6 mM DTT) for 1.0 h at room temperature. The affinity beads were washed with washing buffer ($1 \times$ PBS, 0.05% Tween-20) first and then elution buffer ($1 \times$ PBS, 0.05% Tween $20,0.5 \mu \mathrm{M}$ nonbiotinylated affinity ligands). The kinase concentration in the eluate was determined by quantitative PCR of the DNA tagged to the kinase. The ability of the test compound to bind to the kinase was evaluated with percent control (\%) as (test compound signal - positive control signal)/negative control signal - positive control signal) $\times 100 \%$. Negative control is DMSO control (100% ctrl) and positive control is control compound ($0 \% \mathrm{ctrl}$).

In vitro kinase assay

The functional assays of compounds on the kinase activities of c -Kit and Abl were determined using the FRET-based Z'-Lyte assay system according to the manufacturer's instructions (Invitrogen, USA). Tyrosine 2 peptide was used as Abl substrate, and Ser/Thr 6 peptide was used as the substrate for c-Kit. The reactions were carried out in 384 -well plates in a $10 \mu \mathrm{~L}$ of reaction volume with appropriate amount of kinases in 50 mM HEPES (pH 7.5), $10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ EGTA, and
0.01% Brij-35. The reactions were incubated 1 h at room temperature in the presence of $2 \mu \mathrm{M}$ of substrate with 10 mM of ATP (for Abll assays) or $300 \mu \mathrm{M}$ of ATP (kit assay) and in the presence of various concentrations of the compounds. The development reagent was then added for a further 2 h room temperature incubation followed by the addition of stop solution. Fluorescence signal ratio of 445 nm (Coumarin)/520 nm (fluorescein) was examined on a EnVision Multilabel Reader (Perkin-Elmer, Inc.).

The effects of compounds on the kinases DDR1 and DDR2 were assessed by using a LanthaScreen Eu kinase activity assay technology (Invitrogen, USA). Kinase reactions were performed in a $10 \mu \mathrm{~L}$ solution in low-volume 384 -well plates. The kinase reaction buffer consisted of 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 10 mM MgCl 2 , and 1 mM EGTA; the concentration of Fluorescein-Poly GAT substrate (Invitrogen, USA) in the assay was 100 nM . Kinase reactions were initiated by the addition of 100 nM ATP in the presence of serially diluted compounds. The reactions were allowed to proceed for 1 h at room temperature before a $10 \mu \mathrm{~L}$ preparation of EDTA (20 mM) and Eu-labeled antibody (4 nM) in TR-FRET dilution buffer were added. The final concentration of antibody in the assay well was 2 nM , and the final concentration of EDTA was 10 mM . The plate was allowed to incubate at room temperature for one more hour before the TR-FRET emission ratios of $665 \mathrm{~nm} / 340$ nm were acquired on a PerkinElmer EnVision multilabel reader (Perkin-Elmer, Inc.). Data analysis and curve fitting were performed using GraphPad Prism4 software.

Colony formation assay

Cells were cultured in 6-well plates (1000 cell /well) for overnight and medium were replaced with the new one containing 8 v of designated concentrations, and the plates were incubated at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$ for another 10 days. On the last day, the medium was removed. After being washed with 1X PBS and fixed with methanol, the colonies were stained with 0.25% crystal violet solution for 1 hr . at room temperature. The images were acquired with a scanner and colony numbers were counted after washing and air-drying.

H1299 Tumor cells were plated into 96-well plates (1500~3000/well) in complete medium. After incubation overnight, cells were exposed to various concentrations ($0.0032 \sim 50 \mu \mathrm{M})$ of 8 v for further 72 hrs . Cell proliferation was evaluated by Cell Counting Kit 8(CCK-8, CK04, Dojindo laboratories, Japan). IC_{50} values were calculated by concentration-response cure fitting using GraphPad Prism 5.0 software. Each IC_{50} value was expressed as mean $\pm \mathrm{SD}$.

Wound healing assay

Cells were seeded in a 6 -well plate and allowed to grow to nearly 100% confluence in culture medium. Subsequently, a cell-free line was manually created by scratching the confluent cell monolayers with a $200-\mu \mathrm{l}$ pipette tip. The wounded cell monolayers were washed three times with PBS and incubated in RPMI-1640 with 10% FBS with different concentration of 8 v for 24 h . Three scratched fields were randomly chosen and the images were captured by bright-field microscope (CKX41; Olympus). The percentage of wound closure was measured using Adobe Photoshop 7.0.1 (Adobe Systems Inc., San Jose, CA). The experiment was performed three times and in triplicate.

Transwell assay

Cell migration assays were evaluated in Transwell chambers (353097, 353504; Corning Costar). Cell invasion assays were evaluated in Magrigel invasion chambers (354480; Corning Costar). $\quad 0.2 \sim 1 \times 10^{5}$ tumor cells were plated in the top chamber with medium without FBS. Culture medium containing $8 \mathrm{v}(0.625 \sim 5 \mu \mathrm{~mol} / \mathrm{L})$ was added to the bottom chamber. After incubation for 24 hrs at $37^{\circ} \mathrm{C}$, the cells were fixed in 100% methanol and stained with 0.25% crystal violet, then cotton swabs were used to remove the cells that had not migrated from the top surface of the filters. Migration cells were quantitated by counting cells in six randomly selected fields on each filter under a microscope at 200 magnification and graphed as the mean of three independent experiments.

Computational study

All the procedure was performed in Maestro 9.9 (Schrodinger LLC). The crystal structures of DDR1 protein with their corresponding inhibitors were taken from the

PDB (4BKJ). The protein was processed using the "Protein Preparation Wizard" workflow in Maestro 9.9 (Schrodinger LLC) to add bond orders and to add hydrogens. All heteroatom residues and crystal water molecules beyond $5 \AA$ from het group were removed. Inhibitors 8 a and 8 c were built in the LigPrep module using the OPLS-2005 force field. Glide module was used as the docking program. The grid-enclosing box was placed on the centroid of the binding ligand in the optimized crystal structure as described above, and a scaling factor of 1.0 was set to van der Waals (VDW) radius of those receptor atoms with partial atomic charges of less than 0.25 . Standard precision (SP) approach of Glide was adopted to dock 8a and 8c into DDR1 with the default parameters, and the top-ranking pose was selected for energy minimization using Prime MM-GBSA, under the solvation model of VSGB.

The ${ }^{\mathbf{1}} \mathbf{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{8 a - 8 w}$

$8 f$

$\begin{array}{lllllllllllllllllll}16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & -1 & -2\end{array}$

$8 i$

80

$\begin{aligned} & \text { current } \\ & \text { EAME } \\ & \text { EXPNO } \\ & \text { PROCNO } \end{aligned}$	Parameters DDR 340066 1
F2-Ac	1sition Paramet
Date_	20160311
Time	19.10
INSTRUM	
PROPHD	5 mm PABEO BE -
pulpro	
	${ }_{6}^{65536}$
SOLVENT	CDC13
Ds	
swh	10330.578 Bz
FIDRES	0.157632 Hz
${ }^{\text {a }}$ Q	3.1719425
RG	
Dw	48.400 u
DE	${ }^{6.50}$ u
TE	295.6 K
D1	1.00000000 sec
TDO	$1{ }^{1}$
${ }^{\text {LB }}$	
${ }^{\text {PC }}$	1.00
	1.0

8p


```
*i\infty
```


8t

な～～゚

