Supporting Information

Molecular Design of Bioorthogonal Probes and Imaging Reagents Derived from Photofunctional Transition Metal Complexes

Kenneth Kam-Wing Lo*

Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China

E-mail: bhkenlo@cityu.edu.hk

Complex	Solvent	$\lambda_{ m em}/ m nm$	$ au_{ m o}/\mu{ m s}$	$arPsi_{ m em}$	I/I_{o}^{a}	Ref.
1a ^b	CH ₃ OH	610	0.091	0.020	_	1
1b ^b	CH ₃ OH	551 sh, 595	0.16	0.031	_	1
$\mathbf{1c}^{b}$	CH ₃ OH	514 sh, 553	1.78 (43%), 0.48 (57%)	0.20	_	1
$2\mathbf{a}^{c}$	CH ₃ CN	545	1.24	0.11	_	2
2b ^c	CH ₃ CN	485 sh, 512	4.57	0.03	_	2
$2c^{c}$	CH ₃ CN	556	4.20	0.09	_	2
$\mathbf{3a}^d$	Buffer ^e	605	0.74	0.05	_	3
$\mathbf{3b}^d$	Buffer ^e	598	0.81	0.07	_	3
4a ^c	CH ₃ CN	523	1.80	0.003	181.1	4
4b ^c	CH ₃ CN	548	4.21	0.020	15.6	4
5 a ^c	CH ₃ CN	523	1.70	0.003	145.1	4
5 b ^{<i>c</i>}	CH ₃ CN	556	4.21	0.022	8.0	4
6a ^c	CH ₃ CN	528	1.75	0.011	95.5	4
6b ^c	CH ₃ CN	546	6.08	0.021	35.3	4
$\mathbf{7a}^{b}$	Buffer ^f	520	0.86	0.006	25.7	5
$\mathbf{7b}^b$	Buffer ^f	523 (max), 561, 604 sh	2.57	0.009	19.5	5
$\mathbf{7c}^b$	Buffer ^f	593 (max), 644, 705 sh	2.90	0.004	121.9	5
$\mathbf{7d}^b$	Buffer ^f	650	0.07	< 0.001	79.9	5
8a ^b	Buffer ^f	456, 488 sh, 550 (max)	0.31	0.0023	36.6	6
$\mathbf{8b}^b$	Buffer ^f	484, 513 (max)	1.17	0.0001	96.1	6
8c ^b	Buffer ^f	592	0.24	0.0025	23.1	6

Table S1. Photophysical data of various complexes in degassed solutions at 298 K.

9a ^b	Buffer ^f	579	0.12	0.0006	60.5	7
9b ^b	Buffer ^f	557, 595 sh	2.13	0.014	28.8	7
9c ^b	Buffer ^f	652	0.03	0.0002	135.0	7
10a ^d	Buffer ^g	611	0.641	0.004	9.53	8
10b ^d	Buffer ^g	650	0.523	0.003	7.10	8
10c ^{<i>d</i>}	Buffer ^g	602	1.030	0.006	10.24	8
$\mathbf{10d}^d$	Buffer ^g	619	2.836	0.018	5.77	8
10e ^{<i>d</i>}	Buffer ^e	610	0.685	0.006	3.89	8
11a ^b	Buffer ^h	526	0.36	0.15	1.1	9
11b ^b	Buffer ^h	588	0.11	0.027	7.9	9
11c ^b	Buffer ^h	656	0.03	0.0030	2.5	9

^{*a*} I_0 and I are the emission intensities of the complexes in the absence and presence of bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN-OH) in aerated solutions. Readers are refered to the original references for more details of the reaction conditions. ^{*b*} Excitation at 350 nm. ^{*c*} Excitation at 355 nm. ^{*d*} Excitation at 455 nm. ^{*e*} Potassium phosphate buffer (50 mM, pH 7.4)/CH₃OH (4:1, v/v). ^{*f*} Potassium phosphate buffer (50 mM, pH 7.4)/CH₃OH (7:3, v/v). ^{*g*} Potassium phosphate buffer (50 mM, pH 7.4)/DMSO (9:1, v/v). ^{*h*} Potassium phosphate buffer (50 mM, pH 7.4)/DMSO (7:3, v/v).

Scheme S1. Strain-promoted alkyne–azide cycloaddition (SPAAC) reaction of an azide with a strained alkyne to afford a triazole derivative.

 $\xrightarrow{R^2} \xrightarrow{R^1} \underset{N}{\overset{N}{\underset{N}}} \underset{N}{\overset{N}{\underset{N}}} \underset{R^2}{\overset{R^2}}$ N=N=N -R^{1′}

Scheme S2. Inverse Electron-Demand Diels–Alder (IEDDA) cycloaddition reactions of 1,2,4,5-tetrazine with an alkene and alkyne to afford a dihydropyridazine and pyridazine derivative, respectively.

Scheme S3. Strain-promoted alkyne–nitrone cycloaddition (SPANC) reaction of a nitrone with a strained alkyne to afford an isoxazoline derivative.

 $\xrightarrow{R_3} R^2 - N \xrightarrow{R_1} R^3$ R¹ R²

Scheme S4. Strain-promoted sydnone–alkyne cycloaddition (SPSAC) reaction of a sydnone with a strained alkyne to afford a pyrazole derivative.

CO₂ R¹-N R1-R³

REFERENCES

(1) Lo, K. K.-W.; Chan, B. T.-N.; Liu, H.-W.; Zhang, K. Y.; Li, S. P.-Y.; Tang, T. S.-M. Cyclometalated Iridium(III) Polypyridine Dibenzocyclooctyne Complexes as the First Phosphorescent Bioorthogonal Probes. *Chem. Commun.* 2013, 49, 4271–4273.

(2) Choi, A. W.-T.; Liu, H.-W.; Lo, K. K.-W. Rhenium(I) Polypyridine Dibenzocyclooctyne Complexes as Phosphorescent Bioorthogonal Probes: Synthesis, Characterization, Emissive Behavior, and Biolabeling Properties. *J. Inorg. Biochem.* **2015**, *148*, 2–10.

(3) Tang, T. S.-M.; Yip, A. M.-H.; Zhang, K. Y.; Liu, H.-W.; Wu, P. L.; Li, K. F.; Cheah, K. W.; Lo, K. K.-W. Bioorthogonal Labeling, Bioimaging, and Photocytotoxicity Studies of Phosphorescent Ruthenium(II) Polypyridine Dibenzocyclooctyne Complexes. *Chem. Eur. J.* **2015**, *21*, 10729–10740.

(4) Choi, A. W.-T.; Tso, K. K.-S.; Yim, V. M.-W.; Liu, H.-W.; Lo, K. K.-W.
Modification of 1,2,4,5-Tetrazine with Cationic Rhenium(I) Polypyridine Units to Afford
Phosphorogenic Bioorthogonal Probes with Enhanced Reaction Kinetics. *Chem. Commun.*2015, *51*, 3442–3445.

(5) Li, S. P.-Y.; Yip, A. M.-H.; Liu, H.-W.; Lo, K. K.-W. Installing an Additional Emission Quenching Pathway in the Design of Iridium(III)-Based Phosphorogenic Biomaterials for Bioorthogonal Labeling and Imaging. *Biomaterials* **2016**, *103*, 305–313.

(6) Tang, T. S.-M.; Liu, H.-W.; Lo, K. K.-W. Monochromophoric Iridium(III) Pyridyl-Tetrazine Complexes as a Unique Design Strategy for Bioorthogonal Probes with Luminogenic Behaviour. *Chem. Commun.* **2017**, *53*, 3299–3302.

(7) Lee, L. C.-C.; Lau, J. C.-W.; Liu, H.-W.; Lo, K. K.-W. Conferring Phosphorogenic Properties on Iridium(III)-Based Bioorthogonal Probes through Modification with a Nitrone Unit. *Angew. Chem., Int. Ed.* **2016**, *55*, 1046–1049.

(8) Tang, T. S.-M.; Liu, H.-W.; Lo, K. K.-W. Structural Manipulation of Ruthenium(II) Polypyridine Nitrone Complexes to Generate Phosphorogenic Bioorthogonal Reagents for Selective Cellular Labeling. *Chem. Eur. J.* **2016**, *22*, 9649–9659.

(9) Lee, L. C.-C.; Cheung, H. M.-H.; Liu, H.-W.; Lo, K. K.-W. Exploitation of Environment - Sensitive Luminophores in the Design of Sydnone - Based Bioorthogonal Imaging Reagents. *Chem. Eur. J.* **2018**, *24*, 14064–14068.