Supporting Information

Fluorescence "turn-on" Lectin Sensors Fabricated by Ligandassisted Labeling Probes for Detecting Protein-Glycoprotein Interactions

Pei-Jhen Li, ${ }^{\dagger}$ Mohammed Tarigue Anwar, ${ }^{\dagger}$ Chen-Yo Fan, ${ }^{\dagger}$ Duane S. Juang, ${ }^{\dagger}$ Hsin-Yi Lin, ${ }^{\star}$ Tsung-Che Chang, ${ }^{\dagger}$ Sachin Kisan Kawade, ${ }^{\dagger}$ Hsiang-Jung Chen, ${ }^{\dagger}$ Yu-Ju Chen, ${ }^{\dagger}$ Kui-Thong Tan, ${ }^{\dagger}$ Chun-Cheng Lin ${ }^{\dagger, \S, *}$

${ }^{\dagger}$ Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan \#nstitute of Chemistry, Academia Sinica, Taipei, Taiwan
${ }^{\text {§ }}$ Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan

E-mail: cclin66@mx.nthu.edu.tw
TEL: +886 35731287

Table of Contents

Materials and Methods 3
Cloning and Overexpression of Enzymes 4
Synthesis of Ligand-assisted imprinting probe. 6
Photo-labeling of RCA_{120} by LLP 1 31
Purification of LLP 1-RCA 120 32
Preparation of alkynated RCA_{120} 33
Determination of alkynylated RCA_{120} labeled site 34
Modification of alkynylated RCA_{120} by CuAAC 36
Photo-crosslink of 5-RCA 120 with OVA 37
Environmental sensitive detection of interaction between $6-\mathrm{RCA}_{120}$ and OVA 37
Random modification of RCA $_{120}$ by compound 7 38
Fluorescence images of glycan microarray 40
Cell culture 40
No-wash fluorescence imaging of surface interaction molecules on HeLa cell by 6-
RCA_{120} 41
Evaluating the fluorescence of merocyanine dye (acid form of 6) under different pH conditions. 42
Reference 44
NMR spectra 455

Materials and Methods

All solvents were dried and distilled by standard techniques. Dichloromethane (DCM), toluene, and acetonitrile (ACN) were distilled from calcium hydride under N_{2}. Tetrahydrofuran (THF) was distilled from sodium under N_{2} prior to use. The chemicals for the synthesis were all obtained from Acros Organics, Merck, Fluka, or SigmaAldrich and used without further purification unless otherwise noted. Bovine serum albumin (BSA, A9418), Ricinus communis agglutinin 120 (RCA120, L7886), ovalbumin (OVA, A5378), and monoclonal anti-biotin antibody conjugated with HRP (A0185) were purchased from Sigma-Aldrich. Protein Deglycosylation Mix II (P6044S) was purchased from New England Biolabs. Neuraminidase from Arthrobacter ureafaciens was purchased from Nacalai Tesque. LysoTracker ${ }^{\text {TM }}$ Green DND-26 was purchased from Thermo Fisher Scientific.

All reactions were carried out in oven-dried glassware $\left(104.0{ }^{\circ} \mathrm{C}\right)$ and performed under anhydrous conditions with N_{2} unless indicated otherwise. The reactions were monitored by analytical thin-layer chromatography (TLC) on Merck silica gel $60 \mathrm{~F}_{254}$ plates $(0.25 \mathrm{~mm})$. Detection was accomplished by examination under UV light (254 nm) and by staining with p-anisaldehyde, ninhydrin, cerium molybdate, or potassium permanganate staining solution. Silica gel column chromatography was performed using a forced flow of the indicated solvent on silica gel 60 (Merck). C18 reverse-phase silica column chromatography cartridges were purchased from Waters (SepPak Vac C18 cartridge $35 \mathrm{c} . \mathrm{c} . / 10 \mathrm{~g}, 55-105 \mu \mathrm{~m}$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded by Bruker AV-400, AV-600, Varian MR-400 or VNMRS-700 NMR spectrometers. Chemical shifts are expressed in ppm using residual $\mathrm{CDCl}_{3}(7.24 \mathrm{ppm}), \mathrm{CD}_{3} \mathrm{OD}(3.31$ ppm) as internal standard in ${ }^{1} \mathrm{H}$-NMR spectra. ${ }^{13} \mathrm{C}$-NMR spectra were recorded in either
$\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$ or $\mathrm{D}_{2} \mathrm{O}$ at a 100 MHz , using the central resonances of $\mathrm{CDCl}_{3}(77.0$ ppm) and $\mathrm{CD}_{3} \mathrm{OD}(49.0 \mathrm{ppm})$ as the internal references. Multiplicities are reported using the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, br $=$ broad. $J=$ coupling constant values are expressed in Hertz. High resolution mass spectra (HRMS) were recorded on Varian 901-FTMS. Fluorescence spectra were recorded using a TECAN Infinite M200Pro multimode plate reader. Fluorescence imaging was carried out using a laser scanning confocal microscope (LSM 700, Zeiss, Germany). For the Cy5 channel, images were taken using a 555 nm excitation laser with emission from 590 to 700 nm . For the Hoechst channel, a 405 nm laser with a SP490 emission filter. For LysoTracker ${ }^{\text {TM }}$ Green DND-26, images were taken using a 488 nm laser with a BP490-555 emission filter.

Cloning and Overexpression of Enzymes

Bacterial strains, plasmids, and materials: Chemical competent E. coli BL21(DE3) were purchased from Yeastern Biotechnology (Taipei, Taiwan). Vector plasmid pTXB1 and chitin bead were purchased from NEB (Ipswich, MA). Bicinchoninic acid (BCA) protein assay kit was obtained from Thermo (Waltham, MA).

Pd2,6ST was cloned and overexpressed as previously reported procedures. ${ }^{1}$ Gene encoded Pd2,6ST was cloned in pTXB1 and expressed in E. coli as a C-terminal intein fusion protein and purified by using the IMPACT ${ }^{\mathrm{TM}}$ system according to the instruction manual provided by the manufacturer (NEB).

Protein Overexpression for Pd2,6ST: The protein overexpression procedure is similarly as previous report. ${ }^{1}$ Positive plasmid was selected and subsequently transformed into E. coli BL21(DE3) chemical competent cells. The E. coli BL21 (DE3)
harboring the recombinant plasmid was grown in LB rich medium containing ampicillin $(100 \mu \mathrm{~g} / \mathrm{mL})$ at $37^{\circ} \mathrm{C}$ until the OD_{600} reached $0.5-0.8$. Protein expression was then induced by adding 0.5 mM of IPTG (isopropyl-1-thio- β-Dgalactopyranoside) followed by incubation at $16^{\circ} \mathrm{C}$ for $16-20 \mathrm{~h}$ with vigorous shaking at 200 rpm in a shaking incubator (Firstek S300R).

Protein Purification for Pd2,6ST: The protein purification procedure is similarly as previous report. ${ }^{1}$ Intein-fusioned target protein was purified from cell lysate using chitin bead. The cell lysate was collected and applied to a $6-\mathrm{mL}$ chitin bead column, then washed with column buffer. The resin was then quickly washed with 1 column volume of the same buffer containing 80 mM DTT, and the effluent was reloaded. The column was clamped at both ends, and the intein tag was cleaved on-column from the fusion protein by incubating the column at $4^{\circ} \mathrm{C}$ for 16 h . The purified protein was eluted using column buffer without DTT. The effluent was concentrated using a centrifugal filter device (Amicon Ultra, Millipore), added with glycerol as final concentration in 10\%, divided into aliquots, and stored at $-20^{\circ} \mathrm{C}$.

Synthesis of Ligand-assisted imprinting probe

Scheme S1. Synthesis of compound 17.

Compound 9

To a solution of 2-hydroxy-4-methylbenzoic acid $\mathbf{8}(2.00 \mathrm{~g}, 13.15 \mathrm{mmol})$ in dry MeOH $(26.0 \mathrm{~mL})$ was added thionyl chloride $(1.4 \mathrm{~mL}, 19.73 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , the reaction mixture was heated to reflux for 8 hours then cooled to room temperature. MeOH was removed under reduced pressure, and the resulting residue was diluted with ethyl acetate, washed with water ($\times 3$) and brine, and dried over MgSO_{4}. The organic solvent was removed in vacuo and the resulting crude brown oil was purified via silica gel column chromatography to yield compound $9(2.01 \mathrm{~g}, 11.84$ $\mathrm{mmol}, 90 \%$ yield) as a yellow oil. TLC (EtOAc:Hexanes, $1: 3 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{f}=0.75 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.68(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 ($\mathrm{s}, 3 \mathrm{H}$), 2.32 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,161.4$, 146.8, 129.5, 120.2, 117.5, 109.6, 51.9, 21.6; HRMS (ESI-APCI, m / z) calculated for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 167.0708$, found: 167.0704.

Compound 10

To a solution of compound $19(1.00 \mathrm{~g}, 6.02 \mathrm{mmol})$ in pyridine $(4.8 \mathrm{~mL})$ was added acetic anhydride ($3.10 \mathrm{~g}, 30.11 \mathrm{mmol}$). The reaction mixture was refluxed for 1 hour. The solvent was removed in vacuo and the resulting residue was diluted with ethyl acetate, then washed with $1 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(\times 3)$ and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to give the crude product. The crude product was purified by silica gel column chromatography to give compound 10 ($1.26 \mathrm{~g}, 6.00 \mathrm{mmol}, 99.7 \%$ yield) as a yellow oil. TLC (EtOAc:Hexanes, $1: 3 \mathrm{v} / \mathrm{v}): \mathrm{R}_{f}=0.38 ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, 2.37(s, 3H), $2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,164.6,150.5,145.0$, 131.5, 126.6, 124.1, 119.8, 51.8, 21.1, 20.7; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 231.0633$, found: 231.0637.

Compound 11

To a stirred mixture of compound $\mathbf{1 0}(300.0 \mathrm{mg}, 1.44 \mathrm{mmol})$ and NBS ($310.0 \mathrm{mg}, 1.73$ $\mathrm{mmol})$ in dry $\mathrm{ACN}(10.0 \mathrm{~mL}), \operatorname{AIBN}(1.0 \mathrm{mg}, 6 \mu \mathrm{~mol})$, and benzoyl peroxide $(12.0 \mathrm{mg}$, $5 \mu \mathrm{~mol}$) were added and the reaction mixture was refluxed for 3 hours. ACN was removed under reduced pressure and the resulting residue was diluted with ethyl acetate. The organic layer was washed with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{aq})}(\times 3)$ and brine, dried over MgSO_{4}, and filtered. After concentration of the filtrate, the resulting crude product was purified by silica gel column chromatography to afford compound $\mathbf{1 1}(330.0 \mathrm{mg}, 1.15 \mathrm{mmol}$, 80% yield) as a white solid. TLC (EtOAc:Hexanes, $1: 5 \mathrm{v} / \mathrm{v}): \mathrm{R}_{f}=0.35 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8169.0 , 163.9, 150.4, 143.6, 131.7, 126.1, 124.0, 122.5, 51.8, 30.9, 20.5; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 308.9738$, found: 308.9739.

To a solution of compound $\mathbf{1 1}(1.69 \mathrm{~g}, 5.91 \mathrm{mmol})$ in dry $\mathrm{MeOH}(29.0 \mathrm{~mL})$ was added sodium methoxide $(0.48 \mathrm{~g}, 8.89 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , the reaction mixture was warmed to room temperature and stirred for 3 hours. $1 \mathrm{NHCl}_{(\mathrm{aq})}$ was added to neutralize the reaction mixture at $0{ }^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the resulting residue was diluted with ethyl acetate. The organic layer was washed with water ($\times 3$) and brine, dried over MgSO_{4}, and filtered. After concentration of the filtrate, the resulting crude product was purified by silica gel column chromatography to afford compound $\mathbf{1 2}(1.30 \mathrm{mg}, 5.31 \mathrm{mmol}, 90 \%$ yield) as a white solid. TLC (EtOAc:Hexanes, $1: 5 \mathrm{v} / \mathrm{v}): \mathrm{R}_{f}=0.44 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.77(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.2,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8170.1,161.5,145.5$, 130.4, 119.8, 117.8, 112.1, 52.4, 32.0; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrO}_{3}$ [M-H]:: 242.9657, found: 242.9652 .

Compound 13

AlH_{3} was generated in situ by the addition of LAH ($1.65 \mathrm{~g}, 12.29 \mathrm{mmol}$) (divided into five portions) slowly to the solution of $\mathrm{AlCl}_{3}(11.58 \mathrm{~g}, 24.59 \mathrm{mmol})$ in dry THF (48.0 $\mathrm{mL})$ at $0{ }^{\circ} \mathrm{C}$. Compound $12(3.53 \mathrm{~g}, 14.47 \mathrm{mmol})$ was dissolved in dry THF (24.0 mL) at $0{ }^{\circ} \mathrm{C}$ and then was transferred to the activated AlH_{3} solution slowly at $0{ }^{\circ} \mathrm{C}$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , the reaction mixture was warmed to room temperature and stirred for 2 hours. The reaction was quenched by addition of silica gel at $0^{\circ} \mathrm{C}$ and water was added until the bubble generation ceases. The solvent was removed under reduced pressure and the resulting residue was purified by silica gel column chromatography to afford compound $13(2.94 \mathrm{~g}, 13.60 \mathrm{mmol}, 94 \%$ yield) as a white solid. TLC (EtOAc:Hexanes, 1:3 v/v): $\mathrm{R}_{f}=0.12 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.23$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s} 2 \mathrm{H})$, $4.47(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 156.2, 139.7, 129.4, 129.0, 121.1, 116.4,
60.6, 34.1; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrO}_{2}[\mathrm{M}-\mathrm{H}]:$: 214.9708 , found: 214.9707.

Compound 14

To a solution of compound $\mathbf{1 3}(560.0 \mathrm{mg}, 2.59 \mathrm{mmol})$ in dry THF (8.4 mL) was added azidotrimethylsilane ($450.0 \mathrm{mg}, 3.91 \mathrm{mmol}$) and TBAF (1 M in THF, $3.9 \mathrm{~mL}, 3.89$ $\mathrm{mmol})$ at room temperature. After being stirred for 2 hours, the reaction mixture was worked up by water at $0^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the resulting residue was diluted with ethyl acetate. The organic layer was washed with water and brine, dried over MgSO_{4}, and filtered. After concentration of the filtrate, the resulting crude product was purified by silica gel column chromatography to afford compound $14(0.45 \mathrm{~g}, 2.51 \mathrm{mmol}, 97 \%$ yield) as a white solid. TLC (EtOAc:Hexanes: $1: 2 \mathrm{v} / \mathrm{v}): \mathrm{R}_{f}=0.26 ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}$, $J=1.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.1,136.7,128.3,124.9,119.7,116.1,63.8,54.3$; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]:$: 178.0617, found: 178.0611.

Compound 15

To a solution of compound $14(620.0 \mathrm{mg}, 3.46 \mathrm{mmol})$ in $\operatorname{EtOAc}(70.0 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(124 \mathrm{mg}, 1.17 \mathrm{mmol})$ and di-tert-butyl dicarbonate ($450.0 \mathrm{mg}, 3.91 \mathrm{mmol}$) under $\mathrm{N}_{2(\mathrm{~g})}$ at room temperature. The reaction mixture was purged with $\mathrm{H}_{2(\mathrm{~g})}$ for 8 hr . The solvent was removed under reduced pressure and the resulting residue was purified by silica gel column chromatography to give compound $\mathbf{1 5}$ ($780.0 \mathrm{mg}, 3.08 \mathrm{mmol}, 89 \%$ yield) as a white solid. TLC (EtOAc:Hexanes, $1: 1 \mathrm{v} / \mathrm{v}): \mathrm{R}_{f}=0.36 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{br}, 1 \mathrm{H})$, $4.78(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 158.4, 156.1, 141.2, 129.3, 127.1, 119.0, 114.6, 80.1, 60.9, 44.7, 28.8 (3C); HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]:$: 252.1236, found: 252.1235 .

Compound 16

To a solution of compound $\mathbf{1 5}(100.0 \mathrm{mg}, 0.40 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ was added manganese dioxide ($515.0 \mathrm{mg}, 5.92 \mathrm{mmol}$) under $\mathrm{N}_{2(\mathrm{~g})}$ at room temperature. After being stirred at room temperature for 2 hours, the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography to yield compound 16 ($100.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 98 \%$ yield) as a white solid. TLC (EtOAc:Hexanes, 1:1 v/v): $\mathrm{R}_{f}=0.62 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.03,9.83,7.48$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.9(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 195.9, 161.8, 155.8, 149.4, 133.9, 119.6, 118.5, 115.5, 79.8, 44.2, 20.3 (3C); HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]:$: 250.1079 , found: 250.1073 .

Compound 17

To a solution of compound $16(410.0 \mathrm{mg}, 1.63 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.2 \mathrm{~mL})$ was added (carbethoxymethylene)triphenylphosphorane ($852.6 \mathrm{mg}, 2.45 \mathrm{mmol}$) under $\mathrm{N}_{2(\mathrm{~g})}$ at room temperature. After being stirred for 3 hours, the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography to afford compound $\mathbf{1 7}(520.0 \mathrm{mg}, 1.62 \mathrm{mmol}, 99 \%$ yield) as a white solid. TLC (EtOAc:Hexanes, $1: 1 \mathrm{v} / \mathrm{v}): \mathrm{R}_{f}=0.40$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.92$ $(\mathrm{d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}$, $9 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 169.6,158.5,158.4$, $145.2,141.9,130.2,121.3,119.4,118.0,115.4,80.3,61.4,44.7,28.8$ (3C), 14.6; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{5}[\mathrm{M}-\mathrm{H}]:$: 320.1498, found: 320.1491.

Scheme S2. Synthesis of ligand intermediate compound 23.

Compound 18

To a solution of Fmoc-Lys(Boc)-OH (1.00 g, 2.13 mmol) in dry DMF (14.0 mL) was added potassium carbonate $(1.40 \mathrm{~g}, 4.30 \mathrm{mmol})$ and benzyl bromide $(0.51 \mathrm{~mL}, 4.27$ $\mathrm{mmol})$ under $\mathrm{N}_{2(\mathrm{~g})}$ at room temperature at room temperature. After being stirred for 1 hour, the solid residue of potassium bicarbonate was filtered and the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography to give compound $\mathbf{1 8}(1.18 \mathrm{~g}, 2.11 \mathrm{mmol}, 99 \%$ yield $)$ as a semi-solid. TLC (EtOAc:Hexanes, 1:1 v/v): $\mathrm{R}_{f}=0.50 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 9 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H})$, 5.26-5.12 (m, 2H), 4.54 (s, 1H), 4.43-4.36(m, 3H), $4.20(\mathrm{t}, J=6.6 \mathrm{~Hz} 1 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H})$, 1.85-1.43 (m, 15H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,156.0,155.9,143.8,143.6$,
141.2 (2C), 135.2, 128.5 (2C), 128.4 (2C), 128.2 (2C), 127.6 (2C), 127.0 (2C), 125.0 (2C), 119.86 (2C), 67.03, 66.92, 53.7, 47.1, 40.0, 32.0, 29.5, 28.3 (3C), 22.2; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 581.2628 , found 581.2634

Compound 21

To a flask with lactose octaacetate $20(2.00 \mathrm{~g}, 2.95 \mathrm{mmol})$ was added $33 \% \mathrm{HBr}$ in AcOH (10.0 mL). The mixture was stirred at room temperature for 1 h . The solution was poured into ice water and then extracted with dichloromethane (DCM). The organic layer was washed with saturated $\mathrm{NaHCO}_{3(a q)}$, dried over MgSO_{4}, filtered, and concentrated in vacuo to give the lactosyl bromide. To a mixture of pent-4-en-1-ol (0.6 $\mathrm{ml}, 8.35 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(1.63 \mathrm{~g}, 5.92 \mathrm{mmol})$, and $4 \AA \mathrm{MS}$ in $\mathrm{DCM}(15 \mathrm{~mL})$ was added a solution of lactosyl bromide in $\mathrm{DCM}(15 \mathrm{~mL})$ under $\mathrm{N}_{2(\mathrm{~g})}$ at room temperature. After being stirred for 8 h , the reaction mixture was filtered through celite. The filtrate was concentrated and the resulting residue was purified by silica gel column chromatography to give compound $21(1.20 \mathrm{~g}, 1.71 \mathrm{mmol}, 58 \%$ yield $)$ as a white solid. TLC (EtOAc:Hexanes, $1: 1 \mathrm{v} / \mathrm{v}): \mathrm{R}_{f}=0.26 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $85.56-5.51(\mathrm{~m}$, 1H), 5.12 (dd, $J=3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (dd, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.87 (dd, $J=10.4,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.89-4.73(\mathrm{~m}, 3 \mathrm{H}), 4.66(\mathrm{dd}, J=9.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.29-4.24 (m, 2H), 3.93-3.86 (m, 3H), 3.76 (dd, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.45-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.25(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.82(\mathrm{~m}$, 12H), $1.73(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.84,169.76$, 169.6, 169.4, 169.3, 169.0, 168.6, 137.3, 114.6, 100.4, 100.0, 75.9, 72.4, 72.1, 71.2, $70.5,70.1,68.7$ (2C), 66.3, 61.7, 60.5, 29.3, 28.1, 20.3, 20.2, 20.1, 20.07, 20.05, 20.04, 19.4; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{18} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 727.2425 , found: 727.2415

Compound 22

To a solution of compound $\mathbf{2 1}(1.25 \mathrm{~g}, 1.85 \mathrm{mmol})$ in $\mathrm{DCM}(5.3 \mathrm{~mL})$ / acetonitrile (5.3
$\mathrm{mL}) / \mathrm{H}_{2} \mathrm{O}(8.0 \mathrm{~mL})$ was added $\mathrm{RuCl}_{3}(76.7 \mathrm{mg}, 0.37 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(1.06 \mathrm{~g}, 5.00$ mmol) at room temperature. After being vigorously stirred at room temperature for 2 h , more $\mathrm{NaIO}_{4}(0.53 \mathrm{~g}, 2.49 \mathrm{mmol})$ was added and the mixture was stirred for another 2 h at room temperature. The reaction mixture was concentrated to dryness in vacuo, and then extracted with ethyl acetate. The organic phase was dried over MgSO_{4}, filtered, and then concentrated in vacuo to give crude product. The residue was purified by silica gel column chromatography to give product $22(0.93 \mathrm{~g}, 1.30 \mathrm{mmol}, 70 \%$ yield) as a white solid TLC (EtOAc): $\mathrm{R}_{f}=0.40 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.30(\mathrm{dd}, J=3.4$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (dd, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (dd, $J=10.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (dd, $J=$ $10.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=9.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.40(\mathrm{~m}, 3 \mathrm{H}), 4.11-4.00(\mathrm{~m}, 3 \mathrm{H})$, $3.83(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{dd}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.47(\mathrm{~m}$, $1 \mathrm{H}), 2.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 9 \mathrm{H}), 1.92$ (s, 3 H), 1.84 (quintet, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,170.4,170.3,170.1$, $170.0,169.8,169.7,169.1,100.9,100.4,76.1,72.7,72.5,71.6,70.9,70.6,69.1,68.5$, 66.6, 61.9, 60.8, 30.0, 24.4, 20.75, 20.71, 20.6, 20.05 (2C), 20.04, 14.1; HRMS (ESITOF, m / z) calculated for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{20} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 745.2167$, found: 745.2159 Compound 23

To a stirred solution of compound $18(300.0 \mathrm{mg}, 0.54 \mathrm{mmol})$ in DCM (5.3 mL) was added diethylamine (5.3 mL). After being stirred at room temperature for 2 hours, the reaction mixture was purified by silica gel column chromatography to afford compound 19 ($170.0 \mathrm{mg}, 0.51 \mathrm{mmol}$) as a yellow syrup. TLC (MeOH:DCM, $1: 5 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{f}=0.40$; HRMS (ESI-TOF) calculated for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}=337.2127$, found 337.2129. To a solution of the above compound $19(140.0 \mathrm{mg})$, compound $22(300 \mathrm{mg}, 0.42 \mathrm{mmol})$, and HBTU $(262.5 \mathrm{mg}, 0.69 \mathrm{mmol})$ in dry DMF $(3.3 \mathrm{~mL})$ at room temperature under a nitrogen atmosphere. After being stirred at room temperature for 5 h , the mixture was concentrated to dryness in vacuo, and ethyl acetate was added. The organic layer was
washed with brine, dried over MgSO_{4}, filtered, and then concentrated under reduced pressure to give the crude product. The residue was purified by column chromatography on silica gel to afford compound 23 ($350.0 \mathrm{mg}, 0.34 \mathrm{mmol}, 63 \%$ yield) as a white syrup. TLC (EtOAc): $\mathrm{R}_{f}=0.55 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.35-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.22(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=2.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.06(\mathrm{~m}, 4 \mathrm{H}), 4.94(\mathrm{dd}, J=10.4,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=9.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.45(\mathrm{~m}, 3 \mathrm{H}), 4.13-$ $4.03(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.59-3.54(\mathrm{~m}, 2 \mathrm{H})$, $3.02(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.01(\mathrm{~m}$, $12 \mathrm{H}), 1.9(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.38(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 172.4,172.3,170.4,170.3,170.04,170.00,169.71,169.66$, 169.0, 156.0, 135.3, 128.5 (2C), 128.4, 128.2 (2C), 100.9, 100.5, 76.1, 72.7, 72.6, 71.7, $70.9,70.6,69.08,69.06,67.0,66.6,61.7,60.7,51.9,40.0,38.5,32.3,31.8,29.4,28.3$ (3C), 25.4, 22.3, 20.8, 20.7, 20.6, 20.5 (3C), 20.4, 14.1; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{48} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{O}_{23} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}=1063.4110$, found 1063.4102.

Scheme S3. Synthesis of compound 26.

Compound 24

To a solution of Fmoc-Lys(Boc)-OH ($1.00 \mathrm{~g}, 2.13 \mathrm{mmol}$) in dry DMF (17.8 mL) was added potassium carbonate $(1.40 \mathrm{~g}, 4.30 \mathrm{mmol})$ and iodomethane $(0.2 \mathrm{~mL}, 3.20 \mathrm{mmol})$ at room temperature. After being stirred for 1 hour, the solid residue of potassium
bicarbonate was filtered and the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography to provide compound $24(1.01 \mathrm{~g}, 2.09 \mathrm{mmol}, 98 \%$ yield) as a semi-solid. TLC (EtOAc:Hexanes, $1: 1 \mathrm{v} / \mathrm{v}): \mathrm{R}_{f}=0.45 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{ddd}, J=7.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H})$, $4.56(\mathrm{~s}, 1 \mathrm{H}), 4.43-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{t}, J=5.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.36(\mathrm{~m}, 13 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.8,156.0,155.9,143.7,143.6,141.1,127.5,126.9,124.9,119.8$, 66.8, 53.6, 52.2, 47.0, 39.8, 31.8, 29.4, 28.2 (3C), 22.12; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 505.2315$, found: 505.2315 Compound 26

To a stirred solution of compound $24(1.8 \mathrm{~g}, 3.73 \mathrm{mmol})$ in $\mathrm{DCM}(37 \mathrm{~mL})$ was added diethylamine (3.7 mL). After being stirred at room temperature for 3 hours, the reaction solvent was removed and the resulting residue was purified by silica gel column chromatography to afford compound $25(949.8 \mathrm{mg}, 3.65 \mathrm{mmol})$ as yellow syrup. $\mathrm{R}_{f}=$ $0.60(\mathrm{MeOH} / \mathrm{DCM}=1 / 5)$; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 261.1814, found: 261.1816. To a solution of the above compound $\mathbf{2 5}$ ($460.0 \mathrm{mg}, 1.77$ mmol), pent-4-ynoic acid ($144.5 \mathrm{mg}, 1.47 \mathrm{mmol}$), and $\operatorname{HBTU}(1.1 \mathrm{~g}, 2.94 \mathrm{mmol})$ in dry DCM (29.4 mL) was stirred at room temperature under a nitrogen atmosphere. After being stirred at room temperature for 2 hours, the mixture was concentrated to dryness in vacuo and then ethyl acetate was added. The organic layer was washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure to give crude product. The residue was purified by silica gel column chromatography to afford compound 26 ($480 \mathrm{mg}, 1.41 \mathrm{mmol}, 96 \%$ yield) as a colorless liquid. TLC (EtOAc:Hexanes, 2:1 v/v): $\mathrm{R}_{f}=0.41 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta ; 4.39$ (dd, $J=9.0$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H})$,
$1.87-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 13 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,170.9,156.0,82.6,78.7,52.0,51.7,39.7,34.6,31.4,29.1,28.1$ (3C), 22.1, 14.5; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]:$: 339.1920, found: 339.1915.

Scheme S4. Synthesis of LLP 1.

To a stirred solution of compound $17(85.0 \mathrm{mg}, 0.27 \mathrm{mmol})$ in EtOH $(0.5 \mathrm{~mL})$ was added $10 \% \mathrm{NaOH}_{(\mathrm{aq})}(1.0 \mathrm{~mL})$. After being stirred at room temperature for 1.5 hours, the reaction mixture was neutralized by $1 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}$ to $\mathrm{pH}=2$ at $0{ }^{\circ} \mathrm{C}$. The EtOH was removed under reduced pressure and the resulting residue was extracted by EtOAc (20 $\mathrm{mL} \times 3$) and the collecting organic solvent was washed with brine, dried over MgSO_{4}, and filtered. The filtrate was concentrated in vacuo to give compound $27(68.3 \mathrm{mg}, 0.23$ mmol) as a colorless syrup. TLC (MeOH:DCM, $1: 5 \mathrm{v} / \mathrm{v}): \mathrm{R}_{f}=0.33$; HRMS (ESI-TOF) calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{5}[\mathrm{M}-\mathrm{H}]-: 292.1185$, found: 292.1187. To a stirred solution of compound $26(210 \mathrm{mg}, 0.62 \mathrm{mmol})$ in $\mathrm{DCM}(1.2 \mathrm{~mL})$ was added formic acid $(3.5 \mathrm{~mL})$. After being stirred at room temperature for 1.5 h , the residue was neutralized with Dowex resin $550\left(\mathrm{OH}^{-}\right)$, filtered, and concentrated in vacuo to give product 28 (140.0 $\mathrm{mg}, 0.58 \mathrm{mmol}$) as yellow syrup; TLC ($\mathrm{MeOH}: \mathrm{DCM}, 1: 5 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{f}=0.15$. To a solution of the above compound 27 ($40.0 \mathrm{mg}, 0.14 \mathrm{mmol}$), amine $\mathbf{2 8}(65.5 \mathrm{mg}, 0.27 \mathrm{mmol})$, and PyBOP ($142.0 \mathrm{mg}, 0.27 \mathrm{mmol})$ in dry DMF $(2.6 \mathrm{~mL})$ was added triethylamine $(0.1 \mathrm{~mL}$, 68.22 mmol) at room temperature under a nitrogen atmosphere. After being stirred at room temperature for overnight, the mixture was concentrated to dryness in vacuo and ethyl acetate was added. The organic layer was washed with brine, dried over MgSO_{4}, filtered, and then concentrated under reduced pressure to give the crude product. The residue was purified by silica gel column chromatography to afford compound 29 (40.0 $\mathrm{mg}, 0.077 \mathrm{mmol}, 57 \%$ yield) as a white syrup. TLC (EtOAc:Hexanes, $2: 1 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{f}=$ $0.40 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.78(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=1.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{dd}, J=5.0,9.1,1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.43(\mathrm{~m}$, $1 \mathrm{H}), 2.26(\mathrm{dd}, J=2.5,1 \mathrm{H}), 1.88-1.40(\mathrm{~m}, 16 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.1$ (x2), 169.6, 158.5,158.0, 144.2, 137.5, 130.0, 121.9, 121.2, 119.3, 115.3, 83.5, 80.2, 70.4, 53.6, 52.7, 44.7,40.1, 35.6, 32.1, 30.0, 28.8 (x3), 24.1, 15.6; HRMS (ESI-TOF,
m / z) calculated for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}: 538.2529$, found: 538.2526

Compound 32

To a stirred solution of compound $29(160.0 \mathrm{mg}, 0.31 \mathrm{mmol})$ in $\mathrm{MeOH}(2.3 \mathrm{~mL})$ was added $10 \% \mathrm{NaOH}_{(\mathrm{aq})}(4.6 \mathrm{~mL})$. After being stirred at room temperature for 2 hours, the reaction mixture was neutralized by $1 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}$ to $\mathrm{pH}=2$ at $0{ }^{\circ} \mathrm{C}$. The EtOH was removed under reduced pressure and the resulting residue was extracted by EtOAc $(20 \mathrm{~mL} \times 3)$. The collected organic solvent was washed with brine, dried over MgSO_{4}, and filtered. The filtrate was concentrated in vacuo to give compound $\mathbf{3 0}$ (155.1 mg , 0.31 mmol) as colorless syrup. TLC (MeOH:DCM, $1: 3 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{f}=0.49$; HRMS (ESITOF, m / z) calculated for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$: 524.2327, found: 524.2377. To a solution of above compound ($140.0 \mathrm{mg}, 0.27 \mathrm{mmol}$), amine 31 ($78.0 \mathrm{mg}, 0.46 \mathrm{mmol}$), DIC ($70.0 \mathrm{mg}, 0.55 \mathrm{mmol}$), and $\operatorname{HOBt}(57.0 \mathrm{mg}, 0.42 \mathrm{mmol})$ in dry DMF $(5.6 \mathrm{~mL})$ was stirred at room temperature under a nitrogen atmosphere for 2.5 hours. The mixture was concentrated to dryness in vacuo and ethyl acetate was added. The organic layer was washed with brine, dried over MgSO_{4}, filtered, and then concentrated under reduced pressure to give the crude product. The residue was purified by silica gel column chromatography to afford compound $\mathbf{3 2}(140.0 \mathrm{mg}, 0.21 \mathrm{mmol}, 82 \%$ yield) as a semisolid. TLC (EtOAc:Hexanes:MeOH, 2:1:0.3 v/v/v): $\mathrm{R}_{f}=0.23 ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.79(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J$ $=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=5.0,8.8,1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H})$, 3.32-3.28 (m, 5H), 2.49-2.47(m, 4H), $2.29(\mathrm{t}, J=2.24,1 \mathrm{H}), 2.07(\mathrm{dd}, J=9.20,8.16$, 2H), 1.84-1.45 (m, 18H), $1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.9,174.8$, 174.3, 169.7, 158.6, 158.0, 144.2, 137.6, 130.0, 121.9, 121.2, 119.3, 115.4, 83.7, 80.3, $70.4,55.1,44.8,44.7,40.1,40.0(x 2), 35.8,32.5,31.3,30.1,28.8(x 3), 26.3,24.2,19.7$, 15.6; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{NaO} 7[\mathrm{M}+\mathrm{Na}]^{+}: 676.3435$, found: 676.3441

Compound 34

To a stirred solution of compound $32(70.0 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{DCM}(1.2 \mathrm{~mL})$ was added formic acid (2.4 mL). After being stirred at room temperature for 2 hours, the residue was neutralized with Dowex resin $550\left(\mathrm{OH}^{-}\right)$, filtered, and concentrated in vacuo to give amine intermediate ($155.1 \mathrm{mg}, 0.31 \mathrm{mmol}$) as a yellow syrup. TLC (EtOAc:Hexanes:MeOH, 2:1:0.6 v/v/v): $\mathrm{R}_{f}=0.14$; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{7} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 554.3099$, found: 554.3091.

To a solution of $\mathbf{2 3}(115 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added $\mathrm{MeOH}(2.2 \mathrm{~mL})$ containing 10% $\mathrm{Pd} / \mathrm{C}(23 \mathrm{mg}) . \mathrm{H}_{2(\mathrm{~g})}$ was bubbled through the solution and the resulting mixture was stirred at room temperature for 2 hours. The mixture was then filtered and the residue was washed with MeOH twice. The filtrate was evaporated under vacuum to afford compound 33 as a semi-solid ($80 \mathrm{mg}, 0.08 \mathrm{mmol}$). TLC (EtOAc:Hexanes, 3:1 v/v): R_{f} $=0.51 ;$ HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{41} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{23}[\mathrm{M}-\mathrm{H}]^{-}: 949.3665$, found: 949.3653.

To a solution of the above amine intermediate ($16.0 \mathrm{mg}, 0.04 \mathrm{mmol}$), lactoside 33 (45.0 $\mathrm{mg}, 0.05 \mathrm{mmol})$, and HBTU ($22.0 \mathrm{mg}, 0.06 \mathrm{mmol}$) in dry DMF (0.3 mL) was added triethylamine ($0.1 \mathrm{~mL}, 68.22 \mathrm{mmol}$) at room temperature under a nitrogen atmosphere. After being stirred at room temperature for overnight, the mixture was concentrated to dryness in vacuo and ethyl acetate was added. The organic layer was washed with brine, dried over MgSO_{4}, filtered, and then concentrated under reduced pressure to give the crude product. The residue was purified by silica gel column chromatography to afford compound 34 ($23 \mathrm{mg}, 0.02 \mathrm{mmol}, 41 \%$ yield for two steps) as a white syrup. TLC (EtOAc:Hexanes:MeOH, 3:1:0.4 v/v/v): $\mathrm{R}_{f}=0.24 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.78$ $(\mathrm{d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.35(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dt}, J=4.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=3.5,10.4,1 \mathrm{H})$, $5.01(\mathrm{dd}, J=7.8,10.4,1 \mathrm{H}), 4.79(\mathrm{dd}, J=2.4,9.6,1 \mathrm{H}), 4.69(\mathrm{dd}, J=1.9,7.8,1 \mathrm{H}), 4.60$
(dd, $J=5.9,8.0,1 \mathrm{H}), 4.51(\mathrm{ddd}, J=2.0,5.9,8.0,1 \mathrm{H}), 4.33-4.27(\mathrm{~m}, 3 \mathrm{H}), 4.23(\mathrm{dd}, J=$ 5.1, 9.0, 1H), 4.16-4.11 (m, 4H), 3.86-3.78 (m, 2H), 3.74-3.69 (m, 1H), 3.29-3.28 (m, $4 \mathrm{H}), 3.06-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.48(\mathrm{~m}, 4 \mathrm{H}), 2.33-2.29(\mathrm{~m}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}$, $3 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 14 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.57$ (m, 2H), 1.51-1.39 (m, 17H), $1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 175.8,174.9$, $174.8,174.6,174.3,172.5,172.1,172.0,171.8,171.5$ (2C), 171.2, 169.6, 158.1, 157.8, $143.0,137.5,130.1,122.1,121.4,120.0,115.6,102.0,101.6,83.7,77.6,74.5,73.9$, $73.2,72.5,71.7,70.7,70.5,70.2,68.6,63.6,62.3,55.1,43.6,41.1,40.1,40.0$ (2C), 35.8, $33.2,33.0,32.7,32.4,31.4$ (2C), 31.1, 30.7, 30.6, 30.1, 28.8 (3C), 26.9, 26.4, 24.3, 24.2, 21.1, 20.8 (2C), 20.7, 20.6, 20.5, 19.7, 15.6; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{69} \mathrm{H}_{98} \mathrm{~N}_{9} \mathrm{O}_{27}[\mathrm{M}-\mathrm{H}]:$: 652.3435, found: 652.3459.

Compound LLP 1

To a stirred solution of compound $\mathbf{3 4}(13 \mathrm{mg}, 0.01 \mathrm{mmol})$ in $\mathrm{DCM}(0.3 \mathrm{~mL})$ was added formic acid ($150 \mu \mathrm{~L}$). After being stirred at room temperature for 3 hours, the mixture was neutralized with Dowex resin $550\left(\mathrm{OH}^{-}\right)$at $4^{\circ} \mathrm{C}$, and then filtered and concentrated in vacuo to give a crude product, which was used in the next reaction without purification; $\mathrm{R}_{f}=0.18(\mathrm{DCM} / \mathrm{MeOH}=1 / 5)$. The above material $(12.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ and NHS-activated biotin (biotin-Osu) ($14.8 \mathrm{mg}, 0.04 \mathrm{mmol}$) were dissolved in dry DMF ($300 \mu \mathrm{~L}$) followed by addition of triethylamine ($10 \mu \mathrm{~L}, 0.07 \mathrm{mmol}$). The reaction was stirred at room temperature under a nitrogen atmosphere for 4 h . After the reaction was complete, the mixture was concentrated to dryness in vacuo and the resulting residue was purified by silica gel column chromatography to afford compound $\mathbf{3 5}$ (16 $\mathrm{mg}, 0.01 \mathrm{mmol})$ as a white solid. TLC ($\mathrm{MeOH}: D C M, 1: 5 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{f}=0.74$; HRMS (ESITOF, m / z) calculated for $\mathrm{C}_{74} \mathrm{H}_{106} \mathrm{~N}_{11} \mathrm{O}_{27} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 1612.6980, found: 1612.6974. The above residue was dissolved in $\mathrm{MeOH}(300 \mu \mathrm{~L})$ and stirred with $\mathrm{NaOMe}(0.5 \mathrm{mg}, 0.02$ mmol) at room temperature for 3 h . The reaction mixture was neutralized with

Amberlite IR-120 $\left(\mathrm{H}^{+}\right)$resin, filtered, and concentrated in vacuo to give the crude product. The residue was purified by C18 reverse phase column to afford compound LLP $1(6.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 56 \%$ yield for three steps) as a semi-solid. TLC (DCM:MeOH, 1:1 v/v): $\mathrm{R}_{f}=0.27 ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.78(\mathrm{~d}, J=15.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J$ $=5.0,7.5,1 \mathrm{H}), 4.40-4.27(\mathrm{~m}, 6 \mathrm{H}), 4.25-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.76(\mathrm{~m}, 6 \mathrm{H}), 3.71(\mathrm{dd}, J=$ $4.6,11.4,1 \mathrm{H}), 3.61-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{t}, J=8.12,2 \mathrm{H}), 3.20-3.17$ (m, 3H), 2.92 (dd, $J=5.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~m}, 4 \mathrm{H}), 2.45-$ 2.34 (m, 2H), $2.30(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.89$ $(\mathrm{m}, 2 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.52(\mathrm{~m}, 12 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 176.2, 176.1, 174.9, 174.8, 174.6, 174.3, 169.6, 166.1, $158.1,143.1,137.5,130.0,122.1,121.4,119.7,115.6,105.1,104.2,83.7,80.7,77.1$, 76.4 (2C), $74.8,72.6,70.5,70.3,69.9,69.7,63.4,62.5,61.9,61.6,57.0,55.1,54.8$, $43.6,41.0,40.1,40.0$ (2C), 36.8, 35.8, 33.4, 33.1, 32.6, 32.5, 31.4, 30.7, 30.1, 29.7, 29.5, 27.0, 26.9, 26.8, 26.4, 24.3, 24.2, 19.7, 15.6; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{60} \mathrm{H}_{92} \mathrm{~N}_{11} \mathrm{O}_{20} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 1318.6241$, found: 1318.6235 .

Scheme S5. Synthesis of compound 5 .

Compound 38

To a solution of compound $\mathbf{3 6}(41.0 \mathrm{mg}, 0.16 \mathrm{mmol})$, compound $\mathbf{3 7}(10.0 \mathrm{mg}, 0.08$ $\mathrm{mmol})$, $\mathrm{HBTU}(59.2 \mathrm{mg}, 0.16 \mathrm{mmol}$), and triethylamine ($30.0 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) in dry DMF $(800.0 \mu \mathrm{~L})$ was stirred at room temperature under a nitrogen atmosphere for 2 h . The mixture was concentrated to dryness in vacuo and ethyl acetate was added. The organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}$, brine, dried over MgSO_{4}, filtered, and then concentrated under reduced pressure to give the crude product. The residue was purified by silica gel column chromatography to afford compound 38 ($27.6 \mathrm{mg}, 0.07 \mathrm{mmol}$, 88% yield) as a white syrup. TLC (EtOAc:Hexanes, $1: 1 \mathrm{v} / \mathrm{v}): \mathrm{R}_{f}=0.27 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.59-4.53(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{q}, J=9.8,6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 11 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.74,174.66,174.2,53.8,52.6,41.0,32.2,31.4,31.0$,
30.9, 30.5, 28.8 (3C), 26.3, 24.1, 19.7. HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 371.2294$, found: 371.2293.

Compound 5

To a stirred solution of compound $38(15.0 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{MeOH}(0.4 \mathrm{~mL})$ was added $10 \% \mathrm{NaOH}_{(\mathrm{aq})}(0.8 \mathrm{~mL})$. After being stirred at room temperature for 2 hours, the reaction mixture was neutralized by $1 \mathrm{NHCl}_{(\mathrm{aq})}$ to $\mathrm{pH}=2$ at $0{ }^{\circ} \mathrm{C}$. The MeOH was removed under reduced pressure and the resulting residue was extracted by EtOAc (20 $\mathrm{mL} \times 3$). The collected organic solvent was washed with brine, dried over MgSO_{4}, and filtered. The filtrate was concentrated in vacuo to give carboxylic acid product (14.4 $\mathrm{mg}, 0.04 \mathrm{mmol}$) as a white syrup; TLC (MeOH:DCM, $1: 3 \mathrm{v} / \mathrm{v}): \mathrm{R}_{f}=0.81$. To a solution of the above compound ($14.4 \mathrm{mg}, 0.04 \mathrm{mmol}$), amine $39(9.4 \mathrm{mg}, 0.06 \mathrm{mmol})$, and HBTU $(41.0 \mathrm{mg}, 0.08 \mathrm{mmol})$ in dry DMF $(1.0 \mathrm{~mL})$ was added triethylamine $(21.0 \mu \mathrm{~L}$, 0.12 mmol) at room temperature under a nitrogen atmosphere. After being stirred at room temperature for 3 hours, the mixture was concentrated to dryness in vacuo and ethyl acetate was added. The organic layer was washed with $1 \mathrm{NHCl}_{(\mathrm{aq})}$ and brine, dried over MgSO_{4}, filtered, and then concentrated under reduced pressure to give the crude product. The residue was purified by silica gel column chromatography to afford compound 40 ($23.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 50 \%$ yield) as a white syrup; TLC (EtOAc:Hexanes:MeOH, 1:1:0.2 v/v/v): $\mathrm{R}_{f}=0.30$. To a stirred solution of compound $40(21.0 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{DCM}(0.3 \mathrm{~mL})$ was added formic acid $(0.9 \mathrm{~mL})$. After being stirred for 1 hours at room temperature, the mixture was concentrated to dryness in vacuo to give a crude product, which was used in the next reaction without purification. To a solution of above material ($5.5 \mathrm{mg}, 0.01 \mathrm{mmol}$) and biotin- $\mathrm{OSu}(4.0$ $\mathrm{mg}, 0.01 \mathrm{mmol})$ in dry DMF (0.2 mL) was added triethylamine ($40.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$). The reaction was stirred at room temperature for 2 h under a nitrogen atmosphere. After the reaction was complete, the mixture was concentrated to dryness in vacuo and the
resulting residue was purified by silica gel column chromatography to afford compound $5(5.0 \mathrm{mg}, 0.008 \mathrm{mmol}, 80 \%$ yeild $)$ as a white solid. TLC (MeOH:DCM, $1: 7 \mathrm{v} / \mathrm{v}): \mathrm{R}_{f}=$ $0.42 ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.50(\mathrm{dd}, J=7.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=7.8$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=8.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.9(\mathrm{~s}, 2 \mathrm{H}), 3.25-3.26(\mathrm{~m}, 7 \mathrm{H}), 2.93(\mathrm{dd}, J=$ $12.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.61(\mathrm{~m}, 10 \mathrm{H})$, 1.55-1.41 (m, 6H), $1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 176.0, 174.7, 174.6, $170.3,63.4,61.6,57.0,55.1,53.0,41.0,40.0,37.7,37.5,36.8,32.6,31.2,31.0,30.8$, 30.12, 30.06, 29.7, 29.5, 26.9, 26.4, 24.4, 19.8; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~N}_{11} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}-\mathrm{H}]:$: 620.3091 , found: 620.3105 .

Scheme S6. Synthesis of compound 6 .

The syntheses of compounds $\mathbf{4 1}, \mathbf{4 2}$ and $\mathbf{4 3}$ were followed by reported procedures. ${ }^{2}$
Compound 6
To a reaction flask containing compound $\mathbf{4 3}(15.0 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{HOBt}(6.0 \mathrm{mg}, 0.04$
mmol), and N-(3-dimethylaminopropyl)- N '-ethylcarbodiimide hydrochloride (8.0 mg , 0.04 mmol) was added DMF (2 mL) at room temperature. After 10 minutes, triethylamine ($20.0 \mu \mathrm{~L}$) and 3-azido-1-propanamine ($5.6 \mathrm{mg}, 0.06 \mathrm{mmol}$) were added respectively and the resulting solution was stirred at room temperature overnight. The solvent was removed and the crude mixture was purified by flash column chromatography to give product $\mathbf{6}$ as a purple solid ($12.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 67 \%$). TLC (EtOAc:Hexanes, 1:1 v/v): $\mathrm{R}_{f}=0.5 .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d d_{6}): $\delta 8.92$ (dd, $J=$ $13.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.54-8.48(\mathrm{~m}, 3 \mathrm{H})$, $8.34(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.48-$ 2.34 (m, 12H), 2.19-2.12 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): δ 190.4, 190.2, $171.9,169.9,155.1,146.4,142.5,141.1,140.5,139.8,133.7,133.5,128.2,123.3,122.2$, 121.2, 120.9, 119.4, 116.8, 109.9, 100.5, 48.4, 48.0, 42.6, 35.7, 35.1, 28.4, 27.4, 26.5, 25.7, 25.0; HRMS (ESI, m / z) calculated for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 538.2818$, found: 538.2815.

Scheme S7. Synthesis of compound 3.

To a stirred solution of compound $44(22.0 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{DCM}(0.7 \mathrm{~mL})$ was added formic acid (1.5 mL). After being stirred at room temperature for 2 hours, the residue was concentrated in vacuo to give amine product ($18.6 \mathrm{mg}, 0.03 \mathrm{mmol}$). To a solution of above amine $(18.6 \mathrm{mg}, 0.03 \mathrm{mmol})$ in dry DMF $(0.2 \mathrm{~mL})$ was added biotin$\mathrm{OSu}(34.2 \mathrm{mg}, 0.09 \mathrm{mmol})$ and triethylamine $(21.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol})$ at room temperature. After being stirred for 3.5 hours, the solvent was removed under reduced pressure and the resulting residue was purified by silica gel column chromatography to afford compound 3 ($16.1 \mathrm{mg}, 0.02 \mathrm{mmol}, 67 \%$) as a white solid. TLC ($\mathrm{MeOH}: \mathrm{DCM}, 1: 3$): R_{f} $=0.46 ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.78(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=7.9,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.29$ (brs, 2H), 4.27-4.21 (m, 4H), 3.28 (brs, 4H), 3.16 (ddd, $J=8.8,5.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (dd, $J=12.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ (brs, 4 H$), 2.29(\mathrm{~s}, 1 \mathrm{H}), 2.26$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.55(\mathrm{~m}$, $12 \mathrm{H}), 1.46-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.9,174.9$, 174.8, 174.3, 169.6, 166.1, 158.1, 143.3, 137.5, 130.1, 122.1, 121.4, 119.8, 116.0, 83.7, $70.4,63.3,61.6,57.0,55.1,43.8,41.0,40.1,40.04,39.92,36.7,35.8,32.5,31.4,31.3$, 30.2, 29.7, 29.4, 26.9, 26.4, 24.2, 19.7, 15.6; HRMS (ESI, m / z) calculated for $\mathrm{C}_{38} \mathrm{H}_{53} \mathrm{~N}_{9} \mathrm{NaO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 802.3686$, found: 802.3687.

34

1. formic acid, DCM
2. PEG linker, TEA, DMF
3. formic acid
4. Biotin-OSu, TEA, DMF
5. $\mathrm{NaOMe}, \mathrm{MeOH}$

45

Scheme S8. Synthesis of compound LLP 2

Compound LLP 2

To a stirred solution of compound $34(13 \mathrm{mg}, 0.01 \mathrm{mmol})$ in $\mathrm{DCM}(0.3 \mathrm{~mL})$ was added formic acid $(150 \mu \mathrm{~L})$. After being stirred at room temperature for 2 hours, the mixture was neutralized with Dowex resin $550\left(\mathrm{OH}^{-}\right)$at $4^{\circ} \mathrm{C}$, and then filtered and concentrated in vacuo to give a crude product, which was used in the next reaction without purification; $\mathrm{R}_{f}=0.18(\mathrm{DCM} / \mathrm{MeOH}=1 / 5)$. The above material $(12.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ and PEG linker ($10.8 \mathrm{mg}, 0.03 \mathrm{mmol}$) were dissolved in dry DMF ($300 \mu \mathrm{~L}$) followed by addition of triethylamine ($10 \mu \mathrm{~L}, 0.07 \mathrm{mmol}$). The reaction was stirred at room
temperature under a nitrogen atmosphere for 1 h . After the reaction was complete, the mixture was concentrated to dryness in vacuo and the resulting residue was purified by silica gel column chromatography as a semi-solid. TLC (EtOAc:Hexanes:MeOH, 4:2:1.2 $\mathrm{v} / \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{f}=0.33$; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{76} \mathrm{H}_{112} \mathrm{~N}_{10} \mathrm{NaO}_{31}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 1683.7392$, found: 1683.7428 . The above material ($12.0 \mathrm{mg}, 0.008 \mathrm{mmol}$) in $\mathrm{DCM}(0.3 \mathrm{~mL})$ was added formic acid $(150 \mu \mathrm{~L})$. After being stirred at room temperature for 2 hours, the mixture was neutralized with Dowex resin $550\left(\mathrm{OH}^{-}\right)$at $4^{\circ} \mathrm{C}$, and then filtered and concentrated in vacuo to give a crude product, which was used in the next reaction without purification; The above material ($10.8 \mathrm{mg}, 0.008 \mathrm{mmol}$) and biotinOSu ($7.4 \mathrm{mg}, 0.02 \mathrm{mmol}$) were dissolved in dry DMF ($300 \mu \mathrm{~L}$) followed by addition of triethylamine ($10 \mu \mathrm{~L}, 0.07 \mathrm{mmol}$). The reaction was stirred at room temperature under a nitrogen atmosphere for 2 h . After the reaction was complete, the mixture was concentrated to dryness in vacuo and the resulting residue was purified by silica gel column chromatography as a semi-solid. TLC (MeOH:DCM, 1:5 v/v): $\mathrm{R}_{f}=0.55$; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{81} \mathrm{H}_{118} \mathrm{~N}_{12} \mathrm{NaO}_{31} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 1809.7644$, found: 1809.7595. The above residue ($12.6 \mathrm{mg}, 0.008 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(300 \mu \mathrm{~L})$ and stirred with $\mathrm{NaOMe}(0.5 \mathrm{mg}, 0.02 \mathrm{mmol})$ at room temperature for 3 h . The reaction mixture was neutralized with Amberlite IR-120 $\left(\mathrm{H}^{+}\right)$resin, filtered, and concentrated in vacuo to give the crude product. The residue was purified by C18 reverse phase column to afford compound $45(6.5 \mathrm{mg}, 0.004 \mathrm{mmol})$ as a semi-solid. TLC ($n-$ Propanol: $\mathrm{H}_{2} \mathrm{O}: \mathrm{AcOH}, 6: 2: 1 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{f}=0.83$; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{67} \mathrm{H}_{105} \mathrm{~N}_{12} \mathrm{O}_{24} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 1493.6775$, found: 1493.70853 .

The reaction was carried out in a 15 mL centrifuge tube with $54 \mu \mathrm{~L}$ of Tris $\cdot \mathrm{HCl}$ buffer ($100 \mathrm{mM}, \mathrm{pH} 8.5$) containing 50 mM of sialic acid ($7 \mathrm{mg}, 23 \mu \mathrm{~mol}$), 55 mM of CTP ($11 \mathrm{mg}, 21 \mu \mathrm{~mol}$), and 20 mM of MgCl_{2}. The pH of reaction mixture was adjusted to 8.5 by adding 2 N NaOH . Then, $0.5 \mathrm{mg} / \mathrm{mL}$ of CSS was added to the above solution.

The resulting mixture was incubated at $37^{\circ} \mathrm{C}$ with agitation at 600 rpm for 3 h and the formation of CMP-Sia was monitored by TLC analysis $\left(n-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}=6: 2: 1\right.$ $\left.(\mathrm{v} / \mathrm{v} / \mathrm{v}), \mathrm{R}_{f}=0.15\right)$. After the completion of the reaction as indicated by the disappear of sialic acid on TLC, 2.5 mM of compound $\mathbf{4 5}(3 \mathrm{mg}, 1.8 \mu \mathrm{~mol})$ was added and the pH of the solution was adjusted to pH 8.5 by addition of 2 N NaOH . Then, $0.3 \mathrm{mg} / \mathrm{mL}$ of Pd2,6ST was added and the solution was incubated at $37^{\circ} \mathrm{C}$. More enzymes were added if necessary. After be shaked for 2 h , the reaction was quenched by adding the same reaction volume of EtOH. The reaction solution was centrifuged ($10,000 \mathrm{x} g, 10$ min), filtered ($0.45-\mu \mathrm{m}$ PVDF filter; Millipore), and then concentrated. The resulting residue was purified by a C18 reverse-phase silica column to afford compound LLP 2 (3.2 mg, $1.6 \mu \mathrm{~mol}, 31 \%$ yield for six steps) as a semi-solid. TLC (n Propanol: $\left.\mathrm{H}_{2} \mathrm{O}: \mathrm{AcOH}, 6: 2: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}\right): \mathrm{R}_{f}=0.62 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.73(\mathrm{dd}, J$ $=16.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{dd}, J=16.0,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.65-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.22(\mathrm{~m}, 8 \mathrm{H}), 3.94-3.61(\mathrm{~m}, 27 \mathrm{H}), 3.37-3.29(\mathrm{~m}, 8 \mathrm{H})$, $3.10(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{dd}, J=13.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=13.0,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.75(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.48(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.18(\mathrm{~m}$, $4 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 7 \mathrm{H}), \quad 1.80-1.38(\mathrm{~m}, 22 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 176.6,175.2,175.0,174.7,174.6,174.2,174.0,173.3,173.2,168.7,165.1,158.2$, 155.5, 141.6, 135.8, 129.1, 120.6, 120.2, 119.1, 114.7, 103.4, 101.8, 100.4, 99.7, 83.2, 82.7, 79.5, 74.9, 74.4, 73.6, 72.5, 72.4, 72.2, 71.64, 71.56, 70.8, 70.0, 69.6, 69.3, 68.7, $68.4,68.2,68.1,66.0,64.8,63.9,62.5,62.3,61.9,55.2,53.8,51.6,42.3,40.0,39.5$, $38.8,38.4,35.3,34.0,31.6,30.5,30.0,29.6,28.2,27.8,27.7,27.5,26.0,25.0,22.1$, 21.91, 21.85, 20.7, 20.0, 18.4, 14.3; HRMS (ESI-TOF, m / z) calculated for $\mathrm{C}_{78} \mathrm{H}_{121} \mathrm{~N}_{13} \mathrm{NaO}_{32} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 1806.7858$, found: 1806.7901.

Photo-labeling of RCA ${ }_{120}$ by LLP 1

To evaluate the imprinting efficiency, $\mathrm{RCA}_{120}(6 \mu \mathrm{M}, 60 \mu \mathrm{~L}$ in PBS buffer, pH 7.4$)$ was incubated with various concentrations of compound LLP 1 (50, 150, 500, 1000, and $1500 \mu \mathrm{M}$, respectively) The mixture was briefly agitated at $4^{\circ} \mathrm{C}$ for 60 min to ensure proper mixing and then irradiated with a UV lamp ($365 \mathrm{~nm}, 18.7 \mathrm{~mW} / \mathrm{cm}^{2}$ at 4 cm) (Blak-Ray ${ }^{\circledR} \mathrm{B}-100 \mathrm{AP}$ High Intensity UV lamp) at $4{ }^{\circ} \mathrm{C}$ for 30 min . Excess photoaffinity probe was removed from the reaction via spin concentration (Microcon centrifugal filter $10,000 \mathrm{MWCO}$, Millipore, MA). An aliquot of this partially purified mixture was treated with SDS-PAGE loading buffer (0.3 M Tris- $\mathrm{HCl}, 10 \%$ SDS, 30% glycerol, 9.3% DTT, pH 6.8) containing 100 mM DTT for 10 min under room temperature followed by electrophoresis. Samples were visualized by Instantblue staining and photolabeling was verified by Western blot analysis using an HRP-conjugated antibiotin antibody. Negative control experiments were performed by using compound $\mathbf{3}$. A saturated biotin signal was observed when LLP 1 was used at a concentration of $1000 \mu \mathrm{M}$ (Fig. S1, lane 4). The labeling specificity of LLP 1 was further confirmed using control probe 3 (lacking the carbohydrate ligand, Fig. 1b) under the same imprinting conditions (lane 8), resulting in no detectable biotin signal.

Fig. S1. RCA 120 was modified by LLP 1. (a) Photolabeling of RCA_{120} with various concentrations of LLP 1 (lanes 1-5). Total protein staining by InstantBlue (top) and Western blot analysis using an anti-biotin antibody (bottom), showing that both chains of RCA_{120} were labeled. Lane 6: LLP 1-RCA ${ }_{120}$ crosslinked adducts formed by a PAL reaction in the absence of LLP 1. Lane 7: RCA_{120} without UV irradiation and in the presence of probe LLP 1. Lane 8: 3-RCA 120 crosslinked adducts formed by a PAL reaction with probe 3 , which lacked lactose, as a negative control.

Purification of LLP 1-RCA 120

As shown in Fig. S2, an aliquot of above partially purified mixture ($200 \mu \mathrm{~L}$) was incubated with monomeric avidin-MNP ($\mathrm{BcMag}^{\mathrm{TM}}$ Monomeric Avidin Magnetic beads, MAMB) at room temperature for 60 min with vortexing. The $\mathrm{RCA}_{120}-\mathrm{MAMB}$ complex was isolated by applying a magnet, and the resulting MNPs were washed three times with $50 \mu \mathrm{~L}$ washing buffer (PBS with 0.05% Tween $20, \mathrm{pH} 7.4$). The samples were then treated with SDS-PAGE loading buffer (0.3 M Tris-HCl, 10% SDS, 30% glycerol, 9.3% DTT, pH 6.8) containing with 100 mM DTT for 10 min under room temperature followed by electrophoresis. Samples were visualized by Instantblue staining and verified by Western blotting.

Fig. S2. Purification of LLP 1-RCA ${ }_{120}$ by monomeric avidin magnetic beads. SDSPAGE: lane 1: supernatant and lane 2 : beads.

Preparation of alkynated RCA_{120}

The pH of $\mathrm{RCA}_{120}-\mathrm{MAMB}$ complex solution was adjusted to $\mathrm{pH}=3$ by adding citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer solution and the resulting solution was incubated for 1 hour at room temperature. Equivalent amounts of all samples were treated with SDS-PAGE loading buffer (0.3 M Tris- $\mathrm{HCl}, 10 \%$ SDS, 30% glycerol, 9.3% DTT, pH 6.8) containing 100 mM DTT for 10 min under room temperature followed by electrophoresis. Samples were visualized by Instantblue staining and verified by Western blotting.

Determination of alkynylated RCA_{120} labeled site

Sample preparation for mass spectrometry.

Protein and peptide Processing. Protein extracts were subsequently reduced with 10 mM dithiothreitol (Sigma, D9779) for 30 min at $29^{\circ} \mathrm{C}$ and alkylated with 50 mM iodoacetamide (Sigma, I1149) for 45 min . Samples were diluted 2-fold with 50 mM TEABC prior to digestion with LysC (Wako, 125-02543) for 3 hr at $29^{\circ} \mathrm{C}$ and 8 -fold to trypsin (Promega, V51110) overnight, the enzyme-to-protein ratio for LysC was 1:100 and trypsin was $1: 50$. Digested peptides were acidified with 10% trifluoroacetic acid (TFA, Wako, 208-02741) to a final concentration of $0.5 \%(\mathrm{pH} \sim 2$ to 3$)$ and desalted on the homemade stage-tip by SDB-XC Empore wafers (3M). Peptide samples were dried by vacuum centrifugation and saved for LC-MS/MS analysis at $-80^{\circ} \mathrm{C}$.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS)

LC-MS/MS analysis was performed on a Q Exactive Plus mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) equipped with a nanospray interface (Proxeon, Odense, Denmark). Peptides were separated on a nanoAcquity system (Waters, Milford, MA) which was connected to mass spectrometry The spin-vacuum dried peptide samples were re-dissolved in 0.1% formic acid (FA) and loaded onto a 25 cm commercial analytical column with $3 \mu \mathrm{~m}$ reverse phase C 18 beads ($75 \mu \mathrm{~m}$ inner diameter, Thermo Fisher Scientific), the column temperature was maintained at $35^{\circ} \mathrm{C}$. The peptides were separated with a binary buffer system of 0.1% FA (buffer A) and ACN plus 0.1% FA (buffer B), at a flow rate of $3 \mu \mathrm{~L} / \mathrm{min}$ with 120 min gradient. The instruments were operated in data-dependent acquisition mode where the top-15 peaks were performed fragmentation. The full MS scans were acquired with a resolution of 70,000, an AGC target of 3e6 and a mass range from 350 to $1700 \mathrm{~m} / \mathrm{z}$. MS/MS scans
were triggered with a resolution of 17,500 , an AGC target of 2e5, an isolation window $2.0 \mathrm{~m} / \mathrm{z}$ and a normalized collision energy of 27%. The dynamical exclusion was 30 sec.

Raw MS data processing

Raw mass spectrometry data were processed with Proteome Discoverer 2.1.1 platform (Thermo Scientific, Bremen, Germany) and searched using Mascot and SequestHT against Swiss-Prot Homo sapiens protein database, allowing for up to two missed cleavages. The variable modifications included oxidized methionine ($\mathrm{M},+15.995 \mathrm{Da}$), acetylation (protein N-term, +42.011 Da), deamidation ($\mathrm{N} / \mathrm{Q},+0.984 \mathrm{Da}$) and probe $\left(\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{3},+351.239616 \mathrm{Da}\right)$. Carbamidomethylation $(\mathrm{C},+57.0214 \mathrm{Da})$ was set as a fixed modification. Precursor mass tolerance was set to 10 ppm and 0.1 Da for fragment mass. The false-discovery rate (FDR) filtration performed at 0.01 was both done on peptide and protein level. For label-free quantification, the average values of each sample were calculated and normalized with total summary of intensity.
a.

b.

c.

d.

Fig. S3. Identification of labeled sites by LC-MS/MS analysis after Trypsin digestion of alkynylated RCA $_{120}$. (a) Primary sequence of RCA $_{120}$. (b) and (c) ESI-TRAP MS/MS analysis of alkynated-RCA 120 . (d) The crystal structure of RCA ${ }_{120}$ (PDB: 1RZO). The amino acids, Tyr478 of B chain and Thr239 of A chain, labeled by 1 are highlighted.

Modification of alkynylated RCA120 by CuAAC

Stock solutions: $\mathrm{CuSO}_{4}: 60 \mathrm{mM}$ (in water), THPTA: 60 mM (in water), sodium ascorbate: 200 mM (fresh prepared), azido-molecule: 50 mM and buffer: PBS buffer
pH 7.4.

CuAAC procedure

Reagents were added into a 1.5 mL eppendorf tube by the following order:
$10 \mu \mathrm{~L}$ of mixed 60 mM CuSO 4 (final concentration: 1.71 mM) and $50 \mu \mathrm{~L}$ of 60 mM THPTA (final concentration: 8.55 mM) were added to the alkynylated- RCA_{120} solution (final concentration: $2.4 \mu \mathrm{M}$) followed by addition of $20 \mu \mathrm{~L}$ of 200 mM sodium ascorbate (final concentration: 11.43 mM) and $1.5 \mu \mathrm{~L}$ of 50 mM probe 5 (final concentration: 0.21 mM). After incubation for 12 hours, product was purified by PD Minitrap ${ }^{\mathrm{TM}} \mathrm{G}-25$ column following the protocol suggested by manufacturer.

Photo-crosslink of 5-RCA 120 with OVA

5-RCA 120 (final concentration $0.85 \mu \mathrm{M}$) was incubated with OVA (final concentration $85 \mu \mathrm{M}$) in PBS buffer (pH 7.4) at $4^{\circ} \mathrm{C}$ for 60 min and then irradiated with a UV lamp ($365 \mathrm{~nm}, 18.7 \mathrm{~mW} / \mathrm{cm}^{2}$ at 4 cm) (Blak-Ray ${ }^{\circledR}$ B-100AP High Intensity UV lamp) at 4 ${ }^{\circ} \mathrm{C}$ for 30 min .

Environmental sensitive detection of interaction between 6-RCA 120 and OVA

(1) Direct interaction. 6-RCA ${ }_{120}$ (final concentration $0.1 \mu \mathrm{M}$) was incubated with OVA (final concentration $12.5 \mu \mathrm{M}$) in PBS buffer (pH 7.4) at room temperature for 2 hours. The formation of $\mathbf{6}-\mathrm{RCA}_{120}-\mathrm{OVA}$ complex was investigated by measuring the fluorescent emission spectrum with excitation wavelength at 570 nm and emission wavelength from 590 to 750 nm . For non-specific binding, OVA was replaced with BSA (Fig. S4).

Fig. S4. Fluorescent emission spectra of $\mathbf{6}-\mathrm{RCA}_{120}$ and with OVA and BSA.
(2) Lactose competition. High concentration of lactose (125 mM) was added into the solution of $\mathbf{6}-\mathrm{RCA}_{120}-\mathrm{OVA}$ complex, obtained by above incubation. The mixture was incubated for 6 hours. The result was investigated by measuring the fluorescent emission spectrum with excitation wavelength at 570 nm and emission wavelength from 590 to 750 nm .
(3) Negative control experiment. $10 \mu \mathrm{~L}$ of protein deglycosylation mix II (NEB) enzymes was mixed with OVA $(12.5 \mu \mathrm{M})$ in PBS buffer (pH 7.4) at room temperature for 2 hours. Then, the $\mathbf{6}-\mathrm{RCA}_{120}(0.1 \mu \mathrm{M})$ was added to the above protein solution and the resulting solution was incubated for 2 hours. The formation of $6-\mathrm{RCA}_{120}-\mathrm{OVA}$ complex was investigated by measuring the fluorescent emission spectrum with excitation wavelength at 570 nm and emission wavelength from 590 to 750 nm .

Random modification of RCA $_{120}$ by compound 7

To a solution of compound 43 ($40.0 \mathrm{mg}, 0.09 \mathrm{mmol}$), N-hydroxysuccinimide (10.1 mg ,
0.09 mmol) and N-(3-dimethylaminopropyl)- N '-ethylcarbodiimide hydrochloride (16.8 $\mathrm{mg}, 0.09 \mathrm{mmol})$ in dry $\mathrm{DCM}(1.8 \mathrm{~mL})$ was stirred at room temperature under a nitrogen atmosphere for 10 hours. The solvent was removed under reduced pressure and the resulting residue 7 was diluted with DMSO to a 50 mM stock solution. HRMS (ESITOF, m / z) calculated for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 553.2339$, found: 553.2338.
RCA_{120} (final concentration $2 \mu \mathrm{M}, 200 \mu \mathrm{~L}$ in PBS buffer, pH 7.4) was incubated with NHS-activated compound 7 (final concentration $200 \mu \mathrm{M}$). After incubation for 12 hours at room temperature, the protein was purified using a PD Minitrap ${ }^{\text {TM }} \mathrm{G}-25$ column. The above randomly modified $7-\mathrm{RCA}_{120}$ was incubated with OVA or BSA separately in PBS buffer (pH 7.4) at room temperature for 2 hours. The formation of protein complex was investigated by measuring the fluorescent emission spectrum with excitation wavelength at 570 nm and emission wavelength from 590 to 750 nm (Fig. S5).

Fig. S5. Environment-sensitive fluorescent intensity between random modified 7RCA_{120} with OVA and BSA, respectively.
(a)

(b)

Fig. S6. Microarray fluorescence images for RCA_{120} and modified RCA_{120} probes binding assays. (a) glycan ligands binding affinities toward native RCA_{120}. (b) binding affinities of RCA_{120} and modified RCA_{120} toward di-LacNAc.

Cell culture

HeLa cells were cultured in DMEM medium supplemented with 10% fetal bovine serum and incubated at $37^{\circ} \mathrm{C}$ under a humidified atmosphere of 95% air and $5 \% \mathrm{CO}_{2}$.

No-wash fluorescence imaging of surface interaction molecules on HeLa cell by

6-RCA 120

About 1×10^{3} cells were maintained in a culture medium supplemented with $10 \% \mathrm{FBS}$ and seeded in 8-well chamber slides and cultured for 24 h at $37{ }^{\circ} \mathrm{C}$ in air with $5 \% \mathrm{CO}_{2}$. As shown in the Fig. S7, cells were treated with $40 \mathrm{nM} 6-\mathrm{RCA}_{120}(20 \mu \mathrm{~L})$ and the resulting mixture was incubated for 90 min under $37{ }^{\circ} \mathrm{C}$ in air with $5 \% \mathrm{CO}_{2}$, followed by acquisition of live-cell images without any washing steps. For control experiments, cells were treated with $10 \mu \mathrm{~L}$ of Protein Deglycosylation Mix II (NEB) or 0.01 U of Neuraminidase from Arthrobacter ureafaciens [EC 3.2.1.18] (Nacalai Tesque) under cell culture conditions for 2 hours. Then, $40 \mathrm{nM} \mathbf{6}-\mathrm{RCA}_{120}(20 \mu \mathrm{~L})$ was added and the resulting mixture were incubated for 90 min under the same conditions. Cell images were taken without removing the excess probe using a laser scanning confocal microscope (LSM 700, Zeiss, Germany). The images were taken using a 555 nm laser for excitation and emission from 590 to 700 nm .

Fig. S7. Confocal fluorescence microscopy images showing the glycan-mediated HeLa cell imaging using an environment-sensitive $\mathbf{6}-\mathrm{RCA}_{120}$ probe. (a) The location of 6RCA_{120} is indicated by red fluorescence. (b) Cell nuclei are stained with Hoechst 34580, indicated by blue fluorescence. (c) The HeLa cell morphology was showed by
differential interference contrast microscopy. (d) An overlay of the images shown in (a-c). Scale bar: $20 \mu \mathrm{~m}$.

Dynamic observation of 6-RCA $\mathbf{R A}_{120}$ and glycoprotein interactions.

About 1×10^{3} cells were seeded in 8 -well chamber slides and cultured at $37^{\circ} \mathrm{C}$ in air with $5 \% \mathrm{CO}_{2}$ for 24 h . At the first part, cells were treated with $10 \mu \mathrm{~L}$ Protein Deglycosylation Mix II (NEB) and incubated under cell culture conditions for 1.5 hours. Then, the medium was replaced with the fresh medium containing $40 \mathrm{nM} 6-\mathrm{RCA}_{120}$ and $0.01 \mathrm{U} 10 \mu \mathrm{~L}$ neuraminidase. Cell images were taken without removing the excess probe using a laser scanning confocal microscope for 40 min . Then the second part, the medium containing excess probe was replaced by the fresh medium and images were taken for an additional 2 hours. The videos (Movie S1 and S2) show the first part (before media replacement) and the second part (after media replacement) respectively. In addition, $4-\mathrm{RCA}_{120}$ was used as the probe for control experiments to dynamically observe probe-glycoprotein interactions on the cell surface, as shown in Movie S3. To confirm the location of the uptake of $\mathbf{6}-\mathrm{RCA}_{120}$ via lectin-glycoprotein interaction, 1.5×10^{3} cells were seeded in 8 -well chamber slides and cultured at $37^{\circ} \mathrm{C}$ in air with $5 \% \mathrm{CO}_{2}$ for 15 hr . Then, cells were treated with 0.01 U of neuraminidase from Arthrobacter ureafaciens [EC 3.2.1.18] (Nacalai Tesque) and $1 \mu \mathrm{M}$ LysoTracker ${ }^{\mathrm{TM}}$ Green DND-26 under cell culture conditions. After 2 hours incubation, cells were cooled down to $4{ }^{\circ} \mathrm{C}$ for 10 min then 40 nM of $\mathbf{6}-\mathrm{RCA}_{120}$ was added and the resulting mixture was incubated at $4{ }^{\circ} \mathrm{C}$ for 10 min , then at $25{ }^{\circ} \mathrm{C}$ for 30 min . Cell images were taken without removing the excess probe using a laser scanning confocal microscope (Fig. S8).

Fig. S8. Confocal fluorescence microscopy images showing the localization of 6RCA_{120} within late endosomes and/or lysosomes of HeLa cells. (a) The location of 6 RCA_{120} is indicated by red fluorescence. (b) Cell nuclei are stained with Hoechst 34580, indicated by blue fluorescence. (c) HeLa cell morphology shown by differential interference contrast microscopy. (d) The green fluorescence is labeled by LysoTracker Green DND-26, indicative of the location of endosomes and/or lysosomes. (e) An overlay of the images shown in (a-d). The yellow fluorescence indicates that $\mathbf{6}-\mathrm{RCA}_{120}$ co-localized with LysoTracker Green DND-26 in late endosomes and/or lysosomes. Scale bar: $20 \mu \mathrm{~m}$.

Fig. S9. Evaluating the fluorescence of merocyanine dye (acid form of 6) under different pH conditions.

Reference

1. W.-T. Chien, C.-F. Liang, C.-C. Yu, C.-H. Lin, S.-P. Li, I. Primadona, Y.-J. Chen, K. K. T. Mong, C.-C. Lin, Sequential one-pot enzymatic synthesis of oligo- N acetyllactosamine and its multi-sialylated extensions. Chem. Comтип. 50, 57865789 (2014).
2. H.-J. Chen, C. Y. Chew, E.-H. Chang, Y.-W. Tu, L.-Y. Wei, B.-H. Wu, C.-H. Chen, Y.-T. Yang, S.-C. Huang, J.-K. Chen, I. C. Chen, K.-T. Tan, S-Cis Diene Conformation: A New Bathochromic Shift Strategy for Near-Infrared Fluorescence Switchable Dye and the Imaging Applications. J. Am. Chem. Soc. 140, 5224-5234 (2018).

NMR spectra

$$
\left.\begin{array}{l}
\angle T 0 \varepsilon \cdot \varepsilon \\
8 G 0 \varepsilon \cdot \varepsilon \\
660 \varepsilon \cdot \varepsilon \\
0 \square T \varepsilon \cdot \varepsilon \\
\tau 8 T \varepsilon \cdot \varepsilon
\end{array}\right\}
$$

$$
\angle \square \angle \square \cdot ォ-
$$

$$
\angle 8 乙 9^{\circ} \text { ஏ }
$$

$$
L 688^{\circ} \text { пー }
$$

<esmes,

$$
\begin{aligned}
& \text { DDL-082-3 } \\
& \text { Current Data Parameters } \\
& \text { NAME } \\
& \text { EXPNO } \\
& \text { PROCNO } \\
& \\
& \text { F2 - Processing parameters } \\
& \text { SI } \\
& \text { SF } \\
& \text { SF } \\
& \text { WD } \\
& \text { SSB } \\
& \text { LB } \\
& \text { LB } \\
& \text { GB } \\
& \text { PC }
\end{aligned}
$$

S0ォ・9IT——
990・モてL—
$896 \cdot 8 乙 T$
ØGと・6てT
$8 \angle 9 \cdot 6 \varepsilon T$
Z0Z•99I

$$
\begin{aligned}
& \text { DDL-082-3-C13 } \\
& \text { Current Data Parameters } \\
& \text { NAME } \\
& \text { EXPNO } \\
& \text { PROCNO } \\
& \\
& \text { F2 - Processing parameters } \\
& \text { SI } \\
& \text { SF } \\
& \text { WDW } \\
& \text { SSB } \\
& \text { SB } \\
& \text { LB } \\
& \text { GB } \\
& \text { PC }
\end{aligned}
$$

Coreres

$\begin{aligned} & \text { SL6.99 } \\ & \text { 6ع0. } 49\end{aligned}>$
$\mathrm{L} 89 \cdot 9 \mathrm{~L}$
$000 \cdot \mathrm{LL}$
8 TE.LL

$$
\angle 6 \nabla^{\circ} 09
$$

$$
\angle \varepsilon L \cdot \tau 9
$$

$$
\text { 乙бと・99 } \quad \text { l }
$$

$$
8 \angle 9 \cdot 89]
$$

ع98.9L

$$
\begin{aligned}
& \varepsilon \angle 9 \circ^{\circ} 9 L \\
& 966.9 L
\end{aligned}
$$

$$
\mathrm{G}[\varepsilon \cdot L L]
$$

2ZO.00T
$9 \varepsilon \sigma \cdot 00 \tau$

 $\angle 8 \varepsilon \cdot 00 T$ $986 \cdot 00 T$

$$
\begin{array}{lc}
\text { Current Data Parameters } \\
\text { NAME } & \text { DDL-198-2-C-2 } \\
\text { EXPNO } & 1 \\
\text { PROCNO } & 1 \\
& \\
\text { F2 - Processing parameters } \\
\text { SI } & 65536 \\
\text { SF } & 100.5214612 \\
\text { WDW } & \text { MHz } \\
\text { SSB } & 0 \\
\text { LB } & \\
\text { GB } & 0 \\
\text { PC } & 2.00 \mathrm{~Hz} \\
& 1.00
\end{array}
$$

$\begin{array}{llllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \text { ppm }\end{array}$

$$
\begin{aligned}
& 96 L \cdot 99- \\
& 9 \angle 9 \cdot 9 L \\
& 966 \cdot 9 L \\
& 9 \tau \varepsilon \cdot L L
\end{aligned}
$$

もと8・てLT

$$
\begin{array}{lc}
\text { Current Data } \begin{array}{c}
\text { Parameters } \\
\text { NAME }
\end{array} & \text { DDL-385C-3 } \\
\text { EXPNO } & 1 \\
\text { PROCNO } & 1 \\
& \\
\text { F2 - Processing parameters } \\
\text { SI } & 65536 \\
\text { SF } & 100.5217109 \mathrm{MHz} \\
\text { WDW } & \text { EM } \\
\text { SSB } & 0
\end{array}
$$

8

ZLて・ロレT
999・ロムT
ロロL・ロレT

\cdots
LZO•9TI
Lも8．6IT
L6と・โてT一
8としでした。
もレも・レとT－
も0ع•عøT－

TOT•8GT
T0
［T9＊69
88でもし
8Lじもし
806
ても6＊9LT

$$
\begin{gathered}
\text { DDL-208-20161102-13C } \\
\text { Current } \\
\text { Nata Parameters } \\
\text { NAME } \\
\text { EXPNO } \\
\text { PROCNO } \\
\text { PROCNO }
\end{gathered}
$$

$$
||\mid
$$

