Supporting Information

Volatile and Thermally Stable Polymeric Tin Trifluoroacetates

Goran Bačić,* Conor D. Rankine,^y Jason D. Masuda,^m Derek A. Wann,^y Seán T. Barry.^c

c Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6

y Department of Chemistry, University of York, Heslington, York, United Kingdom YO10 5DD

m Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia, Canada B3H 3C3

Table of Contents

Supplementary Figures and Tables	
Mass spectrograms of 3	2
Molecular intensity curves (MIC) and Radial Distribution Curves (RDC) from GED of 3 and 5	4
Crystallographic details of 3	6
Crystallographic details of 5	13
Crystallographic details of (1←PMe ₃) ₆	17
Crystallographic details of $6 \leftarrow (OEt_2)_2$	26
Crystallographic details of 4	31
DFT and GED results for 1 and 2	36
DFT and GED results for 6	52

Supplementary Figures and Tables

Figure S1. Electron-ionization mass spectrograms (EIMS) of **3**. Isotope patterns are labeled by their matching exact mass formulae. *Note:* the upper limit of accurate mass determination on this instrument was ~600 m/z, so the last ion (Sn₃O(O₂CCF₃)₃⁺, bottom-right) could not be unambiguously identified. However, the isotope pattern clearly showed the presence of 3 Sn atoms in the ion, which supports our identification.

Figure S2. Electrospray ionization (ESI⁺) mass spectrograms of 3 in acetonitrile.

Figure S3: Radial distribution curve (RDC, top) and difference curve (bottom) for 3 (left) and 5 (right) collected by GED. Experimental data for 3 (right, black with green highlight) were compared to theoretically calculated RDCs for different molar ratios of 1 and 2 (white), and the best fit at 52:48 (95% confidence) was plotted here (R_G = 4.2% and R_D = 2.9%). Similarly, 5 (left, white with blue highlight) was compared to its DFT optimized structure (gold) and found to be monomeric 6 in the gas phase (R_G = 5.0% and R_D = 3.7%).

Figure S4: Quality of least-squares refinement $R_G/R_{G_{min}}$ of GED data of **3** as a function of the mole fraction of **1** and **2**. The well minimum is between 0.52-0.53, and 0.500 lies within 2σ of the minimum (i.e., 95% confidence). This confirmed bulk **3** thermally depolymerizes into an equimolar mixture of **1** and **2** upon evaporation.

Figure S5. Molecular intensity curves for 1+2 (top) and 6 (bottom) obtained from gas phase electron diffraction at long (*L*) and short (*S*) nozzle distances. Difference curves for each are shown below.

Crystallography of hexatin(II) di-µ₃-oxy-octakis-µ-trifluoroacetate (3)

Figure S6. Crystal packing of a $3 \times 3 \times 3$ supercell of **3**. Chains bound via Sn5–O18* bonds are depicted as single-colour stick diagrams (blue or gold), except for one that is displayed as a spacefilling diagram with the elements coloured as in the body text (e.g., Sn, white; O, red; F, green; C, grey). Fragments of chains surrounding the supercell have been omitted for clarity.

Figure S7. Crystal packing of a $3 \times 3 \times 3$ supercell of 3, viewed from the top of Figure S6.

Figure S8. Crystal packing of a $3 \times 3 \times 3$ supercell of **3**, viewed from the right of Figure S6.

Figure S9. Bond definitions for 3. Sn–O bonds were clearly grouped into three types by comparing the five shortest Sn-O distances: two "weak bonds" (i.e., coordinative C–O \rightarrow Sn bonds, longer than average, blue), two "strong bonds" (i.e., covalent C–O–Sn bonds, shorter than average, green), and one μ_3 -bridging oxy bond (black, shortest, d < 2.1 Å). The average with standard deviation of these bonds is drawn in yellow.

Table S0: Tin-oxygen interatomic distances of **3** in the solid state. All bonds are in Å and the standard uncertainty on each is ± 0.003 Å. Strong bonds (i.e., μ_3 -O and covalent O₂CCF₃ bonds, ≤ 2.4 Å) are bolded and weak bonds (i.e., coordinative interactions, >2.4 Å) are normal weight. Intermolecular contacts are colored green.

	Sn1	Sn2	Sn3	Sn4	Sn5	Sn6
01	2.233					
O2	2.755	2.636				
O3	2.257		2.685			
O4			2.880			
05	2.068	2.064	2.082			
O6	2.973	2.276				
O7				2.570	2.635	
08		2.303				
09			2.211			
O10		2.739	2.351			
011				2.306		2.859
012				2.075	2.078	2.099
013				2.197		
014					2.390	
015					2.457	
016						2.182
O17				3.047		2.325
O18					2.360	2.805

Hexatin(II) di-µ3-ox	y-octakis-µ-trifluoroacetate (3)	
Identification code	CCDC 1885252	
Empirical formula	$C_{16}F_{24}O_{18}Sn_6$	
Formula weight	1648.3	
Temperature	148(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	$a = 13.2252(12) \text{ Å} \qquad \alpha = 90^{\circ}$	
	$b = 12.8538(11)$ Å $\beta = 100.2660(10)^{\circ}$.	
	$c = 22.488(2) \text{ Å}$ $\gamma = 90^{\circ}$	
Volume / Å ³	3761.6(6)	
Ζ	4	
$ ho_{\text{calc}} / \text{g cm}^{-3}$	2.911	
μ / mm^{-1}	4.112	
F(000)	3024	
Crystal size / mm ³	$0.115 \times 0.14 \times 0.07$	
θ range for data collection	1.565 to 27.995°	
Index ranges	$-17 \le h \le 17$	
-	$-16 \le k \le 16$	
	$-29 \le l \le 29$	
Reflections collected	45 724	
Independent reflections	9031 [R(int) = 0.0526]	
Completeness to $\theta = 25.242^{\circ}$	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7458 and 0.6096	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9031 / 147 / 633	
Goodness-of-fit on F ²	1.069	
Final R indices $[I > 2\sigma(I)]$	$R1 = 0.0310, \ \omega R2 = 0.0575$	
R indices (all data)	$R1 = 0.0444, \ \omega R2 = 0.0622$	
Extinction coefficient	N/A	
Largest diff. peak and hole / e $Å^{-3}$	0.966 and -1.166	

 Table S1. Selected crystallographic parameters for 3.

 Table S2. Bond lengths (in Å) for 3.

	-		
Sn(1)-O(5)	2.068(3)	O(9)-C(7)	1.257(5)
Sn(1)-O(3)	2.257(3)	O(6)-C(5)	1.251(5)
Sn(1)-O(1)	2.232(3)	F(7)-C(6)	1.316(5)
/Sn(3)-O(5)	2.082(3)	F(17)-C(12)	1.325(5)
Sn(3)-O(10)	2.351(3)	O(4)-C(3)	1.209(5)
Sn(3)-O(9)	2.211(3)	O(1)-C(1)	1.255(5)
Sn(4)-O(12)	2.074(3)	F(16)-C(12)	1.315(5)
Sn(4)-O(13)	2.197(3)	F(13)-C(10)	1.317(5)
Sn(4)-O(11)	2.307(3)	O(2)-C(1)	1.236(5)
Sn(2)-O(5)	2.063(3)	O(14)-C(11)	1.237(5)
Sn(2)-O(8)	2.303(3)	F(18)-C(12)	1.327(5)
Sn(2)-O(6)	2.275(3)	O(17)-C(15)	1.244(5)
Sn(5)-O(12)	2.078(3)	F(15)-C(10)	1.298(5)
Sn(5)-O(18)#1	2.360(3)	F(9)-C(6)	1.308(5)
Sn(5)-O(14)	2.390(3)	F(8)-C(6)	1.342(6)
Sn(5)-O(15)	2.456(4)	O(16)-C(13)	1.230(6)
Sn(6)-O(12)	2.099(3)	C(1)-C(2)	1.538(6)
Sn(6)-O(17)	2.324(3)	C(3)-C(4)	1.538(6)
Sn(6)-O(16)	2.182(3)	C(9)-C(10)	1.543(6)
F(24)-C(16)	1.323(5)	C(5)-C(6)	1.528(6)
F(1)-C(2)	1.338(5)	O(15)-C(13)	1.233(6)
O(10)-C(9)	1.251(5)	C(15)-C(16)	1.548(6)
F(5)-C(4)	1.327(5)	C(12)-C(11)	1.539(6)
F(3)-C(2)	1.331(5)	C(7)-C(8)	1.511(6)
O(3)-C(3)	1.291(5)	C(13)-C(14)	1.499(7)
F(14)-C(10)	1.332(5)	F(12B)-C(8)	1.293(8)
F(22)-C(16)	1.326(5)	F(11B)-C(8)	1.265(7)
F(2)-C(2)	1.316(5)	F(10B)-C(8)	1.445(7)
O(13)-C(11)	1.255(5)	C(8)-F(12A)	1.269(10)
F(23)-C(16)	1.331(5)	C(8)-F(11A)	1.282(12)
F(6)-C(4)	1.337(5)	C(8)-F(10A)	1.535(10)
O(11)-C(9)	1.246(5)	F(21A)-C(14)	1.281(9)
O(18)-Sn(5)#2	2.360(3)	F(20A)-C(14)	1.294(8)
O(18)-C(15)	1.242(5)	F(19A)-C(14)	1.410(8)
F(4)-C(4)	1.326(5)	C(14)-F(20B)	1.347(14)
O(7)-C(5)	1.246(5)	C(14)-F(21B)	1.359(14)
O(8)-C(7)	1.242(5)	C(14)-F(19B)	1.572(12)

Symmetry transformations used to generate equivalent atoms: #1 ($-x + 2, -y - \frac{1}{2}, -z + \frac{3}{2}$); #2 ($-x + 2, -y + \frac{1}{2}, -z + \frac{3}{2}$).

Table S3. Bond angles (in °) for 3.

O(5)-Sn(1)-O(3)	77.71(10)	F(2)-C(2)-C(1)	113.3(4)
O(5)-Sn(1)-O(1)	83.78(11)	F(14)-C(10)-C(9)	111.6(4)
O(1)-Sn(1)-O(3)	78.52(11)	F(13)-C(10)-F(14)	106.1(4)
O(5)-Sn(3)-O(10)	75.71(10)	F(13)-C(10)-C(9)	108.2(4)
O(5)-Sn(3)-O(9)	86.96(11)	F(15)-C(10)-F(14)	106.9(4)
O(9)-Sn(3)-O(10)	82.73(10)	F(15)-C(10)-F(13)	111.1(4)
O(12)-Sn(4)-O(13)	91.10(11)	F(15)-C(10)-C(9)	112.8(4)
O(12)-Sn(4)-O(11)	77.35(10)	C(13)-O(15)-Sn(5)	132.0(3)
O(13)-Sn(4)-O(11)	79.34(10)	O(18)-C(15)-O(17)	130.4(4)
O(5)-Sn(2)-O(8)	87.05(11)	O(18)-C(15)-C(16)	115.3(4)
O(5)-Sn(2)-O(6)	79.01(10)	O(17)-C(15)-C(16)	114.2(4)
O(6)-Sn(2)-O(8)	73.77(11)	F(17)-C(12)-F(18)	106.2(4)
O(12)-Sn(5)-O(18)#1	76.00(10)	F(17)-C(12)-C(11)	110.2(4)
O(12)-Sn(5)-O(14)	85.04(11)	F(16)-C(12)-F(17)	108.3(4)
O(12)-Sn(5)-O(15)	79.75(12)	F(16)-C(12)-F(18)	107.0(4)
O(18)#1-Sn(5)-O(14)	85.40(10)	F(16)-C(12)-C(11)	112.0(4)
O(18)#1-Sn(5)-O(15)	88.71(14)	F(18)-C(12)-C(11)	112.8(4)
O(14)-Sn(5)-O(15)	164.62(12)	F(7)-C(6)-F(8)	105.3(4)
O(12)-Sn(6)-O(17)	81.05(11)	F(7)-C(6)-C(5)	111.8(4)
O(12)-Sn(6)-O(16)	85.93(12)	F(9)-C(6)-F(7)	109.3(4)
O(16)-Sn(6)-O(17)	79.46(14)	F(9)-C(6)-F(8)	107.1(4)
Sn(1)-O(5)-Sn(3)	116.83(12)	F(9)-C(6)-C(5)	113.7(4)
Sn(2)-O(5)-Sn(1)	119.49(13)	F(8)-C(6)-C(5)	109.3(4)
Sn(2)-O(5)-Sn(3)	121.79(13)	F(24)-C(16)-F(22)	106.8(4)
Sn(4)-O(12)-Sn(5)	121.50(13)	F(24)-C(16)-F(23)	108.1(4)
Sn(4)-O(12)-Sn(6)	117.13(13)	F(24)-C(16)-C(15)	112.6(4)
Sn(5)-O(12)-Sn(6)	120.82(13)	F(22)-C(16)-F(23)	107.9(4)
C(9)-O(10)-Sn(3)	135.2(3)	F(22)-C(16)-C(15)	112.0(4)
C(3)-O(3)-Sn(1)	133.4(3)	F(23)-C(16)-C(15)	109.4(4)
C(11)-O(13)-Sn(4)	132.6(3)	O(13)-C(11)-C(12)	112.0(4)
C(9)-O(11)-Sn(4)	129.4(3)	O(14)-C(11)-O(13)	129.6(4)
C(15)-O(18)-Sn(5)#2	134.0(3)	O(14)-C(11)-C(12)	118.4(4)
C(7)-O(8)-Sn(2)	132.6(3)	O(8)-C(7)-O(9)	129.7(4)
C(7)-O(9)-Sn(3)	130.8(3)	O(8)-C(7)-C(8)	114.6(4)
C(5)-O(6)-Sn(2)	128.6(3)	O(9)-C(7)-C(8)	115.7(4)
C(1)-O(1)-Sn(1)	117.8(3)	O(16)-C(13)-O(15)	127.9(5)
C(11)-O(14)-Sn(5)	131.7(3)	O(16)-C(13)-C(14)	112.7(5)
C(15)-O(17)-Sn(6)	141.0(3)	O(15)-C(13)-C(14)	119.4(5)
C(13)-O(16)-Sn(6)	132.3(3)	C(7)-C(8)-F(10A)	100.9(5)

Table S3. Bond angles (in °) for 3, cont.

O(1)-C(1)-C(2)	115.0(4)	F(12B)-C(8)-C(7)	114.1(7)
O(2)-C(1)-O(1)	126.8(4)	F(12B)-C(8)-F(10B)	101.3(6)
O(2)-C(1)-C(2)	118.2(4)	F(11B)-C(8)-C(7)	113.2(6)
O(3)-C(3)-C(4)	115.9(4)	F(11B)-C(8)-F(12B)	116.7(8)
O(4)-C(3)-O(3)	127.1(4)	F(11B)-C(8)-F(10B)	101.9(6)
O(4)-C(3)-C(4)	116.9(4)	F(10B)-C(8)-C(7)	107.7(4)
O(10)-C(9)-C(10)	116.2(4)	F(12A)-C(8)-C(7)	120.5(8)
O(11)-C(9)-O(10)	128.3(4)	F(12A)-C(8)-F(11A)	117.0(13)
O(11)-C(9)-C(10)	115.5(4)	F(12A)-C(8)-F(10A)	92.6(9)
O(7)-C(5)-O(6)	127.8(4)	F(11A)-C(8)-C(7)	120.0(13)
O(7)-C(5)-C(6)	118.3(4)	F(11A)-C(8)-F(10A)	92.2(11)
O(6)-C(5)-C(6)	113.8(4)	C(13)-C(14)-F(19B)	95.3(7)
F(5)-C(4)-F(6)	106.6(4)	F(21A)-C(14)-C(13)	112.5(8)
F(5)-C(4)-C(3)	111.9(4)	F(21A)-C(14)-F(20A)	115.9(9)
F(6)-C(4)-C(3)	113.2(4)	F(21A)-C(14)-F(19A)	100.1(8)
F(4)-C(4)-F(5)	107.4(4)	F(20A)-C(14)-C(13)	114.7(7)
F(4)-C(4)-F(6)	107.0(4)	F(20A)-C(14)-F(19A)	101.9(7)
F(4)-C(4)-C(3)	110.4(4)	F(19A)-C(14)-C(13)	110.0(5)
F(1)-C(2)-C(1)	110.8(4)	F(20B)-C(14)-C(13)	125.4(17)
F(3)-C(2)-F(1)	105.5(4)	F(20B)-C(14)-F(21B)	120(2)
F(3)-C(2)-C(1)	110.5(4)	F(20B)-C(14)-F(19B)	79.2(16)
F(2)-C(2)-F(1)	108.2(4)	F(21B)-C(14)-C(13)	112.0(18)
F(2)-C(2)-F(3)	108.2(4)	F(21B)-C(14)-F(19B)	79.9(13)
Symmetry transformations used to generate equivalent atoms: #1 ($-x + 2$, $-y - \frac{1}{2}$, $-z + \frac{1}{2}$			

 F(21B)-C(14)-F(19B)
 7/9.9(13)

 Symmetry transformations used to generate equivalent atoms: #1 (-x + 2, $-y - \frac{1}{2}$, $-z + \frac{3}{2}$); #2 (-x + 2, $-y + \frac{1}{2}$, $-z + \frac{3}{2}$).

Crystallography of tin(IV) tetrakis(trifluoroacetate) (5)

Figure S9. Crystal packing of a $1 \times 4 \times 1$ supercell of **5**. Separate chains are depicted with thermal ellipsoids at 50% probability and single-coloured, except for one that is shown as a spacefilling diagram coloured by element (as in Figure S6).

Tin(IV) tetrakis(trifluoroacetate) (5)			
Identification code	CCDC 1	.885253	
Empirical formula	$C_8F_{12}O_8Sn$		
Formula weight / g mol ⁻¹	570	.77	
Temperature / K	125	.01	
Wavelength / Å	0.71	073	
Crystal system	Mono	clinic	
Space group	C 1 2	2/c 1	
Unit cell dimensions	a = 21.373(5) Å	$\alpha = 90^{\circ}$	
	b = 4.8415(11) Å	$\beta = 119.549(2)^{\circ}$	
	c = 16.521(4) Å	$\gamma = 90^{\circ}$	
Volume / Å ³	1487	.1(6)	
Ζ	4	l	
$ ho_{ m calc}$ / g cm ⁻³	2.5	49	
μ / mm^{-1}	1.9	04	
F(000)	1080		
Crystal size / mm ³	$0.25 \times 0.11 \times 0.09$		
θ range for data collection	2.191 to 29.027°		
Index ranges	$-27 \le h \le 28$		
-	$-6 \le k \le 6$		
	-19≤	$l \leq 21$	
Reflections collected	62	60	
Independent reflections	1875 [R(int) = 0.0425]	
Completeness to $\theta = 25.242^{\circ}$	99.8	8 %	
Absorption correction	Semi-empirical f	from equivalents	
Max. and min. transmission	0.7458 an	nd 0.6470	
Refinement method	Full-matrix leas	st-squares on F ²	
Data / restraints / parameters	1875 / 2	22 / 137	
Goodness-of-fit on F ²	1.0	51	
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0328, a	$\omega R2 = 0.0648$	
R indices (all data)	R1 = 0.0564, a	$\omega R2 = 0.0707$	
Extinction coefficient	N/	'A	
Largest diff. peak and hole / e $Å^{-3}$	0.829 and	d –0.748	

 Table S4. Selected crystallographic parameters for 5.

Table S5 Bond lengths (in Å) for 5.

C(1)-O(1)	1.314(4)
C(1)-C(2)	1.546(5)
C(1)-O(2)	1.200(4)
F(1)-C(2)	1.325(4)
O(1)-Sn(1)	1.991(2)
Sn(1)-O(1)#1	1.991(2)
Sn(1)-O(3)#1	2.074(2)
Sn(1)-O(3)	2.074(2)
Sn(1)-O(4)#2	2.079(2)
Sn(1)-O(4)#3	2.079(2)
C(2)-F(2)	1.320(4)
C(2)-F(3)	1.326(5)
C(3)-O(3)	1.242(4)
C(3)-C(4)	1.535(5)
C(3)-O(4)	1.258(4)
C(4)-F(4)	1.396(8)
C(4)-F(5)	1.362(7)
C(4)-F(6)	1.276(8)
C(4)-F(6A)	1.321(6)
C(4)-F(4A)	1.404(7)
C(4)-F(5A)	1.273(8)
O(4)-Sn(1)#4	2.079(2)

Table S6. Bond angles (in $^{\circ}$) for 5.

O(1)-C(1)-C(2)	110.9(3)	F(2)-C(2)-C(1)	109.5(3)
O(2)-C(1)-O(1)	128.5(4)	F(2)-C(2)-F(1)	108.4(3)
O(2)-C(1)-C(2)	120.6(4)	F(2)-C(2)-F(3)	108.1(4)
C(1)-O(1)-Sn(1)	123.6(2)	F(3)-C(2)-C(1)	112.6(3)
O(1)#1-Sn(1)-O(1)	180.00(6)	O(3)-C(3)-C(4)	118.0(3)
O(1)-Sn(1)-O(3)#1	90.11(9)	O(3)-C(3)-O(4)	125.7(3)
O(1)#1-Sn(1)-O(3)#1	89.89(9)	O(4)-C(3)-C(4)	116.3(3)
O(1)-Sn(1)-O(3)	89.90(9)	C(3)-O(3)-Sn(1)	150.6(2)
O(1)#1-Sn(1)-O(3)	90.10(9)	F(4)-C(4)-C(3)	104.4(4)
O(1)-Sn(1)-O(4)#3	92.12(10)	F(5)-C(4)-C(3)	110.3(4)
O(1)-Sn(1)-O(4)#2	87.88(10)	F(5)-C(4)-F(4)	102.9(5)
O(1)#1-Sn(1)-O(4)#3	87.88(10)	F(6)-C(4)-C(3)	114.7(4)
O(1)#1-Sn(1)-O(4)#2	92.12(10)	F(6)-C(4)-F(4)	111.7(6)
O(3)#1-Sn(1)-O(3)	180	F(6)-C(4)-F(5)	111.9(4)
O(3)-Sn(1)-O(4)#2	93.43(9)	F(6A)-C(4)-C(3)	112.6(3)
O(3)-Sn(1)-O(4)#3	86.57(9)	F(6A)-C(4)-F(4A)	105.5(4)
O(3)#1-Sn(1)-O(4)#2	86.58(9)	F(4A)-C(4)-C(3)	105.2(4)
O(3)#1-Sn(1)-O(4)#3	93.42(9)	F(5A)-C(4)-C(3)	115.0(4)
O(4)#2-Sn(1)-O(4)#3	180.00(14)	F(5A)-C(4)-F(6A)	113.2(4)
F(1)-C(2)-C(1)	110.4(3)	F(5A)-C(4)-F(4A)	104.0(5)
F(1)-C(2)-F(3)	107.7(3)	C(3)-O(4)-Sn(1)#4	127.7(2)
Symmetry t #1 ($-x + \frac{3}{2}, -y + \frac{3}{2}, -z$	ransformations used + 1); #2 ($-x + \frac{3}{2}$, -	d to generate equivalent atoms $y + \frac{1}{2}, -z + 1$; #3 (x, y + 1, z)	: ; #4 (x, y – 1, z

Crystallography of hexakis[tin(II) bis-µ-trifluoroacetate trimethylphosphine] (1←PMe₃)₆

Figure S10. Molecular structure of $(1 \leftarrow PMe_3)_6$. Co-crystallized toluene has been omitted for clarity. Non-hydrogen atoms are depicted as ellipsoids at 50% probability, and hydrogens are depicted as spheres. Disordered CF₃ groups are shown. The closest Sn–Sn interatomic distances are shown as dashed lines to highlight geometry.

Figure S11. Crystal packing of $(1 \leftarrow PMe_3)_6$. Non-hydrogen atoms are depicted as ellipsoids at 50% probability, and hydrogens are depicted as spheres. Disordered CF₃ groups and cocrystallized toluene molecules are shown.

Hexakis(tin(II) bis-µ-trifluoroacetate trimethylphosphine) (1←PMe ₃) ₆			
Identification code	CCDC	1885254	
Empirical formula	C91H115F72O48P12Sn12		
Formula weight / g mol ⁻¹	514	40.74	
Temperature / K	12	25(2)	
Wavelength / Å	0.7	1073	
Crystal system	Monoclinic		
Space group	Р	2 ₁ /n	
Unit cell dimensions	a = 15.150(3) Å	$\alpha = 90^{\circ}$	
	<i>b</i> = 24.993(5) Å	$\beta = 93.276(2)^{\circ}$	
	c = 23.366(4) Å	$\gamma = 90^{\circ}$	
Volume / Å ³	88.	33(3)	
Ζ		2	
$ ho_{ m calc}$ / g cm $^{-3}$	1.	.933	
μ / mm^{-1}	1.	916	
F(000)	4	946	
Crystal size / mm ³	$0.220 \times 0.210 \times 0.130$		
range for data collection	1.194 to 27.000°.		
Index ranges	$-19 \le h \le 19$		
	$-31 \le k \le 31$		
	-29 <u>-</u>	$\leq l \leq 29$	
Reflections collected	10	1 717	
Independent reflections	19 283 [R(i	int) = 0.0903]	
Completeness to $\theta = 26.000^{\circ}$	99	.9 %	
Absorption correction	Semi-empirical	from equivalents	
Max. and min. transmission	0.7458 a	and 0.6194	
Refinement method	Full-matrix lea	ast-squares on F ²	
Data / restraints / parameters	19 283 /	/ 19 / 1091	
Goodness-of-fit on F ²	1.	011	
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0382	$\omega R2 = 0.0780$	
R indices (all data)	R1 = 0.0644	$\omega R2 = 0.0897$	
Extinction coefficient N/A		J/A	
Largest diff. peak and hole / e Å ⁻³	1.087 a	nd -1.140	

Table S7. Selected crystallographic parameters for (1←PMe₃)₆.

Table S8. Bond lengths (in Å) for (1←PMe₃)₆.

Sn(1)-O(3)	2.216(3)	O(21)-C(36)	1.267(5)	_
Sn(1)-O(1)	2.221(3)	O(22)-C(36)	1.233(5)	
Sn(1)-P(1)	2.6640(13)	O(23)-C(38)	1.261(5)	
Sn(2)-O(5)	2.231(3)	O(24)-C(38)	1.233(5)	
Sn(2)-O(7)	2.241(3)	C(1)-C(2)	1.529(6)	
Sn(2)-P(2)	2.6699(13)	C(2)-F(1C)	1.22(3)	
Sn(3)-O(9)	2.209(3)	C(2)-F(2C)	1.28(2)	
Sn(3)-O(11)	2.235(3)	C(2)-F(3A)	1.318(9)	
Sn(3)-P(3)	2.6473(13)	C(2)-F(3B)	1.332(13)	
Sn(4)-O(15)	2.217(3)	C(2)-F(1A)	1.341(9)	
Sn(4)-O(13)	2.223(3)	C(2)-F(2B)	1.343(13)	
Sn(4)-P(4)	2.6583(13)	C(2)-F(1B)	1.354(14)	
Sn(5)-O(19)	2.222(3)	C(2)-F(2A)	1.378(9)	
Sn(5)-O(17)	2.250(3)	C(2)-F(3C)	1.41(3)	
Sn(5)-P(5)	2.6590(13)	C(3)-C(4)	1.547(7)	
Sn(6)-O(21)	2.222(3)	C(5)-H(5A)	0.98	
Sn(6)-O(23)	2.259(3)	C(5)-H(5B)	0.98	
Sn(6)-P(6)	2.6531(13)	C(5)-H(5C)	0.98	
P(1)-C(5)	1.792(5)	C(6)-H(6A)	0.98	
P(1)-C(6)	1.807(5)	C(6)-H(6B)	0.98	
P(1)-C(7)	1.810(5)	C(6)-H(6C)	0.98	
P(2)-C(13)	1.788(6)	C(7)-H(7A)	0.98	
P(2)-C(14)	1.794(6)	C(7)-H(7B)	0.98	
P(2)-C(12)	1.800(5)	C(7)-H(7C)	0.98	
P(3)-C(21)	1.799(5)	C(8)-C(9)	1.548(7)	
P(3)-C(19)	1.799(5)	C(10)-C(11)	1.531(6)	
P(3)-C(20)	1.804(5)	C(12)-H(12A)	0.98	
P(4)-C(27)	1.797(5)	C(12)-H(12B)	0.98	
P(4)-C(28)	1.804(5)	C(12)-H(12C)	0.98	
P(4)-C(26)	1.806(6)	C(13)-H(13A)	0.98	
P(5)-C(34)	1.791(6)	C(13)-H(13B)	0.98	
P(5)-C(35)	1.802(5)	C(13)-H(13C)	0.98	
P(5)-C(33)	1.802(6)	C(14)-H(14A)	0.98	
P(6)-C(42)	1.795(5)	C(14)-H(14B)	0.98	
P(6)-C(41)	1.802(5)	C(14)-H(14C)	0.98	
P(6)-C(40)	1.805(5)	C(15)-C(16)	1.535(6)	
F(4)-C(4)	1.313(7)	C(17)-C(18)	1.529(6)	

Table S8.	Bond lengths ((in Å) for	$(1 \leftarrow PMe_3)_{6}$, cont.
1 4010 50.	Dona lenguis ((111) 101	(1 · 1 1 1 1 1 1 1 1 1 1

F(5)-C(4)	1.329(7)	C(19)-H(19A)	0.98
F(6)-C(4)	1.330(6)	C(19)-H(19B)	0.98
F(7)-C(9)	1.315(6)	C(19)-H(19C)	0.98
F(8)-C(9)	1.313(6)	C(20)-H(20A)	0.98
F(9)-C(9)	1.324(6)	C(20)-H(20B)	0.98
F(10)-C(11)	1.329(6)	C(20)-H(20C)	0.98
F(11)-C(11)	1.333(6)	C(21)-H(21A)	0.98
F(12)-C(11)	1.324(5)	C(21)-H(21B)	0.98
F(13)-C(16)	1.312(6)	C(21)-H(21C)	0.98
F(14)-C(16)	1.322(5)	C(22)-C(23)	1.532(7)
F(15)-C(16)	1.313(6)	C(24)-C(25)	1.540(7)
F(16)-C(18)	1.337(5)	C(26)-H(26A)	0.98
F(17)-C(18)	1.332(6)	C(26)-H(26B)	0.98
F(18)-C(18)	1.322(5)	C(26)-H(26C)	0.98
F(19)-C(23)	1.332(6)	C(27)-H(27A)	0.98
F(20)-C(23)	1.322(6)	C(27)-H(27B)	0.98
F(21)-C(23)	1.328(6)	C(27)-H(27C)	0.98
F(22)-C(25)	1.321(6)	C(28)-H(28A)	0.98
F(23)-C(25)	1.323(6)	C(28)-H(28B)	0.98
F(24)-C(25)	1.331(6)	C(28)-H(28C)	0.98
F(25)-C(30)	1.321(7)	C(29)-C(30)	1.545(7)
F(26)-C(30)	1.326(7)	C(31)-C(32)	1.549(7)
F(27)-C(30)	1.333(6)	C(33)-H(33A)	0.98
F(28)-C(37)	1.313(7)	C(33)-H(33B)	0.98
F(29)-C(37)	1.324(6)	C(33)-H(33C)	0.98
F(30)-C(37)	1.331(6)	C(34)-H(34A)	0.98
F(31)-C(32)	1.309(7)	C(34)-H(34B)	0.98
F(32)-C(32)	1.293(7)	C(34)-H(34C)	0.98
F(33)-C(32)	1.309(6)	C(35)-H(35A)	0.98
F(34)-C(39)	1.328(5)	C(35)-H(35B)	0.98
F(35)-C(39)	1.345(6)	C(35)-H(35C)	0.98
F(36)-C(39)	1.326(6)	C(36)-C(37)	1.518(7)
O(1)-C(1)	1.261(5)	C(38)-C(39)	1.533(7)
O(2)-C(1)	1.226(5)	C(40)-H(40A)	0.98
O(3)-C(3)	1.253(6)	C(40)-H(40B)	0.98
O(4)-C(3)	1.237(6)	C(40)-H(40C)	0.98
O(5)-C(8)	1.260(6)	C(41)-H(41A)	0.98
O(6)-C(8)	1.228(6)	C(41)-H(41B)	0.98
O(7)-C(10)	1.261(5)	C(41)-H(41C)	0.98

O(8)-C(10)	1.235(5)	C(42)-H(42A)	0.98
O(9)-C(15)	1.258(5)	C(42)-H(42B)	0.98
O(10)-C(15)	1.237(5)	C(42)-H(42C)	0.98
O(11)-C(17)	1.276(5)	C(50)-C(51)	1.298(12)
O(12)-C(17)	1.224(5)	C(50)-C(52)	1.408(13)
O(13)-C(22)	1.260(5)	C(50)-H(50)	0.95
O(14)-C(22)	1.226(5)	C(51)-C(52)#1	1.379(11)
O(15)-C(24)	1.273(5)	C(51)-H(51)	0.95
O(16)-C(24)	1.222(5)	C(52)-C(53)	1.193(15)
O(17)-C(29)	1.260(6)	C(52)-C(51)#1	1.379(11)
O(18)-C(29)	1.224(5)	C(53)-H(53A)	0.98
O(19)-C(31)	1.253(5)	C(53)-H(53B)	0.98
O(20)-C(31)	1.230(5)	C(53)-H(53C)	0.98

Table S8. Bond lengths (in Å) for (1←PMe₃)₆, cont.

Symmetry transformations used to generate equivalent atoms: #1 (-x + 1, -y + 2, -z + 1)

Table S9. Bond angles (in °) for (1←PMe₃)₆.

O(3)-Sn(1)-O(1) 79.57(12) O(3)-Sn(1)-P(1) 80.80(9) O(1)-Sn(1)-P(1) 81.21(9) O(5)-Sn(2)-O(7) 79.88(11) O(5)-Sn(2)-P(2) 78.52(9)	P(1)-C(6)-H(6B) H(6A)-C(6)-H(6B) P(1)-C(6)-H(6C) H(6A)-C(6)-H(6C) H(6B)-C(6)-H(6C) P(1)-C(7)-H(7A) P(1)-C(7)-H(7B)	109.5 109.5 109.5 109.5 109.5 109.5	H(26A)-C(26)-H(26B) P(4)-C(26)-H(26C) H(26A)-C(26)-H(26C) H(26B)-C(26)-H(26C) P(4)-C(27) H(27A)	109.5 109.5 109.5 109.5
O(3)-Sn(1)-P(1)80.80(9)O(1)-Sn(1)-P(1)81.21(9)O(5)-Sn(2)-O(7)79.88(11)O(5)-Sn(2)-P(2)78.52(9)	H(6A)-C(6)-H(6B) P(1)-C(6)-H(6C) H(6A)-C(6)-H(6C) H(6B)-C(6)-H(6C) P(1)-C(7)-H(7A) P(1)-C(7)-H(7B)	109.5 109.5 109.5 109.5 109.5	P(4)-C(26)-H(26C) H(26A)-C(26)-H(26C) H(26B)-C(26)-H(26C) P(4)-C(27) H(27A)	109.5 109.5 109.5
O(1)-Sn(1)-P(1) 81.21(9) O(5)-Sn(2)-O(7) 79.88(11) O(5)-Sn(2)-P(2) 78.52(9)	P(1)-C(6)-H(6C) H(6A)-C(6)-H(6C) H(6B)-C(6)-H(6C) P(1)-C(7)-H(7A) P(1)-C(7)-H(7B)	109.5 109.5 109.5 109.5	H(26A)-C(26)-H(26C) H(26B)-C(26)-H(26C) P(4)-C(27)-H(27A)	109.5 109.5
O(5)-Sn(2)-O(7) 79.88(11) O(5)-Sn(2)-P(2) 78.52(9)	H(6A)-C(6)-H(6C) H(6B)-C(6)-H(6C) P(1)-C(7)-H(7A) P(1)-C(7)-H(7B)	109.5 109.5 109.5	H(26B)-C(26)-H(26C) P(4)-C(27)-H(27A)	109.5
O(5)-Sn(2)-P(2) 78.52(9)	H(6B)-C(6)-H(6C) P(1)-C(7)-H(7A) P(1)-C(7)-H(7B)	109.5 109.5	$P(4)_C(27)_H(27A)$	
	P(1)-C(7)-H(7A) P(1)-C(7)-H(7B)	109 5	1(7) - C(2) - 11(2/A)	109.5
O(7)-Sn(2)-P(2) 82.12(9)	P(1)-C(7)-H(7B)	109.5	P(4)-C(27)-H(27B)	109.5
O(9)-Sn(3)-O(11) 79.76(11)		109.5	H(27A)-C(27)-H(27B)	109.5
O(9)-Sn(3)-P(3) 80.83(8)	H(7A)-C(7)-H(7B)	109.5	P(4)-C(27)-H(27C)	109.5
O(11)-Sn(3)-P(3) 82.54(9)	P(1)-C(7)-H(7C)	109.5	H(27A)-C(27)-H(27C)	109.5
O(15)-Sn(4)-O(13) 80.12(12)	H(7A)-C(7)-H(7C)	109.5	H(27B)-C(27)-H(27C)	109.5
O(15)-Sn(4)-P(4) 80.57(9)	H(7B)-C(7)-H(7C)	109.5	P(4)-C(28)-H(28A)	109.5
O(13)-Sn(4)-P(4) 82.28(8)	O(6)-C(8)-O(5)	130.4(4)	P(4)-C(28)-H(28B)	109.5
O(19)-Sn(5)-O(17) 79.30(12)	O(6)-C(8)-C(9)	117.4(4)	H(28A)-C(28)-H(28B)	109.5
O(19)-Sn(5)-P(5) 77.88(9)	O(5)-C(8)-C(9)	112.2(4)	P(4)-C(28)-H(28C)	109.5
O(17)-Sn(5)-P(5) 82.53(9)	F(8)-C(9)-F(7)	107.5(5)	H(28A)-C(28)-H(28C)	109.5
O(21)-Sn(6)-O(23) 78.53(11)	F(8)-C(9)-F(9)	107.0(5)	H(28B)-C(28)-H(28C)	109.5
O(21)-Sn(6)-P(6) 79.89(8)	F(7)-C(9)-F(9)	106.7(5)	O(18)-C(29)-O(17)	129.4(4)
O(23)-Sn(6)-P(6) 82.98(9)	F(8)-C(9)-C(8)	112.5(4)	O(18)-C(29)-C(30)	118.0(5)
C(5)-P(1)-C(6) 105.3(3)	F(7)-C(9)-C(8)	112.9(4)	O(17)-C(29)-C(30)	112.5(4)
C(5)-P(1)-C(7) 105.6(3)	F(9)-C(9)-C(8)	110.0(4)	F(25)-C(30)-F(26)	107.1(5)
C(6)-P(1)-C(7) 104.7(3)	O(8)-C(10)-O(7)	129.5(4)	F(25)-C(30)-F(27)	107.6(5)
C(5)-P(1)-Sn(1) 112.66(18)	O(8)-C(10)-C(11)	117.2(4)	F(26)-C(30)-F(27)	107.0(5)
C(6)-P(1)-Sn(1) 113.95(18)	O(7)-C(10)-C(11)	113.3(4)	F(25)-C(30)-C(29)	112.3(5)
C(7)-P(1)-Sn(1) 113.82(18)	F(12)-C(11)-F(10)	106.7(4)	F(26)-C(30)-C(29)	112.9(5)
C(13)-P(2)-C(14) 105.0(3)	F(12)-C(11)-F(11)	106.6(4)	F(27)-C(30)-C(29)	109.8(4)
C(13)-P(2)-C(12) 104.6(3)	F(10)-C(11)-F(11)	106.9(4)	O(20)-C(31)-O(19)	130.4(4)
C(14)-P(2)-C(12) 105.4(3)	F(12)-C(11)-C(10)	113.6(4)	O(20)-C(31)-C(32)	116.8(4)
C(13)-P(2)-Sn(2) 111.2(2)	F(10)-C(11)-C(10)	110.5(4)	O(19)-C(31)-C(32)	112.7(4)
C(14)-P(2)-Sn(2) 115.8(2)	F(11)-C(11)-C(10)	112.2(4)	F(32)-C(32)-F(33)	109.3(6)
C(12)-P(2)-Sn(2) 113.9(2)	P(2)-C(12)-H(12A)	109.5	F(32)-C(32)-F(31)	107.4(5)
C(21)-P(3)-C(19) 104.8(2)	P(2)-C(12)-H(12B)	109.5	F(33)-C(32)-F(31)	105.5(6)
C(21)-P(3)-C(20) 106.2(3)	H(12A)-C(12)-H(12B)	109.5	F(32)-C(32)-C(31)	113.1(5)
C(19)-P(3)-C(20) 104.8(3)	P(2)-C(12)-H(12C)	109.5	F(33)-C(32)-C(31)	111.2(5)
C(21)-P(3)-Sn(3) 115.51(18)	H(12A)-C(12)-H(12C)	109.5	F(31)-C(32)-C(31)	109.9(5)
C(19)-P(3)-Sn(3) 113.91(17)	H(12B)-C(12)-H(12C)	109.5	P(5)-C(33)-H(33A)	109.5
C(20)-P(3)-Sn(3) 110.75(17)	P(2)-C(13)-H(13A)	109.5	P(5)-C(33)-H(33B)	109.5
C(27)-P(4)-C(28) 104.9(3)	P(2)-C(13)-H(13B)	109.5	H(33A)-C(33)-H(33B)	109.5
C(27)-P(4)-C(26) 105.4(3)	H(13A)-C(13)-H(13B)	109.5	P(5)-C(33)-H(33C)	109.5
C(28)-P(4)-C(26) 105.9(3)	P(2)-C(13)-H(13C)	109.5	H(33A)-C(33)-H(33C)	109.5

Table S9. Bond angles (in °) for (1←PMe₃)₆, *cont*.

	- · ·				
C(27)-P(4)-Sn(4)	114.43(18)	H(13A)-C(13)-H(13C)	109.5	H(33B)-C(33)-H(33C)	109.5
C(28)-P(4)-Sn(4)	113.43(19)	H(13B)-C(13)-H(13C)	109.5	P(5)-C(34)-H(34A)	109.5
C(26)-P(4)-Sn(4)	112.01(18)	P(2)-C(14)-H(14A)	109.5	P(5)-C(34)-H(34B)	109.5
C(34)-P(5)-C(35)	105.1(3)	P(2)-C(14)-H(14B)	109.5	H(34A)-C(34)-H(34B)	109.5
C(34)-P(5)-C(33)	106.3(3)	H(14A)-C(14)-H(14B)	109.5	P(5)-C(34)-H(34C)	109.5
C(35)-P(5)-C(33)	104.3(3)	P(2)-C(14)-H(14C)	109.5	H(34A)-C(34)-H(34C)	109.5
C(34)-P(5)-Sn(5)	113.4(2)	H(14A)-C(14)-H(14C)	109.5	H(34B)-C(34)-H(34C)	109.5
C(35)-P(5)-Sn(5)	115.15(18)	H(14B)-C(14)-H(14C)	109.5	P(5)-C(35)-H(35A)	109.5
C(33)-P(5)-Sn(5)	111.75(19)	O(10)-C(15)-O(9)	129.8(4)	P(5)-C(35)-H(35B)	109.5
C(42)-P(6)-C(41)	105.8(3)	O(10)-C(15)-C(16)	116.6(4)	H(35A)-C(35)-H(35B)	109.5
C(42)-P(6)-C(40)	105.2(3)	O(9)-C(15)-C(16)	113.5(4)	P(5)-C(35)-H(35C)	109.5
C(41)-P(6)-C(40)	104.3(3)	F(13)-C(16)-F(15)	107.5(4)	H(35A)-C(35)-H(35C)	109.5
C(42)-P(6)-Sn(6)	111.37(18)	F(13)-C(16)-F(14)	107.2(4)	H(35B)-C(35)-H(35C)	109.5
C(41)-P(6)-Sn(6)	115.39(18)	F(15)-C(16)-F(14)	105.8(4)	O(22)-C(36)-O(21)	130.1(4)
C(40)-P(6)-Sn(6)	113.94(18)	F(13)-C(16)-C(15)	110.4(4)	O(22)-C(36)-C(37)	118.0(4)
C(1)-O(1)-Sn(1)	119.7(3)	F(15)-C(16)-C(15)	113.4(4)	O(21)-C(36)-C(37)	111.8(4)
C(3)-O(3)-Sn(1)	127.3(3)	F(14)-C(16)-C(15)	112.2(4)	F(28)-C(37)-F(29)	107.0(5)
C(8)-O(5)-Sn(2)	125.0(3)	O(12)-C(17)-O(11)	128.3(4)	F(28)-C(37)-F(30)	105.4(5)
C(10)-O(7)-Sn(2)	125.7(3)	O(12)-C(17)-C(18)	119.5(4)	F(29)-C(37)-F(30)	105.9(5)
C(15)-O(9)-Sn(3)	130.8(3)	O(11)-C(17)-C(18)	112.2(4)	F(28)-C(37)-C(36)	113.3(5)
C(17)-O(11)-Sn(3)	122.7(3)	F(18)-C(18)-F(17)	108.4(4)	F(29)-C(37)-C(36)	113.1(4)
C(22)-O(13)-Sn(4)	125.5(3)	F(18)-C(18)-F(16)	106.7(4)	F(30)-C(37)-C(36)	111.6(4)
C(24)-O(15)-Sn(4)	118.6(3)	F(17)-C(18)-F(16)	107.1(4)	O(24)-C(38)-O(23)	129.6(4)
C(29)-O(17)-Sn(5)	125.2(3)	F(18)-C(18)-C(17)	112.6(4)	O(24)-C(38)-C(39)	117.4(4)
C(31)-O(19)-Sn(5)	125.7(3)	F(17)-C(18)-C(17)	110.8(4)	O(23)-C(38)-C(39)	113.0(4)
C(36)-O(21)-Sn(6)	125.8(3)	F(16)-C(18)-C(17)	111.1(4)	F(36)-C(39)-F(34)	107.4(4)
C(38)-O(23)-Sn(6)	123.4(3)	P(3)-C(19)-H(19A)	109.5	F(36)-C(39)-F(35)	106.7(4)
O(2)-C(1)-O(1)	129.2(4)	P(3)-C(19)-H(19B)	109.5	F(34)-C(39)-F(35)	105.9(4)
O(2)-C(1)-C(2)	117.7(4)	H(19A)-C(19)-H(19B)	109.5	F(36)-C(39)-C(38)	111.9(4)
O(1)-C(1)-C(2)	113.0(4)	P(3)-C(19)-H(19C)	109.5	F(34)-C(39)-C(38)	113.3(4)
F(1C)-C(2)-F(2C)	109.3(18)	H(19A)-C(19)-H(19C)	109.5	F(35)-C(39)-C(38)	111.2(4)
F(3A)-C(2)-F(1A)	108.9(6)	H(19B)-C(19)-H(19C)	109.5	P(6)-C(40)-H(40A)	109.5
F(3B)-C(2)-F(2B)	104.9(7)	P(3)-C(20)-H(20A)	109.5	P(6)-C(40)-H(40B)	109.5
F(3B)-C(2)-F(1B)	106.7(8)	P(3)-C(20)-H(20B)	109.5	H(40A)-C(40)-H(40B)	109.5
F(2B)-C(2)-F(1B)	107.0(8)	H(20A)-C(20)-H(20B)	109.5	P(6)-C(40)-H(40C)	109.5
F(3A)-C(2)-F(2A)	106.9(6)	P(3)-C(20)-H(20C)	109.5	H(40A)-C(40)-H(40C)	109.5
F(1A)-C(2)-F(2A)	106.3(6)	H(20A)-C(20)-H(20C)	109.5	H(40B)-C(40)-H(40C)	109.5
F(1C)-C(2)-F(3C)	104.0(16)	H(20B)-C(20)-H(20C)	109.5	P(6)-C(41)-H(41A)	109.5
F(2C)-C(2)-F(3C)	102.8(16)	P(3)-C(21)-H(21A)	109.5	P(6)-C(41)-H(41B)	109.5

Table S9. Bond angles (in °) for (1←PMe₃)₆, *cont*.

F(1C)-C(2)-C(1)	117.8(13)	P(3)-C(21)-H(21B)	109.5	H(41A)-C(41)-H(41B)	109.5
F(2C)-C(2)-C(1)	115.1(10)	H(21A)-C(21)-H(21B)	109.5	P(6)-C(41)-H(41C)	109.5
F(3A)-C(2)-C(1)	111.7(5)	P(3)-C(21)-H(21C)	109.5	H(41A)-C(41)-H(41C)	109.5
F(3B)-C(2)-C(1)	112.5(6)	H(21A)-C(21)-H(21C)	109.5	H(41B)-C(41)-H(41C)	109.5
F(1A)-C(2)-C(1)	113.3(5)	H(21B)-C(21)-H(21C)	109.5	P(6)-C(42)-H(42A)	109.5
F(2B)-C(2)-C(1)	111.7(6)	O(14)-C(22)-O(13)	130.4(4)	P(6)-C(42)-H(42B)	109.5
F(1B)-C(2)-C(1)	113.5(6)	O(14)-C(22)-C(23)	117.5(4)	H(42A)-C(42)-H(42B)	109.5
F(2A)-C(2)-C(1)	109.6(5)	O(13)-C(22)-C(23)	112.0(4)	P(6)-C(42)-H(42C)	109.5
F(3C)-C(2)-C(1)	106.2(10)	F(20)-C(23)-F(21)	107.4(4)	H(42A)-C(42)-H(42C)	109.5
O(4)-C(3)-O(3)	130.2(4)	F(20)-C(23)-F(19)	106.5(5)	H(42B)-C(42)-H(42C)	109.5
O(4)-C(3)-C(4)	118.2(5)	F(21)-C(23)-F(19)	105.9(4)	C(51)-C(50)-C(52)	121.1(9)
O(3)-C(3)-C(4)	111.5(4)	F(20)-C(23)-C(22)	112.0(4)	C(51)-C(50)-H(50)	119.4
F(4)-C(4)-F(5)	109.1(5)	F(21)-C(23)-C(22)	111.3(4)	C(52)-C(50)-H(50)	119.4
F(4)-C(4)-F(6)	107.4(5)	F(19)-C(23)-C(22)	113.3(4)	C(50)-C(51)-C(52)#1	120.4(11)
F(5)-C(4)-F(6)	107.5(5)	O(16)-C(24)-O(15)	128.5(4)	C(50)-C(51)-H(51)	119.8
F(4)-C(4)-C(3)	111.3(5)	O(16)-C(24)-C(25)	118.9(4)	C(52)#1-C(51)-H(51)	119.8
F(5)-C(4)-C(3)	109.0(4)	O(15)-C(24)-C(25)	112.6(4)	C(53)-C(52)-C(51)#1	120.9(15)
F(6)-C(4)-C(3)	112.4(5)	F(22)-C(25)-F(23)	107.7(4)	C(53)-C(52)-C(50)	120.6(13)
P(1)-C(5)-H(5A)	109.5	F(22)-C(25)-F(24)	107.8(4)	C(51)#1-C(52)-C(50)	118.5(10)
P(1)-C(5)-H(5B)	109.5	F(23)-C(25)-F(24)	106.4(4)	C(52)-C(53)-H(53A)	109.5
H(5A)-C(5)-H(5B)	109.5	F(22)-C(25)-C(24)	111.8(4)	C(52)-C(53)-H(53B)	109.5
P(1)-C(5)-H(5C)	109.5	F(23)-C(25)-C(24)	112.4(4)	H(53A)-C(53)-H(53B)	109.5
H(5A)-C(5)-H(5C)	109.5	F(24)-C(25)-C(24)	110.5(4)	C(52)-C(53)-H(53C)	109.5
H(5B)-C(5)-H(5C)	109.5	P(4)-C(26)-H(26A)	109.5	H(53A)-C(53)-H(53C)	109.5
P(1)-C(6)-H(6A)	109.5	P(4)-C(26)-H(26B)	109.5	H(53B)-C(53)-H(53C)	109.5

Crystallography of tin(IV) tetrakis(trifluoroacetate)-bis-*trans*-diethyl ether [6←(OEt₂)₂]

Figure S12. Unit cell of $6 \leftarrow (OEt_2)_2$. Non-hydrogen atoms are depicted as ellipsoids at 50% probability and hydrogens are depicted as spheres.

$Tin(IV)$ tetrakis(trifluoroacetate)-bis- <i>trans</i> -diethyl ether [6 \leftarrow (OEt ₂) ₂]				
Identification code	CCDC 18	885255		
Empirical formula	$C_{16}H_{20}F_{12}$	$2O_{10}Sn$		
Formula weight / g mol ⁻¹	719.01			
Temperature / K	125(2)			
Wavelength / Å	0.710	73		
Crystal system	Monoclinic			
Space group	P 1 2/c 1			
	<i>a</i> = 14.152(2) Å	$\alpha = 90^{\circ}$		
Unit cell dimensions	<i>b</i> = 11.0124(18) Å	$\beta = 93.2^{\circ}$		
	c = 32.890(6) Å	$\gamma = 90^{\circ}$		
Volume / Å ³	5117.5	(15)		
Ζ	8			
$ ho_{\text{calc}}$ / g cm ⁻³	1.86	6		
μ / mm^{-1}	1.133			
F(000)	2832			
Crystal size / mm ³	$0.12 \times 0.11 \times 0.08$			
θ range for data collection	1.240 to 2	.5.374°		
-	$-16 \le h$	≤17		
Index ranges	$-13 \le k$	≤13		
	$-39 \le l \le 39$			
Reflections collected	50 039			
Independent reflections	9380 [$R(int) = 0.1181$]			
Completeness to $\theta = 26.000^{\circ}$	99.9	%		
Absorption correction	Semi-empirical fr	om equivalents		
Max. and min. transmission	0.7452 and	0.6372		
Refinement method	Full-matrix least	-squares on F ²		
Data / restraints / parameters	9380 / 60 / 712			
Goodness-of-fit on F ²	1.026			
Final R indices $[I > 2\sigma(I)]$	$R1 = 0.0587, \ \omega R2 = 0.1304$			
R indices (all data)	$R1 = 0.1281, \ \omega R2 = 0.1605$			
Extinction coefficient	N/A	Δ		
Largest diff. peak and hole / e $Å^{-3}$	0.827 and	-1.047		

Table S10. Selected crystallographic parameters for $6 \leftarrow (OEt_2)_2$.

C(1)-O(1)	1.313(8)	C(11)-H(11B)	0.97	C(22)-H(22B)	0.96
C(1)-C(2)	1.506(11)	C(11)-C(12)	1.509(10)	C(22)-H(22C)	0.96
C(1)-O(2)	1.212(9)	C(12)-H(12A)	0.96	C(23)-H(23A)	0.97
F(1)-C(2)	1.320(9)	C(12)-H(12B)	0.96	C(23)-H(23B)	0.97
O(1)-Sn(1)	2.024(5)	C(12)-H(12C)	0.96	C(23)-C(24)	1.486(11)
Sn(1)-O(3)	2.030(5)	C(13)-H(13A)	0.96	C(24)-H(24A)	0.96
Sn(1)-O(5)	2.039(5)	C(13)-H(13B)	0.96	C(24)-H(24B)	0.96
Sn(1)-O(7)	2.016(5)	C(13)-H(13C)	0.96	C(24)-H(24C)	0.96
Sn(1)-O(9)	2.121(5)	C(13)-C(14)	1.490(10)	Sn(3)-O(16)	2.014(5)
Sn(1)-O(10)	2.126(5)	C(14)-H(14A)	0.97	Sn(3)-O(16)#2	2.014(5)
C(2)-F(2)	1.311(9)	C(14)-H(14B)	0.97	Sn(3)-O(18)#2	2.022(5)
C(2)-F(3)	1.304(9)	C(15)-H(15A)	0.97	Sn(3)-O(18)	2.022(5)
C(3)-O(3)	1.306(9)	C(15)-H(15B)	0.97	Sn(3)-O(20)#2	2.117(5)
C(3)-C(4)	1.542(11)	C(15)-C(16)	1.504(11)	Sn(3)-O(20)	2.117(5)
C(3)-O(4)	1.195(9)	C(16)-H(16A)	0.96	O(16)-C(25)	1.316(9)
C(4)-F(4)	1.295(9)	C(16)-H(16B)	0.96	O(17)-C(25)	1.201(9)
C(4)-F(5)	1.309(9)	C(16)-H(16C)	0.96	O(18)-C(27)	1.317(8)
C(4)-F(6)	1.298(10)	Sn(2)-O(11)#1	2.018(5)	F(19)-C(26)	1.414(13)
C(5)-O(5)	1.310(8)	Sn(2)-O(11)	2.018(5)	O(19)-C(27)	1.197(9)
C(5)-C(6)	1.520(11)	Sn(2)-O(13)#1	2.014(5)	F(20)-C(26)	1.238(11)
C(5)-O(6)	1.209(9)	Sn(2)-O(13)	2.014(5)	O(20)-C(29)	1.478(8)
C(6)-F(7)	1.324(8)	Sn(2)-O(15)#1	2.127(5)	O(20)-C(31)	1.479(8)
C(6)-F(8)	1.328(8)	Sn(2)-O(15)	2.127(5)	F(21)-C(26)	1.283(10)
C(6)-F(9)	1.347(9)	O(11)-C(17)	1.301(9)	F(22)-C(28)	1.330(9)
C(7)-O(7)	1.311(9)	O(12)-C(17)	1.204(9)	F(23)-C(28)	1.309(10)
C(7)-C(8)	1.504(11)	F(13)-C(18)	1.322(9)	F(24)-C(28)	1.332(10)
C(7)-O(8)	1.211(9)	O(13)-C(19)	1.310(8)	C(25)-C(26)	1.505(12)
C(8)-F(10)	1.282(10)	F(14)-C(18)	1.347(9)	C(27)-C(28)	1.517(11)
C(8)-F(11)	1.292(10)	O(14)-C(19)	1.203(9)	C(29)-H(29A)	0.97
C(8)-F(12)	1.306(11)	F(15)-C(18)	1.315(9)	C(29)-H(29B)	0.97
C(9)-H(9A)	0.97	O(15)-C(21)	1.476(8)	C(29)-C(30)	1.501(10)
C(9)-H(9B)	0.97	O(15)-C(23)	1.468(8)	C(30)-H(30A)	0.96
C(9)-O(9)	1.468(8)	F(16)-C(20)	1.318(9)	C(30)-H(30B)	0.96
C(9)-C(10)	1.490(10)	C(17)-C(18)	1.535(11)	C(30)-H(30C)	0.96
O(9)-C(11)	1.481(8)	F(17)-C(20)	1.325(9)	C(31)-H(31A)	0.97
C(10)-H(10A)	0.96	F(18)-C(20)	1.327(10)	C(31)-H(31B)	0.97
C(10)-H(10B)	0.96	C(19)-C(20)	1.517(11)	C(31)-C(32)	1.487(10)
C(10)-H(10C)	0.96	C(21)-H(21A)	0.97	C(32)-H(32A)	0.96
O(10)-C(14)	1.495(8)	C(21)-H(21B)	0.97	C(32)-H(32B)	0.96
O(10)-C(15)	1.476(8)	C(21)-C(22)	1.500(10)	C(32)-H(32C)	0.96
С(11)-Н(11А)	0.97	C(22)-H(22A)	0.96		212
La record and the re-	Annual and a new adda to a second d	a an an an at a an air is a lan	A = A =	-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- 1 3/)

Table S11. Bond lengths (in Å) for compound $6 \leftarrow (OEt_2)_2$.

Symmetry transformations used to generate equivalent atoms: #1 (-*x*, *y*, -z + 3/2); #2 (-*x* + 1, *y*, -z + 3/2).

Table S12. Bond angle	s (in °)	for compound	$6 \leftarrow (OEt_2)_2.$
-----------------------	----------	--------------	---------------------------

.

O(1)-C(1)-C(2)	111.4(7)	F(7)-C(6)-C(5)	113.8(7)	C(12)-C(11)-H(11B)	109.6
O(2)-C(1)-O(1)	127.0(8)	F(7)-C(6)-F(8)	107.7(7)	C(11)-C(12)-H(12A)	109.5
O(2)-C(1)-C(2)	121.6(7)	F(7)-C(6)-F(9)	106.3(6)	C(11)-C(12)-H(12B)	109.5
C(1)-O(1)-Sn(1)	125.8(5)	F(8)-C(6)-C(5)	111.6(6)	C(11)-C(12)-H(12C)	109.5
O(1)-Sn(1)-O(3)	84.9(2)	F(8)-C(6)-F(9)	106.7(7)	H(12A)-C(12)-H(12B)	109.5
O(1)-Sn(1)-O(5)	177.7(2)	F(9)-C(6)-C(5)	110.4(6)	H(12A)-C(12)-H(12C)	109.5
O(1)-Sn(1)-O(9)	88.32(19)	O(7)-C(7)-C(8)	112.3(7)	H(12B)-C(12)-H(12C)	109.5
O(1)-Sn(1)-O(10)	91.06(19)	O(8)-C(7)-O(7)	128.1(7)	H(13A)-C(13)-H(13B)	109.5
O(3)-Sn(1)-O(5)	95.19(19)	O(8)-C(7)-C(8)	119.6(8)	H(13A)-C(13)-H(13C)	109.5
O(3)-Sn(1)-O(9)	91.35(19)	C(7)-O(7)-Sn(1)	124.8(5)	H(13B)-C(13)-H(13C)	109.5
O(3)-Sn(1)-O(10)	88.57(19)	F(10)-C(8)-C(7)	114.3(8)	C(14)-C(13)-H(13A)	109.5
O(5)-Sn(1)-O(9)	89.38(19)	F(10)-C(8)-F(11)	106.7(9)	C(14)-C(13)-H(13B)	109.5
O(5)-Sn(1)-O(10)	91.24(19)	F(10)-C(8)-F(12)	106.9(9)	C(14)-C(13)-H(13C)	109.5
O(7)-Sn(1)-O(1)	96.2(2)	F(11)-C(8)-C(7)	113.2(8)	O(10)-C(14)-H(14A)	109.5
O(7)-Sn(1)-O(3)	177.2(2)	F(11)-C(8)-F(12)	102.5(8)	O(10)-C(14)-H(14B)	109.5
O(7)-Sn(1)-O(5)	83.78(19)	F(12)-C(8)-C(7)	112.5(8)	C(13)-C(14)-O(10)	110.6(6)
O(7)-Sn(1)-O(9)	91.20(19)	H(9A)-C(9)-H(9B)	108	C(13)-C(14)-H(14A)	109.5
O(7)-Sn(1)-O(10)	88.89(19)	O(9)-C(9)-H(9A)	109.3	C(13)-C(14)-H(14B)	109.5
O(9)-Sn(1)-O(10)	179.4(2)	O(9)-C(9)-H(9B)	109.3	H(14A)-C(14)-H(14B)	108.1
F(1)-C(2)-C(1)	111.4(7)	O(9)-C(9)-C(10)	111.6(6)	O(10)-C(15)-H(15A)	109.6
F(2)-C(2)-C(1)	110.6(7)	C(10)-C(9)-H(9A)	109.3	O(10)-C(15)-H(15B)	109.6
F(2)-C(2)-F(1)	105.5(7)	C(10)-C(9)-H(9B)	109.3	O(10)-C(15)-C(16)	110.1(6)
F(3)-C(2)-C(1)	114.4(7)	C(9)-O(9)-Sn(1)	123.8(5)	H(15A)-C(15)-H(15B)	108.2
F(3)-C(2)-F(1)	106.9(7)	C(9)-O(9)-C(11)	112.4(6)	C(16)-C(15)-H(15A)	109.6
F(3)-C(2)-F(2)	107.5(7)	C(11)-O(9)-Sn(1)	123.8(4)	C(16)-C(15)-H(15B)	109.6
O(3)-C(3)-C(4)	110.2(7)	C(9)-C(10)-H(10A)	109.5	C(15)-C(16)-H(16A)	109.5
O(4)-C(3)-O(3)	128.2(8)	C(9)-C(10)-H(10B)	109.5	C(15)-C(16)-H(16B)	109.5
O(4)-C(3)-C(4)	121.6(8)	C(9)-C(10)-H(10C)	109.5	C(15)-C(16)-H(16C)	109.5
C(3)-O(3)-Sn(1)	124.2(5)	H(10A)-C(10)-H(10B)	109.5	H(16A)-C(16)-H(16B)	109.5
F(4)-C(4)-C(3)	112.0(7)	H(10A)-C(10)-H(10C)	109.5	H(16A)-C(16)-H(16C)	109.5
F(4)-C(4)-F(5)	106.6(8)	H(10B)-C(10)-H(10C)	109.5	H(16B)-C(16)-H(16C)	109.5
F(4)-C(4)-F(6)	109.4(8)	C(14)-O(10)-Sn(1)	123.4(4)	O(11)-Sn(2)-O(11)#1	97.6(3)
F(5)-C(4)-C(3)	110.0(7)	C(15)-O(10)-Sn(1)	124.0(4)	O(11)#1-Sn(2)-O(15)	92.25(19)
F(6)-C(4)-C(3)	112.1(7)	C(15)-O(10)-C(14)	112.7(6)	O(11)-Sn(2)-O(15)	86.53(19)
F(6)-C(4)-F(5)	106.5(8)	O(9)-C(11)-H(11A)	109.6	O(11)#1-Sn(2)-O(15)#1	86.53(19)
O(5)-C(5)-C(6)	111.2(7)	O(9)-C(11)-H(11B)	109.6	O(11)-Sn(2)-O(15)#1	92.25(19)
O(6)-C(5)-O(5)	128.4(8)	O(9)-C(11)-C(12)	110.3(6)	O(13)-Sn(2)-O(11)	83.0(2)
O(6)-C(5)-C(6)	120.4(7)	H(11A)-C(11)-H(11B)	108.1	O(13)#1-Sn(2)-O(11)#1	83.0(2)
C(5)-O(5)-Sn(1)	124.5(5)	C(12)-C(11)-H(11A)	109.6	O(13)-Sn(2)-O(11)#1	175.03(19)

Table S12. Bond angles (in °) for compound $6 \leftarrow (OEt_2)_2$, cont.

O(13)#1-Sn(2)-O(11)	175.03(19)	H(22A)-C(22)-H(22B)	109.5	O(19)-C(27)-O(18)	127.0(7)
O(13)#1-Sn(2)-O(13)	96.8(3)	H(22A)-C(22)-H(22C)	109.5	O(19)-C(27)-C(28)	123.8(7)
O(13)#1-Sn(2)-O(15)#1	92.72(19)	H(22B)-C(22)-H(22C)	109.5	F(22)-C(28)-F(24)	105.7(7)
O(13)#1-Sn(2)-O(15)	88.51(19)	O(15)-C(23)-H(23A)	109.3	F(22)-C(28)-C(27)	109.7(7)
O(13)-Sn(2)-O(15)#1	88.51(19)	O(15)-C(23)-H(23B)	109.3	F(23)-C(28)-F(22)	108.0(8)
O(13)-Sn(2)-O(15)	92.71(19)	O(15)-C(23)-C(24)	111.6(7)	F(23)-C(28)-F(24)	109.0(8)
O(15)-Sn(2)-O(15)#1	178.2(3)	H(23A)-C(23)-H(23B)	108	F(23)-C(28)-C(27)	113.4(7)
C(17)-O(11)-Sn(2)	128.1(5)	C(24)-C(23)-H(23A)	109.3	F(24)-C(28)-C(27)	110.6(7)
C(19)-O(13)-Sn(2)	125.6(5)	C(24)-C(23)-H(23B)	109.3	O(20)-C(29)-H(29A)	109.4
C(21)-O(15)-Sn(2)	123.7(4)	C(23)-C(24)-H(24A)	109.5	O(20)-C(29)-H(29B)	109.4
C(23)-O(15)-Sn(2)	123.6(4)	C(23)-C(24)-H(24B)	109.5	O(20)-C(29)-C(30)	111.0(6)
C(23)-O(15)-C(21)	112.8(6)	C(23)-C(24)-H(24C)	109.5	H(29A)-C(29)-H(29B)	108
O(11)-C(17)-C(18)	109.5(7)	H(24A)-C(24)-H(24B)	109.5	C(30)-C(29)-H(29A)	109.4
O(12)-C(17)-O(11)	128.9(8)	H(24A)-C(24)-H(24C)	109.5	C(30)-C(29)-H(29B)	109.4
O(12)-C(17)-C(18)	121.6(8)	H(24B)-C(24)-H(24C)	109.5	C(29)-C(30)-H(30A)	109.5
F(13)-C(18)-F(14)	107.0(7)	O(16)#2-Sn(3)-O(16)	97.0(3)	C(29)-C(30)-H(30B)	109.5
F(13)-C(18)-C(17)	110.5(7)	O(16)#2-Sn(3)-O(18)#2	178.03(19)	C(29)-C(30)-H(30C)	109.5
F(14)-C(18)-C(17)	110.1(7)	O(16)#2-Sn(3)-O(18)	83.3(2)	H(30A)-C(30)-H(30B)	109.5
F(15)-C(18)-F(13)	107.9(7)	O(16)-Sn(3)-O(18)#2	83.3(2)	H(30A)-C(30)-H(30C)	109.5
F(15)-C(18)-F(14)	107.8(7)	O(16)-Sn(3)-O(18)	178.03(19)	H(30B)-C(30)-H(30C)	109.5
F(15)-C(18)-C(17)	113.3(7)	O(16)-Sn(3)-O(20)	90.64(19)	O(20)-C(31)-H(31A)	109.1
O(13)-C(19)-C(20)	110.8(7)	O(16)-Sn(3)-O(20)#2	88.49(19)	O(20)-C(31)-H(31B)	109.1
O(14)-C(19)-O(13)	128.5(8)	O(16)#2-Sn(3)-O(20)#2	90.64(19)	O(20)-C(31)-C(32)	112.5(6)
O(14)-C(19)-C(20)	120.7(7)	O(16)#2-Sn(3)-O(20)	88.49(19)	H(31A)-C(31)-H(31B)	107.8
F(16)-C(20)-F(17)	105.9(7)	O(18)#2-Sn(3)-O(18)	96.4(3)	C(32)-C(31)-H(31A)	109.1
F(16)-C(20)-F(18)	106.3(7)	O(18)#2-Sn(3)-O(20)	89.56(19)	C(32)-C(31)-H(31B)	109.1
F(16)-C(20)-C(19)	112.2(7)	O(18)-Sn(3)-O(20)	91.31(19)	C(31)-C(32)-H(32A)	109.5
F(17)-C(20)-F(18)	107.6(7)	O(18)#2-Sn(3)-O(20)#2	91.31(19)	C(31)-C(32)-H(32B)	109.5
F(17)-C(20)-C(19)	113.0(7)	O(18)-Sn(3)-O(20)#2	89.56(18)	C(31)-C(32)-H(32C)	109.5
F(18)-C(20)-C(19)	111.4(7)	O(20)-Sn(3)-O(20)#2	178.7(3)	H(32A)-C(32)-H(32B)	109.5
O(15)-C(21)-H(21A)	109.6	C(25)-O(16)-Sn(3)	126.5(5)	H(32A)-C(32)-H(32C)	109.5
O(15)-C(21)-H(21B)	109.6	C(27)-O(18)-Sn(3)	125.7(5)	H(32B)-C(32)-H(32C)	109.5
O(15)-C(21)-C(22)	110.4(6)	C(29)-O(20)-Sn(3)	124.6(4)	F(19)-C(26)-C(25)	106.0(9)
H(21A)-C(21)-H(21B)	108.1	C(29)-O(20)-C(31)	112.1(5)	F(20)-C(26)-F(19)	102.7(10)
C(22)-C(21)-H(21A)	109.6	C(31)-O(20)-Sn(3)	123.2(4)	F(20)-C(26)-F(21)	114.1(9)
C(22)-C(21)-H(21B)	109.6	O(16)-C(25)-C(26)	110.5(7)	F(20)-C(26)-C(25)	117.6(8)
C(21)-C(22)-H(22A)	109.5	O(17)-C(25)-O(16)	127.6(8)	F(21)-C(26)-F(19)	99.6(8)
C(21)-C(22)-H(22B)	109.5	O(17)-C(25)-C(26)	121.9(8)	F(21)-C(26)-C(25)	114.0(9)
C(21)-C(22)-H(22C)	109.5	O(18)-C(27)-C(28)	109.1(7)		

Symmetry transformations used to generate equivalent atoms: #1 (-x, y, $-z + \frac{3}{2}$); #2 (-x + 1, y, $-z + \frac{3}{2}$).

Crystallography of tetratin(II) monotin(IV) di-µ₃-oxy-octakis-µtrifluoroacetate (4)

Figure S13. Crystal packing of **4**. Atoms are depicted as ellipsoids at 50% probability. One molecule of **3** is depicted as spacefilling spheres. The exposed Sn atoms (white) clearly show the location of the stereochemically active nonbonding lone-pairs.

Identification code	CCDC	1885256
Empirical formula	C16F24	$O_{18}Sn_5$
Formula weight / g mol ⁻¹	38	2.40
Temperature / K	125(2)	
Wavelength / Å	0.7	1073
Crystal system	Orthor	hombic
Space group	Pr	nna
Unit cell dimensions	a = 24.311(4) Å	$\alpha = 90^{\circ}$
	b = 12.604(2) Å	$\beta = 90^{\circ}$
	c = 12.593(2) Å	$\gamma = 90^{\circ}$
Volume / Å ³	3858	.5(11)
Ζ		4
$ ho_{ m calc}$ / g cm ⁻³	2.633	
μ / mm ⁻¹	3.375	
F(000)	2824	
Crystal size / mm ³	$0.20 \times 0.12 \times 0.12$	
θ range for data collection	1.675 to 26.999°.	
Index ranges	-31 ≤	$h \leq 28$
	-16 ≤	$k \leq 16$
	-16 ≤	$l \leq l \leq 16$
Reflections collected	40	644
Independent reflections	4218 [R(in	t) = 0.0778]
Completeness to $\theta = 26.000^{\circ}$	100	0.0 %
Absorption correction	Full-matrix lea	st-squares on F ²
Max. and min. transmission	0.7458 a	nd 0.6068
Refinement method	Full-matrix lea	st-squares on F ²
Data / restraints / parameters	4218 /	0 / 286
Goodness-of-fit on F ²	1.	047
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0392,	$\omega R2 = 0.0918$
R indices (all data)	R1 = 0.0547,	$\omega R2 = 0.0988$
Extinction coefficient	N	/A
Largest diff. peak and hole / e $Å^{-3}$	2.002 ar	nd –1.313

Table S13. Selected crystallographic parameters for 4.

Table S14. Bond lengths (in Å) for compound 4.

	· –		
Sn(1)-O(1)	2.008(5)	F(9)-C(6)	1.345(10)
Sn(1)-O(2)	2.011(5)	F(10)-C(8)	1.332(12)
Sn(1)-O(5)	2.077(4)	F(11)-C(8)	1.312(9)
Sn(1)-O(5)#1	2.077(4)	F(12)-C(8)	1.298(11)
Sn(1)-O(3)	2.080(4)	O(1)-Sn(2)#1	2.148(2)
Sn(1)-O(3)#1	2.080(4)	O(2)-Sn(3)#1	2.138(3)
Sn(2)-O(1)	2.148(2)	O(3)-C(1)	1.302(7)
Sn(2)-O(7)	2.177(4)	O(4)-C(1)	1.214(8)
Sn(2)-O(8)#1	2.317(4)	O(5)-C(3)	1.291(7)
Sn(2)-O(6)#1	2.436(4)	O(6)-C(3)	1.198(7)
Sn(3)-O(2)	2.138(3)	O(6)-Sn(2)#1	2.436(4)
Sn(3)-O(9)	2.166(5)	O(7)-C(5)	1.253(8)
Sn(3)-O(10)#1	2.319(5)	O(8)-C(5)	1.231(8)
Sn(3)-O(4)	2.551(5)	O(8)-Sn(2)#1	2.317(4)
F(1)-C(2)	1.324(11)	O(9)-C(7)	1.235(8)
F(2)-C(2)	1.269(9)	O(10)-C(7)	1.232(8)
F(3)-C(2)	1.314(9)	O(10)-Sn(3)#1	2.319(5)
F(4)-C(4)	1.332(8)	C(1)-C(2)	1.535(10)
F(5)-C(4)	1.307(9)	C(3)-C(4)	1.527(9)
F(6)-C(4)	1.313(8)	C(5)-C(6)	1.520(9)
F(7)-C(6)	1.289(9)	C(7)-C(8)	1.533(10)
F(8)-C(6)	1.314(9)		

Symmetry transformations used to generate equivalent atoms: #1 (x, -y + $^{1}/_{2}$, -z + $^{3}/_{2}$)

Table S15. Bond angles ((in °)) for com	pound 4.
--------------------------	--------	-----------	----------

	-		
O(1)-Sn(1)-O(2)	180	C(7)-O(9)-Sn(3)	131.1(5)
O(1)-Sn(1)-O(5)	94.45(11)	C(7)-O(10)-Sn(3)#1	136.9(4)
O(2)-Sn(1)-O(5)	85.55(11)	O(4)-C(1)-O(3)	127.7(6)
O(1)-Sn(1)-O(5)#1	94.45(11)	O(4)-C(1)-C(2)	119.4(6)
O(2)-Sn(1)-O(5)#1	85.55(11)	O(3)-C(1)-C(2)	112.9(6)
O(5)-Sn(1)-O(5)#1	171.1(2)	F(2)-C(2)-F(3)	109.1(8)
O(1)-Sn(1)-O(3)	87.09(11)	F(2)-C(2)-F(1)	107.8(8)
O(2)-Sn(1)-O(3)	92.91(11)	F(3)-C(2)-F(1)	107.1(8)
O(5)-Sn(1)-O(3)	92.06(17)	F(2)-C(2)-C(1)	112.0(7)
O(5)#1-Sn(1)-O(3)	88.39(17)	F(3)-C(2)-C(1)	111.6(6)
O(1)-Sn(1)-O(3)#1	87.09(11)	F(1)-C(2)-C(1)	109.1(7)
O(2)-Sn(1)-O(3)#1	92.91(11)	O(6)-C(3)-O(5)	128.6(6)
O(5)-Sn(1)-O(3)#1	88.39(17)	O(6)-C(3)-C(4)	119.6(6)
O(5)#1-Sn(1)-O(3)#1	92.06(17)	O(5)-C(3)-C(4)	111.8(5)
O(3)-Sn(1)-O(3)#1	174.2(2)	F(5)-C(4)-F(6)	108.4(7)
O(1)-Sn(2)-O(7)	91.25(15)	F(5)-C(4)-F(4)	105.9(6)
O(1)-Sn(2)-O(8)#1	86.62(15)	F(6)-C(4)-F(4)	108.2(6)
O(7)-Sn(2)-O(8)#1	82.23(18)	F(5)-C(4)-C(3)	111.2(6)
O(1)-Sn(2)-O(6)#1	81.00(12)	F(6)-C(4)-C(3)	112.3(6)
O(7)-Sn(2)-O(6)#1	74.06(17)	F(4)-C(4)-C(3)	110.7(6)
O(8)#1-Sn(2)-O(6)#1	152.87(17)	O(8)-C(5)-O(7)	128.8(6)
O(2)-Sn(3)-O(9)	91.23(16)	O(8)-C(5)-C(6)	115.6(6)
O(2)-Sn(3)-O(10)#1	87.66(16)	O(7)-C(5)-C(6)	115.6(6)
O(9)-Sn(3)-O(10)#1	81.2(2)	F(7)-C(6)-F(8)	111.1(7)
O(2)-Sn(3)-O(4)	77.41(12)	F(7)-C(6)-F(9)	103.6(7)
O(9)-Sn(3)-O(4)	73.99(19)	F(8)-C(6)-F(9)	103.6(7)
O(10)#1-Sn(3)-O(4)	150.57(19)	F(7)-C(6)-C(5)	115.7(6)
Sn(1)-O(1)-Sn(2)	117.19(13)	F(8)-C(6)-C(5)	112.6(6)
Sn(1)-O(1)-Sn(2)#1	117.19(13)	F(9)-C(6)-C(5)	109.2(7)
Sn(2)-O(1)-Sn(2)#1	125.6(3)	O(10)-C(7)-O(9)	129.4(6)
Sn(1)-O(2)-Sn(3)	117.51(13)	O(10)-C(7)-C(8)	117.3(6)
Sn(1)-O(2)-Sn(3)#1	117.51(13)	O(9)-C(7)-C(8)	113.3(6)
Sn(3)-O(2)-Sn(3)#1	125.0(3)	F(12)-C(8)-F(11)	110.2(8)
C(1)-O(3)-Sn(1)	125.6(4)	F(12)-C(8)-F(10)	105.2(8)
C(1)-O(4)-Sn(3)	135.4(4)	F(11)-C(8)-F(10)	106.0(8)
C(3)-O(5)-Sn(1)	129.5(4)	F(12)-C(8)-C(7)	112.0(8)
C(3)-O(6)-Sn(2)#1	134.8(4)	F(11)-C(8)-C(7)	113.7(6)
C(5)-O(7)-Sn(2)	131.0(4)	F(10)-C(8)-C(7)	109.1(8)
C(5)-O(8)-Sn(2)#1	138.0(4)		

Symmetry transformations used to generate equivalent atoms: #1 $(x, -y + \frac{1}{2}, -z + \frac{3}{2})$

Table S16.	. Torsion	angles	(in °) for	com	pound 4.
------------	-----------	--------	-------	-------	-----	----------

Sn(3)-O(4)-C(1)-O(3)	23.0(12)	Sn(2)#1-O(8)-C(5)-O(7)	-22.5(12)
Sn(3)-O(4)-C(1)-C(2)	-155.0(6)	Sn(2)#1-O(8)-C(5)-C(6)	158.4(5)
Sn(1)-O(3)-C(1)-O(4)	-8.2(11)	Sn(2)-O(7)-C(5)-O(8)	-4.1(11)
Sn(1)-O(3)-C(1)-C(2)	169.9(5)	Sn(2)-O(7)-C(5)-C(6)	174.9(5)
O(4)-C(1)-C(2)-F(2)	-15.0(12)	O(8)-C(5)-C(6)-F(7)	-165.2(7)
O(3)-C(1)-C(2)-F(2)	166.7(8)	O(7)-C(5)-C(6)-F(7)	15.6(10)
O(4)-C(1)-C(2)-F(3)	-137.6(7)	O(8)-C(5)-C(6)-F(8)	-36.0(10)
O(3)-C(1)-C(2)-F(3)	44.0(10)	O(7)-C(5)-C(6)-F(8)	144.9(7)
O(4)-C(1)-C(2)-F(1)	104.2(9)	O(8)-C(5)-C(6)-F(9)	78.5(8)
O(3)-C(1)-C(2)-F(1)	-74.1(8)	O(7)-C(5)-C(6)-F(9)	-100.7(8)
Sn(2)#1-O(6)-C(3)-O(5)	2.4(10)	Sn(3)#1-O(10)-C(7)-O(9)	14.2(13)
Sn(2)#1-O(6)-C(3)-C(4)	-176.0(4)	Sn(3)#1-O(10)-C(7)-C(8)	-166.3(6)
Sn(1)-O(5)-C(3)-O(6)	0.8(9)	Sn(3)-O(9)-C(7)-O(10)	13.5(12)
Sn(1)-O(5)-C(3)-C(4)	179.4(4)	Sn(3)-O(9)-C(7)-C(8)	-166.0(6)
O(6)-C(3)-C(4)-F(5)	105.7(7)	O(10)-C(7)-C(8)-F(12)	-133.1(8)
O(5)-C(3)-C(4)-F(5)	-72.9(7)	O(9)-C(7)-C(8)-F(12)	46.4(11)
O(6)-C(3)-C(4)-F(6)	-15.9(9)	O(10)-C(7)-C(8)-F(11)	-7.3(12)
O(5)-C(3)-C(4)-F(6)	165.4(6)	O(9)-C(7)-C(8)-F(11)	172.3(8)
O(6)-C(3)-C(4)-F(4)	-136.9(6)	O(10)-C(7)-C(8)-F(10)	110.8(8)
O(5)-C(3)-C(4)-F(4)	44.5(7)	O(9)-C(7)-C(8)-F(10)	-69.6(9)

Density Functional Theory (DFT) and Gas-Phase Electron Diffraction (GED) of 1 and 2

 Table S17. Summary of experimental parameters relating to GED data collection for 1 and 2.

Dataset Type	Short	Long
Nozzle-to-Image-Plate Distance / mm	234.5	477.0
Electron Wavelength / pm	5.85	5.85
$T_{ m nozzle, av}$ / K	473	473
$T_{ m sample, av}$ / K	463	463
Exposure Time / s	240	120

Table S18. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M06} , in atomic units (a.u) of **1** as calculated at the M06/def2-SVP level.

	$E_{M06} =$	-1265.69317741	
Sn	0.000000	0.000000	1.707022
0	-1.048348	1.833640	0.550225
0	0.994199	1.171554	0.069931
С	0.000000	1.933400	-0.103957
С	0.162487	3.028972	-1.168130
F	0.483841	2.481460	-2.329279
F	-0.944249	3.728492	-1.315563
F	1.140013	3.847870	-0.800076
0	-0.994199	-1.171554	0.069931
0	1.048348	-1.833640	0.550225
С	0.000000	-1.933400	-0.103957
С	-0.162487	-3.028972	-1.168130
F	-0.483841	-2.481460	-2.329279
F	0.944249	-3.728492	-1.315563
F	-1.140013	-3.847870	-0.800076

Table S19. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M06} , in atomic units (a.u) of **1** as calculated at the M06/def2-TZVP level.

ut the i	100/4012 12		
	$E_{M06} =$	-1266.92692674	4
Sn	0.000000	0.000000	1.661333
0	-1.060324	1.813728	0.520094
0	0.994300	1.173759	0.070970
С	0.000000	1.932403	-0.104085
С	0.179608	3.063751	-1.136388
F	0.596088	2.566562	-2.288579
F	-0.944081	3.718808	-1.335749
F	1.094638	3.915121	-0.688893
0	-0.994300	-1.173759	0.070970
0	1.060324	-1.813728	0.520094
С	0.000000	-1.932403	-0.104085
С	-0.179608	-3.063751	-1.136388
F	-0.596088	-2.566562	-2.288579
F	0.944081	-3.718808	-1.335749
F	-1.094638	-3.915121	-0.688893

	100 mile 2-		
	$E_{M06} =$	-1266.9848114	7
Sn	0.000000	0.000000	1.658676
0	-1.060599	1.812114	0.519136
0	0.993944	1.176451	0.073356
С	0.000000	1.934108	-0.101899
С	0.180116	3.066113	-1.134313
F	0.566287	2.563310	-2.294479
F	-0.935321	3.740119	-1.311906
F	1.117516	3.900630	-0.703567
0	-0.993944	-1.176451	0.073356
0	1.060599	-1.812114	0.519136
С	0.000000	-1.934108	-0.101899
С	-0.180116	-3.066113	-1.134313
F	-0.566287	-2.563310	-2.294479
F	0.935321	-3.740119	-1.311906
F	-1.117516	-3.900630	-0.703567

Table S20. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M06} , in atomic units (a.u) of **1** as calculated at the M06/def2-QZVP level.

Table S21. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M11} , in atomic units (a.u) of **1** as calculated at the M11/def2-SVP level.

	$E_{M11} =$	-1265.5027581	5
Sn	0.000000	0.000000	1.730656
Ο	-1.039459	1.797096	0.574018
Ο	0.986139	1.110571	0.103145
С	0.000000	1.881504	-0.093230
С	0.157241	2.948860	-1.193475
F	0.454398	2.360371	-2.350230
F	-0.956721	3.652911	-1.336402
F	1.153452	3.774124	-0.864866
0	-0.986139	-1.110571	0.103145
Ο	1.039459	-1.797096	0.574018
С	0.000000	-1.881504	-0.093230
С	-0.157241	-2.948860	-1.193475
F	-0.454398	-2.360371	-2.350230
F	0.956721	-3.652911	-1.336402
F	-1.153452	-3.774124	-0.864866

Table S22. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M11} , in atomic units (a.u) of **1** as calculated <u>at the M11/def2-TZVP level</u>.

Ем11 =	-1266.860154	22	
Sn	0.000000	0.000000	1.691177
0	-1.050585	1.790073	0.550767
0	0.987683	1.118323	0.100031
С	0.000000	1.887197	-0.092651
С	0.172007	2.986154	-1.164197
F	0.577216	2.444564	-2.315643
F	-0.966841	3.639770	-1.369372
F	1.102798	3.859259	-0.753286
0	-0.987683	-1.118323	0.100031
0	1.050585	-1.790073	0.550767
С	0.000000	-1.887197	-0.092651
С	-0.172007	-2.986154	-1.164197
F	-0.577216	-2.444564	-2.315643
F	0.966841	-3.639770	-1.369372
F	-1.102798	-3.859259	-0.753286

	$E_{M11} =$	-1266.9548808	4		
Sn	0.000000	0.000000	1.682033		
0	-1.051903	1.785698	0.548154		
0	0.989295	1.124835	0.099004		
С	0.000000	1.890962	-0.091531		
С	0.169495	2.996352	-1.157457		
F	0.555814	2.457914	-2.316783		
F	-0.965383	3.660999	-1.345375		
F	1.112537	3.858338	-0.752750		
Ο	-0.989295	-1.124835	0.099004		
0	1.051903	-1.785698	0.548154		
С	0.000000	-1.890962	-0.091531		
С	-0.169495	-2.996352	-1.157457		
F	-0.555814	-2.457914	-2.316783		
F	0.965383	-3.660999	-1.345375		
F	-1.112537	-3.858338	-0.752750		

Table S23. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M11} , in atomic units (a.u) of **1** as calculated at the M11/def2-QZVP level.

Table S24. Optimised Cartesian coordinates in Ångström (Å) and energy, $E_{SOGGA11X}$, in atomic units (a.u) of **1** as calculated at the SOGGA11X/def2-SVP level.

icu a	t the SOUUA	11A/uc12=3	
	Esogga11x	= -1265.63534	406
Sn	0.000000	0.000000	1.685318
0	-1.051982	1.830643	0.536282
0	0.989796	1.178947	0.073337
С	0.000000	1.945485	-0.106251
С	0.162344	3.063504	-1.152672
F	0.529757	2.546991	-2.316789
F	-0.964340	3.731107	-1.318873
F	1.103417	3.911126	-0.748380
0	-0.989796	-1.178947	0.073337
0	1.051982	-1.830643	0.536282
С	0.000000	-1.945485	-0.106251
С	-0.162344	-3.063504	-1.152672
F	-0.529757	-2.546991	-2.316789
F	0.964340	-3.731107	-1.318873
F	-1.103417	-3.911126	-0.748380

Table S25. Optimised Cartesian coordinates in Ångström (Å) and energy, $E_{SOGGA11X}$, in atomic units (a.u) of **1** as calculated at the SOGGA11X/def2-TZVP level.

	Esogga11x	= -1266.926482	297
Sn	0.000000	0.000000	1.619275
0	-1.066852	1.801994	0.497060
0	0.992210	1.182456	0.063369
С	0.000000	1.947460	-0.112335
С	0.181549	3.118114	-1.105911
F	0.719858	2.687882	-2.239003
F	-0.972267	3.701356	-1.378021
F	0.997322	4.023518	-0.566955
0	-0.992210	-1.182456	0.063369
0	1.066852	-1.801994	0.497060
С	0.000000	-1.947460	-0.112335
С	-0.181549	-3.118114	-1.105911
F	-0.719858	-2.687882	-2.239003
F	0.972267	-3.701356	-1.378021
F	-0.997322	-4.023518	-0.566955

	Esogga11X	= -1266.97630	535
Sn	0.000000	0.000000	1.613998
Ο	-1.067231	1.799428	0.492956
Ο	0.992153	1.184646	0.061787
С	0.000000	1.948465	-0.113504
С	0.181888	3.123756	-1.101960
F	0.729995	2.701162	-2.232331
F	-0.972538	3.701480	-1.379468
F	0.988756	4.031128	-0.554325
Ο	-0.992153	-1.184646	0.061787
Ο	1.067231	-1.799428	0.492956
С	0.000000	-1.948465	-0.113504
С	-0.181888	-3.123756	-1.101960
F	-0.729995	-2.701162	-2.232331
F	0.972538	-3.701480	-1.379468
F	-0.988756	-4.031128	-0.554325

Table S26. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{SOGGA11X}, in atomic units (a.u) of 1 as calculated at the SOGGA11X/def2-QZVP level.

Table S27. Optimised Cartesian coordinates in Ångström (Å) and energy, $E_{SOGGA11-X}$, in atomic units (a.u) of **1** as calculated at the SOGGA11-X/DZP-DKH level.

	Esogga11-X	x = -7223.11576	523
Sn	0.000000	0.000000	1.612842
0	-1.061598	1.837223	0.536052
С	0.000000	1.948392	-0.096176
Ο	0.979443	1.154423	0.076050
С	0.202365	3.090504	-1.109792
F	0.715135	2.624170	-2.244697
F	-0.939785	3.705880	-1.378547
F	1.055134	3.983672	-0.596984
0	1.061598	-1.837223	0.536052
С	0.000000	-1.948392	-0.096176
0	-0.979443	-1.154423	0.076050
С	-0.202365	-3.090504	-1.109792
F	-0.715135	-2.624170	-2.244697
F	0.939785	-3.705880	-1.378547
F	-1.055134	-3.983672	-0.596984

Table S28. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{SOGGA11-X}, in atomic units (a.u) of **1** as calculated at the SOGGA11-X/TZP-DKH level.

	Esogga11-X	x = -7223.43971	935
Sn	0.000000	0.000000	1.598760
Ο	-1.059238	1.815292	0.523365
С	0.000000	1.934374	-0.098943
Ο	0.977729	1.144936	0.069327
С	0.201989	3.092065	-1.099263
F	0.717390	2.642015	-2.234462
F	-0.939290	3.701919	-1.361764
F	1.045340	3.978358	-0.572807
0	1.059238	-1.815292	0.523365
С	0.000000	-1.934374	-0.098943
Ο	-0.977729	-1.144936	0.069327
С	-0.201989	-3.092065	-1.099263
F	-0.717390	-2.642015	-2.234462
F	0.939290	-3.701919	-1.361764
F	-1.045340	-3.978358	-0.572807

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$E_{\rm M06} = -1555.31109592$					
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0	0.000000	0.000000	2.107330		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Sn	1.456001	-1.055809	1.241794		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sn	-1.456001	1.055809	1.241794		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0.000000	2.020142	-0.204815		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	С	1.072172	1.576845	-0.666501		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1.643239	0.494192	-0.438086		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	С	1.784249	2.546835	-1.634150		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	F	2.269259	3.566818	-0.931037		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	F	2.782205	1.966446	-2.273252		
$\begin{array}{ccccccc} O & 0.000000 & -2.020142 & -0.204815 \\ C & -1.072172 & -1.576845 & -0.666501 \\ O & -1.643239 & -0.494192 & -0.438086 \\ C & -1.784249 & -2.546835 & -1.634150 \\ F & -2.269259 & -3.566818 & -0.931037 \\ F & -2.782210 & -1.966450 & -2.273250 \\ \end{array}$	F	0.929497	3.023039	-2.525925		
$\begin{array}{cccccc} C & -1.072172 & -1.576845 & -0.666501 \\ O & -1.643239 & -0.494192 & -0.438086 \\ C & -1.784249 & -2.546835 & -1.634150 \\ F & -2.269259 & -3.566818 & -0.931037 \\ F & -2.782210 & -1.966450 & -2.273250 \\ \end{array}$	0	0.000000	-2.020142	-0.204815		
O-1.643239-0.494192-0.438086C-1.784249-2.546835-1.634150F-2.269259-3.566818-0.931037F-2.782210-1.966450-2.273250	С	-1.072172	-1.576845	-0.666501		
C -1.784249 -2.546835 -1.634150 F -2.269259 -3.566818 -0.931037 F -2.782210 -1.966450 -2.273250	0	-1.643239	-0.494192	-0.438086		
F-2.269259-3.566818-0.931037F-2.782210-1.966450-2.273250	С	-1.784249	-2.546835	-1.634150		
F -2.782210 -1.966450 -2.273250	F	-2.269259	-3.566818	-0.931037		
	F	-2.782210	-1.966450	-2.273250		
<u>F -0.929500 -3.023040 -2.525930</u>	F	-0.929500	-3.023040	-2.525930		

Table S29. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M06} , in atomic units (a.u) of **2** as calculated at the M06/def2-SVP level.

Table S30. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M06} , in atomic units (a.u) of **2** as calculated at the M06/def2-TZVP level.

$E_{M06} =$	-1556.6361067	8	
0	0.000000	0.000000	2.065568
Sn	1.441379	1.038898	1.198573
Sn	-1.441379	-1.038898	1.198573
0	-1.708748	0.523912	-0.422447
С	-1.111917	1.588745	-0.663040
0	0.000000	1.981071	-0.273501
С	-1.908537	2.567575	-1.566448
F	-2.928100	3.057621	-0.866170
F	-1.168410	3.574546	-1.984139
F	-2.395079	1.935068	-2.621513
0	1.708748	-0.523912	-0.422447
С	1.111917	-1.588745	-0.663040
0	0.000000	-1.981071	-0.273501
С	1.908537	-2.567575	-1.566448
F	2.928100	-3.057621	-0.866170
F	1.168410	-3.574550	-1.984140
F	2.395079	-1.935070	-2.621510

$E_{\rm M06} = -1556.70107571$				
0	0.000000	0.000000	2.065354	
Sn	1.441753	1.036272	1.204636	
Sn	-1.441753	-1.036272	1.204636	
0	-1.698962	0.521161	-0.419304	
С	-1.106865	1.589086	-0.654413	
0	0.000000	1.985759	-0.257964	
С	-1.900154	2.556539	-1.573822	
F	-2.998326	2.953226	-0.939082	
F	-1.199097	3.622870	-1.899097	
F	-2.263750	1.935220	-2.684671	
0	1.698962	-0.521161	-0.419304	
С	1.106865	-1.589086	-0.654413	
0	0.000000	-1.985759	-0.257964	
С	1.900154	-2.556539	-1.573822	
F	2.998326	-2.953226	-0.939082	
F	1.199097	-3.622870	-1.899100	
F	2.263750	-1.935220	-2.684670	

Table S31. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M06} , in atomic units (a.u) of **2** as calculated at the M06/def2-QZVP level.

Table S32. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M11} , in atomic units (a.u) of **2** as calculated at the M11/def2-SVP level.

$E_{\rm M11} = -1554.89836428$				
0	0.000000	0.000000	2.082411	
Sn	1.442885	-1.083404	1.281121	
Sn	-1.442885	1.083404	1.281121	
0	0.000000	1.989831	-0.147188	
С	1.048656	1.513593	-0.630176	
0	1.602473	0.426799	-0.379092	
С	1.721781	2.416895	-1.693911	
F	1.963469	3.620683	-1.169738	
F	2.866022	1.898073	-2.121743	
F	0.899276	2.566247	-2.734181	
0	0.000000	-1.989831	-0.147188	
С	-1.048656	-1.513593	-0.630176	
0	-1.602473	-0.426799	-0.379092	
С	-1.721781	-2.416895	-1.693911	
F	-1.963469	-3.620683	-1.169738	
F	-2.866020	-1.898070	-2.121740	
F	-0.899280	-2.566250	-2.734180	

		I I I I I I I I I I I I I I I I I I I			
	$E_{\rm M11} = -1556.36439404$				
0	0.000000	0.000000	2.051543		
Sn	1.435490	-1.070803	1.242349		
Sn	-1.435490	1.070803	1.242349		
0	0.000000	1.988985	-0.176252		
С	1.064815	1.533526	-0.636439		
Ο	1.619600	0.446283	-0.404534		
С	1.780518	2.486329	-1.635133		
F	2.124945	3.617054	-1.000790		
F	2.878928	1.934089	-2.144382		
F	0.952982	2.802236	-2.637927		
Ο	0.000000	-1.988985	-0.176252		
С	-1.064815	-1.533526	-0.636439		
Ο	-1.619600	-0.446283	-0.404534		
С	-1.780518	-2.486329	-1.635133		
F	-2.124945	-3.617054	-1.000790		
F	-2.878930	-1.934090	-2.144380		
F	-0.952980	-2.802240	-2.637930		

Table S33. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M11} , in atomic units (a.u) of **2** as calculated <u>at the M11/def2-TZVP level.</u>

Table S34. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M11} , in atomic units (a.u) of **2** as calculated at the M11/def2-QZVP level.

	$E_{M11} =$	-1556.46771071	
0	0.000000	0.000000	2.047599
Sn	1.431937	-1.065305	1.233184
Sn	-1.431937	1.065305	1.233184
Ο	0.000000	1.985434	-0.183310
С	1.071132	1.538144	-0.635319
Ο	1.629238	0.452915	-0.403951
С	1.791777	2.500086	-1.622376
F	2.127229	3.627455	-0.977846
F	2.895774	1.955538	-2.126659
F	0.971299	2.819675	-2.629423
Ο	0.000000	-1.985434	-0.183310
С	-1.071132	-1.538144	-0.635319
0	-1.629238	-0.452915	-0.403951
С	-1.791777	-2.500086	-1.622376
F	-2.127229	-3.627455	-0.977846
F	-2.895770	-1.955540	-2.126660
F	-0.971300	-2.819680	-2.629420

	Esogga11x	= -1555.22139	679
Ο	0.000000	0.000000	2.041502
Sn	1.449558	-1.070045	1.203839
Sn	-1.449558	1.070045	1.203839
0	0.000000	1.900274	-0.331632
С	1.153369	1.564599	-0.664230
0	1.803687	0.550473	-0.341757
С	1.905490	2.563047	-1.576095
F	2.650025	3.362606	-0.811325
F	2.705446	1.930255	-2.420635
F	1.066750	3.313707	-2.271252
0	0.000000	-1.900274	-0.331632
С	-1.153369	-1.564599	-0.664230
0	-1.803687	-0.550473	-0.341757
С	-1.905490	-2.563047	-1.576095
F	-2.650025	-3.362606	-0.811325
F	-2.705450	-1.930260	-2.420640
F	-1.066750	-3.313710	-2.271250

Table S35. Optimised Cartesian coordinates in Ångström (Å) and energy, $E_{SOGGA11X}$, in atomic units (a.u) of **2** as calculated at the SOGGA11Z/def2-SVP level.

Table S36. Optimised Cartesian coordinates in Ångström (Å) and energy, $E_{SOGGA11X}$, in atomic units (a.u) of **2** as calculated at the SOGGA11Z/def2-TZVP level.

	Esogga11X	= -1556.61033	066
0	0.000000	0.000000	2.008527
Sn	1.429650	-1.052697	1.166550
Sn	-1.429650	1.052697	1.166550
0	0.000000	1.916035	-0.335373
С	1.152721	1.577421	-0.662338
0	1.785071	0.543167	-0.376837
С	1.933300	2.612284	-1.521664
F	2.636442	3.399635	-0.702699
F	2.777175	2.016022	-2.350913
F	1.115821	3.375218	-2.230823
0	0.000000	-1.916035	-0.335373
С	-1.152721	-1.577421	-0.662338
0	-1.785071	-0.543167	-0.376837
С	-1.933300	-2.612284	-1.521664
F	-2.636442	-3.399635	-0.702699
F	-2.777180	-2.016020	-2.350910
F	-1.115820	-3.375220	-2.230820

	Esoggalix	= -1556.66621	870
0	0.000000	0.000000	2.001673
Sn	1.428519	-1.052149	1.163798
Sn	-1.428519	1.052149	1.163798
0	0.000000	1.911985	-0.338232
С	1.154119	1.577071	-0.661498
0	1.787354	0.544621	-0.374294
С	1.935074	2.614485	-1.517644
F	2.633073	3.403139	-0.696435
F	2.782978	2.021157	-2.343737
F	1.118453	3.375155	-2.228887
0	0.000000	-1.911985	-0.338232
С	-1.154119	-1.577071	-0.661498
0	-1.787354	-0.544621	-0.374294
С	-1.935074	-2.614485	-1.517644
F	-2.633073	-3.403139	-0.696435
F	-2.782980	-2.021160	-2.343740
F	-1.118450	-3.375160	-2.228890

Table S37. Optimised Cartesian coordinates in Ångström (Å) and energy, $E_{SOGGA11X}$, in atomic units (a.u) of **2** as calculated at the SOGGA11Z/def2-QZVP level.

Table S38. Optimised Cartesian coordinates in Ångström (Å) and energy, $E_{SOGGA11-X}$, in atomic units (a.u) of **2** as calculated at the SOGGA11-X/DZP-DKH level.

$E_{\text{SOGGA11-X}} = -13468.42020240$										
0	0.000000	0.000000	1.973834							
Sn	-1.772424	0.093961	1.197833							
Sn	1.772424	-0.093961	1.197833							
0	-1.052677	1.552379	-0.316350							
С	0.098920	1.917634	-0.643647							
Ο	1.204998	1.440108	-0.308959							
С	0.149879	3.159339	-1.569328							
F	0.000000	4.261413	-0.821332							
F	1.307780	3.249456	-2.212301							
F	-0.830704	3.130947	-2.467109							
0	1.052677	-1.552379	-0.316350							
С	-0.098920	-1.917634	-0.643647							
Ο	-1.204998	-1.440108	-0.308959							
С	-0.149879	-3.159339	-1.569328							
F	0.000000	-4.261413	-0.821332							
F	-1.307780	-3.249456	-2.212301							
F	0.830704	-3.130947	-2.467109							

-			
	Esogga11-x	= -13468.92089	320
0	0.000000	0.000000	1.963780
Sn	-1.742033	0.194316	1.172353
Sn	1.742033	-0.194316	1.172353
0	-0.950360	1.616093	-0.343302
С	0.216810	1.936161	-0.636750
0	1.291301	1.401412	-0.312804
С	0.326057	3.203517	-1.529186
F	0.000000	4.275514	-0.805751
F	1.551374	3.374063	-1.995945
F	-0.509566	3.124521	-2.557005
0	0.950360	-1.616093	-0.343302
С	-0.216810	-1.936161	-0.636750
0	-1.291301	-1.401412	-0.312804
С	-0.326057	-3.203517	-1.529186
F	0.000000	-4.275514	-0.805751
F	-1.551374	-3.374063	-1.995945
F	0.509566	-3.124521	-2.557005

Table S39. Optimised Cartesian coordinates in Ångström (Å) and energy, $E_{SOGGA11-X}$, in atomic units (a.u) of **2** as calculated at the SOGGA11-X/TZP-DKH level.

Table S40. Definitions of the parameters used in the parameterized molecular model of **1** and **2**.

	Parameter	Definition
p_1	$rSn-O^{a}$	$^{2}/_{5} r \text{Sn}(17) - O(16) + \frac{1}{5} r \text{Sn}(17) - O(19) + \frac{1}{5} r \text{Sn}(1) - O(2) + \frac{1}{5} r \text{Sn}(1) - O(4)$
p_2	rSn-O ^b	{ $^{2}/_{3} rSn(17)-O(16) + \frac{1}{3} rSn(17)-O(19)$ } - { $^{1}/_{2} rSn(1)-O(2) + \frac{1}{2} rSn(1)-O(4)$ }
p_3	rSn-O ^b	$r \operatorname{Sn}(17) - \operatorname{O}(16) - r \operatorname{Sn}(17) - \operatorname{O}(19)$
p_4	rSn-O ^b	$r \operatorname{Sn}(1) - \operatorname{O}(2) - r \operatorname{Sn}(1) - \operatorname{O}(4)$
p_5	<i>r</i> Sn-C (1)	rSn(1)-C(3)
p_6	<i>r</i> Sn-C (2)	<i>r</i> Sn(17)-C(20)
p_7	$rC-O^a$	$\frac{1}{2} rC(20)-O(19) + \frac{1}{4} rC(3)-O(2) + \frac{1}{4} rC(3)-O(4)$
p_8	$rC-O^b$	$rC(20)-O(19) - {1/2} rC(3)-O(2) + {1/2} rC(3)-O(4)$
p_9	$rC-O^b$	rC(3)-O(4) - rC(3)-O(2)
p_{10}	$rC-C^a$	$\frac{1}{2} rC(20)-C(22) + \frac{1}{2} rC(3)-C(5)$
n 11	$rC-F^a$	$\frac{1}{6} \{ rC(5)-F(6) + rC(5)-F(7) + rC(5)-F(8) \}$
P^{11}		+ $rC(22)$ -F(23) + $rC(22)$ -F(24) + $rC(22)$ -F(25)}
p_{12}	$aC-C-F^a$	$\frac{1}{6} \{ aC(3)-C(5)-F(6) + aC(3)-C(5)-F(7) + aC(3)-C(5)-F(8) \}$
	$a \cap C \cap (1)$	+ aC(20)-C(22)-F(23) + aC(20)-C(22)-F(24) + aC(20)-C(22)-F(23)
p_{13}	$u \cup - \cup - \cup (1)$	aO(2)-C(3)-C(3)
p_{14}	aC-SII-C(1)	aC(3)-Sn(1)-C(10)
p_{15}	ØO-C-C-F (1)	$\emptyset O(2) - C(3) - C(3) - F(0)$
p_{16}	ØO-C-C-F (1)	$\emptyset O(2) - C(3) - C(3) - F(7)$
p_{17}	ØU-C-C-F (I)	$\emptyset O(2) - C(3) - C(3) - F(8)$
p_{18}	∂X^{c} -Sn-C-O (1)	$\emptyset X^{c}$ -Sn(1)-C(3)-O(2)
p_{19}	aSn-O-Sn(2)	aSn(17)-O(16)-Sn(18)
p_{20}	ØO-C-C-F (2)	ØO(19)-C(20)-C(22)-F(23)
p_{21}	øO-C-C-F (2)	ØO(19)-C(20)-C(22)-F(24)
p_{22}	øO-C-C-F (2)	ØO(19)-C(20)-C(22)-F(25)
p_{23}	$aC-X^{d}-C(2)$	$aC(20)-X^{d}-C(27)$

^{*p*23} $a \in A^{-1} \cup (a)^{-1} \to (a)^{-1} (a)^{-1} \to$

Dataset Type	Short	Long
$\Delta s / nm^{-1}$	2.0	1.0
$s_{\min} / \mathrm{nm}^{-1}$	88.0	50.0
$s\mathbf{w}_1 / \mathbf{n}\mathbf{m}^{-1}$	104.0	68.0
sw_2 / nm^{-1}	222.0	101.0
$s_{\rm max}$ / ${\rm nm}^{-1}$	240.0	114.0
Correlation Parameter	0.4934	0.4959
Scale Factor (<i>k</i>)	0.0049(1)	0.0022(1)

 Table S41. Summary of experimental parameters relating to GED data reduction and refinement for 1 and 2.

Table S42. Refined (r_{h1}) and theoretical^{*a*} (r_e) parameter values^{*b*} and SARACEN restraints^{*c*} applied in the least-squares refinement of **1** and **2**.

	<i>P</i> h1	Гe	Restraint
p_1	215.8(7)	217.6	_
p_2	-13.8(10)	-13.0	-13.0(7)
p_3	33.6(11)	30.1	30.1(18)
p_4	22.1(21)	21.5	21.5(18)
p_5	260.0(7)	257.4	—
p_6	317.2(7)	318.5	_
p_7	125.8(2)	124.8	—
p_8	-0.5(1)	-0.6	-0.6(1)
p_9	3.4(4)	3.4	3.4.(4)
p_{10}	153.1(6)	154.9	—
p_{11}	133.7(1)	132.7	—
p_{12}	110.7(1)	110.4	110.4(1)
p_{13}	120.8(3)	120.8	120.8(3)
p_{14}	97.5(3)	97.5	97.5(3)
p_{15}	-133.4^{d}	-133.4	—
p_{16}	-12.4^{d}	-12.4	—
p_{17}	107.3 ^d	107.3	—
p_{18}	-69.8^{d}	-69.8	—
p_{19}	137.4(17)	131.4	131.4(17)
p_{20}	70.7^{d}	70.7	—
p_{21}	-169.5^{d}	-169.5	—
p_{22}	-48.3^{d}	-48.3	_
p_{23}	94.2(1)	94.2	_

^{*a*} Calculations at the SOGGA11X/TZP-DKH level. ^{*b*} Interatomic distances (r) are tabulated in picometers (pm) and angles (a) are tabulated in degrees. ^{*c*} SARACEN restraint uncertainties are derived from sequential DFT geometry optimizations using the M06, M11 and SOGGA11X functionals and the def2-SVP, def2-TZVP and def2-QZVP basis sets. ^{*d*} Unrefined; no information available.

	p_1	p_3	p_4	p_5	p_6	p_7	p_{10}	p_{11}	p_{19}	u_1	u_2	<i>u</i> ₃	U 13	u_{42}	u_{65}	u_{74}	k_1	k_2
9 1	100						-60		-74		-51							
3		100							66									
4			100							-53		-78						
95				100			-52											
9 6					100						51							
97						100		-60						61				
10							100										50	55
9 11								100										
7 19									100		55							
l_1										100		69						
12											100		94					
13												100						
l 13													100			51		
<i>l</i> 42														100			65	
l 65															100	59		
174																100		
1																	100	
K 2																		100

Table S43. Least-squares correlation matrix^a (×100) of **1** and **2**.

^{*a*} Only values \geq 50% are tabulated. k_1 and k_2 are scale factors.

Amp.	Atomic Pair	ra	$u_{ ext{GED}}$	Restraint	$k_{ m h1}$	$u_{ m h1}$
u_8	O(2)-C(3)	124.4(3)	2.9 (Tied to <i>u</i> ₄₂)	_	4.2	0.1
U 93	C(20)-O(21)	125.5(3)	2.8 (Tied to <i>u</i> ₄₂)	_	4.0	0.1
u_{80}	O(19)-C(20)	125.5(3)	2.8 (Tied to <i>u</i> ₄₂)	_	4.0	0.1
u_{21}	C(3)-O(4)	127.8(3)	2.8 (Tied to <i>u</i> ₄₂)	-	4.0	0.1
U 42	C(5)F(7)	132.8(1)	3.8(1)	5.6(6)	5.6	0.1
u_{41}	C(5)F(6)	133.4(1)	2.8 (Tied to <i>u</i> ₄₂)	_	4.1	0.1
u_{114}	C(22)F(24)	133.6(1)	3.2 (Tied to u_{42})	_	4.7	0.1
u 115	C(22)F(25)	133.8(1)	3.3 (Tied to <i>u</i> ₄₂)	_	4.7	0.1
u_{43}	C(5)F(8)	134.0(1)	3.5 (Tied to u_{42})	_	5.1	0.1
U 113	C(22)F(23)	134.8(1)	3.3 (Tied to <i>u</i> ₄₂)	_	4.8	0.1
u_{22}	C(3)-C(5)	152.6(6)	6.6(1)	5.1(5)	5.1	0.1
U 94	C(20)-C(22)	153.2(6)	6.6 (Tied to <i>u</i> ₂₂)	_	5.1	0.1
U 57	O(16)-Sn(17)	187.8(11)	5.5(1)	5.3(5)	5.3	0.1
U 9	O(2)O(4)	210.6(11)	3.4 (Tied to u_3)	_	4.9	0.1
u_3	Sn(1)-O(4)	212.9(14)	9.5(6)	13.7(14)	13.7	0.4
U 120	F(23)F(24)	215.6(3)	4.5 (Tied to u_3)	_	6.6	0.1
u_{48}	F(6)F(7)	216.0(3)	9.0 (Tied to u_3)	_	13.0	0.3
U 53	F(7)F(8)	216.2(3)	6.6 (Tied to u_3)	_	9.6	0.1
U 49	F(6)F(8)	216.7(3)	5.6 (Tied to u_3)	_	8.1	0.1
U 121	F(23)F(25)	217.2(3)	4.6 (Tied to u_3)	_	6.6	0.1
u_{125}	F(24)F(25)	218.3(3)	4.4 (Tied to u_3)	_	6.4	0.1
U 75	Sn(17)O(28)	221.4(9)	6.5 (Tied to u_3)	_	9.4	0.2
u_{66}	Sn(17)-O(19)	221.4(9)	6.5 (Tied to u_3)	_	9.3	0.2
u_{81}	O(19)O(21)	229.0(13)	3.8 (Tied to u_3)	_	5.5	0.1
U 25	C(3)-F(8)	233.8(6)	15.0 (Tied to u_1)	_	24.2	0.6
U 97	C(20)-F(25)	233.8(6)	4.9 (Tied to u_1)	_	7.9	0.1
u_{104}	O(21)C(22)	234.8(10)	4.4 (Tied to u_1)	_	7.1	0.1
u_{82}	O(19)C(22)	234.8(10)	4.4 (Tied to u_1)	_	7.1	0.1
u_1	Sn(1)-O(2)	235.1(14)	5.6(5)	9.1(9)	9.1	0.2
<i>u</i> ₂₃	C(3)-F(6)	235.3(6)	15.3 (Tied to u_1)	_	24.6	0.5
<i>U</i> 24	C(3)-F(7)	236.0(6)	12.6 (Tied to u_1)	_	20.4	0.3
U 96	C(20)-F(24)	238.1(6)	4.7 (Tied to u_1)	_	7.5	0.1
U 95	C(20)-F(23)	238.9(6)	5.4 (Tied to u_1)	_	8.8	0.2
u_{10}	O(2)C(5)	241.5(7)	4.8 (Tied to u_1)	_	7.7	0.1
U 32	O(4)C(5)	250.2(14)	4.6 (Tied to u_1)	_	7.5	0.1
u_{106}	O(21)F(24)	255.3(13)	18.9 (Tied to u_2)	_	18.8	0.7
U 85	O(19)F(25)	266.4(12)	21.1 (Tied to <i>u</i> ₂)	_	21.0	0.8
u_2	Sn(1)C(3)	267.1(7)	7.0(3)	_	7.0	0.1
U 34	O(4)F(7)	274.5(20)	50.3 (Tied to <i>u</i> ₂)	_	50.1	5.4

Table S44. Internuclear distances (r_a / pm) , refined (u_{GED}) and theoretical (u_{h1}) amplitudes of vibration and restraints and distance corrections (k_{h1}) for **1** and **2**.^{*a*}

Illation	i and restraints an	iu uistance	concetions (<i>k</i> _{hl}) for 1 and	2 , com.		
u_{11}	O(2)F(6)	275.0(8)	52.5 (Tied to <i>u</i> ₂)	_	52.3	4.9
u_{60}	O(16)O(21)	287.7(28)	13.8 (Tied to u_{13})	_	15.1	0.4
u_{58}	O(16)O(19)	287.7(28)	13.7 (Tied to u_{13})	_	15.0	0.4
U 83	O(19)F(23)	289.0(11)	30.5 (Tied to u_{13})	_	33.4	1.9
u_{13}	O(2)F(8)	289.1(7)	66.7(23)	-	72.9	8.5
U 16	O(2)O(11)	302.6(16)	22.8 (Tied to u_{13})	_	24.9	1.0
u_{88}	O(19)O(28)	312.1(15)	16.8 (Tied to <i>u</i> ₇₄)	_	22.4	0.8
U 59	O(16)C(20)	314.9(23)	11.4 (Tied to <i>u</i> ₇₄)	_	15.3	0.4
u74	Sn(17)C(27)	317.2(7)	8.4(7)	11.2(11)	11.2	0.2
U 67	Sn(17)C(20)	317.2(7)	8.1 (Tied to <i>u</i> ₇₄)	_	10.8	0.2
U 105	O(21)F(23)	321.2(9)	25.9 (Tied to <i>u</i> ₇₄)	_	34.6	1.9
U 33	O(4)F(6)	323.7(11)	95.3 (Tied to <i>u</i> ₆₅)	_	53.6	4.0
U 35	O(4)F(8)	327.9(12)	56.9 (Tied to <i>u</i> ₇₄)	_	76.0	8.4
u_{14}	O(2)O(9)	327.9(21)	45.2 (Tied to <i>u</i> ₆₅)	_	25.5	0.4
u_{107}	O(21)F(25)	328.9(8)	32.9 (Tied to <i>u</i> ₆₅)	_	18.5	0.5
U 15	O(2)C(10)	343.0(16)	45.6 (Tied to <i>u</i> ₆₅)	_	25.7	1.0
u_{86}	O(19)O(26)	344.8(20)	105.1 (Tied to <i>u</i> ₆₅)	_	59.2	-13.8
U 12	O(2)F(7)	345.8(6)	44.1 (Tied to <i>u</i> ₆₅)	_	24.8	0.9
u_{84}	O(19)F(24)	347.1(7)	22.5 (Tied to <i>u</i> ₆₅)	_	12.7	0.3
U 65	Sn(17)Sn(18)	348.6(5)	12.4(3)	7.0(7)	7.0	-1.0
u_{108}	O(21)O(28)	352.3(19)	97.5 (Tied to <i>u</i> ₆₅)	_	54.9	-10.3
U 73	Sn(17)O(26)	357.0(10)	32.3 (Tied to <i>u</i> ₆₅)	_	18.2	0.5
u_{68}	Sn(17)O(21)	357.2(10)	30.4 (Tied to <i>u</i> ₆₅)	_	17.1	0.4
U 87	O(19)C(27)	358.1(10)	72.0 (Tied to <i>u</i> ₆₅)	_	40.5	2.3
U 99	C(20)O(28)	360.0(10)	65.6 (Tied to <i>u</i> ₆₅)	_	36.9	1.9
U 36	O(4)O(11)	371.0(28)	37.6 (Tied to <i>u</i> ₆₅)	_	21.1	-3.5
U 98	C(20)C(27)	374.3(11)	45.6 (Tied to <i>u</i> ₆₅)	_	25.6	-8.0
u 27	C(3)O(11)	381.4(14)	39.6 (Tied to <i>u</i> ₆₅)	_	22.3	0.6
U 26	C(3)C(10)	395.2(13)	41.8 (Tied to <i>u</i> ₆₅)	-	23.5	-2.1
u_4	Sn(1)C(5)	419.8(7)	8.1(7)	-	8.3	0.1
U 69	Sn(17)C(22)	453.0(9)	12.3 (Tied to <i>u</i> ₇₈)	-	14.0	0.2
u_{76}	Sn(17)C(29)	453.0(9)	11.9 (Tied to <i>u</i> ₇₈)	-	13.5	0.2
U 61	O(16)C(22)	466.8(21)	18.7 (Tied to <i>u</i> ₇₈)	_	21.2	0.5
u_{17}	O(2)C(12)	470.9(12)	32.3 (Tied to <i>u</i> ₇₈)	_	36.5	1.5
U 78	Sn(17)F(31)	471.0(9)	22.1(6)	_	24.9	0.6
u_{72}	Sn(17)F(25)	478.9(9)	23.9 (Tied to <i>u</i> ₇₈)	_	27.0	0.8
U 7	Sn(1)F(8)	481.2(6)	24.6 (Tied to <i>u</i> ₇₈)	_	27.8	0.5
u_6	Sn(1)F(7)	481.3(12)	19.9 (Tied to <i>u</i> ₇₈)	_	22.5	0.4
U 5	Sn(1)F(6)	485.2(6)	21.3 (Tied to <i>u</i> ₇₈)	_	24.0	0.4
u_{18}	O(2)F(13)	487.1(13)	88.9 (Tied to <i>u</i> ₇₈)	_	100.4	10.5
U 112	O(21)F(32)	489.2(10)	54.2 (Tied to <i>u</i> ₇₀)	_	56.3	3.1

Table S44. Internuclear distances (r_a / pm), refined (u_{GED}) and theoretical (u_{h1}) amplitudes of vibration and restraints and distance corrections (k_{h1}) for 1 and 2, *cont.*^{*a*}

illation	i and restraints and	i distance	(x_{n1}) for 1 and	2, com		
u_{89}	O(19)C(29)	494.4(10)	45.3 (Tied to <i>u</i> ₇₀)	_	47.1	2.2
u_{109}	O(21)C(29)	494.7(10)	41.7 (Tied to <i>u</i> ₇₀)	-	43.4	1.9
u_{70}	Sn(17)F(23)	499.4(9)	38.4(55)	_	39.9	1.6
u_{19}	O(2)F(14)	504.0(14)	75.5 (Tied to <i>u</i> ₇₀)	-	78.5	6.1
u_{100}	C(20)C(29)	509.4(11)	38.2 (Tied to <i>u</i> ₇₇)	_	37.6	1.4
U 103	C(20)F(32)	512.6(11)	60.6 (Tied to <i>u</i> ₇₇)	-	59.7	3.3
u_{91}	O(19)F(31)	516.2(10)	57.9 (Tied to <i>u</i> ₇₇)	_	57.0	3.1
U 62	O(16)F(23)	518.8(17)	41.6 (Tied to <i>u</i> ₇₇)	-	40.9	1.6
U 37	O(4)C(12)	521.5(12)	29.8 (Tied to <i>u</i> 77)	_	29.3	0.8
U 29	C(3)F(13)	521.6(16)	91.0 (Tied to <i>u</i> ₇₇)	-	89.6	7.3
U 92	O(19)F(32)	525.2(9)	68.0 (Tied to <i>u</i> ₇₇)	-	67.0	4.1
u_{28}	C(3)C(12)	526.0(13)	36.3 (Tied to <i>u</i> ₇₇)	-	35.7	1.2
u 77	Sn(17)F(30)	527.4(9)	40.2(21)	—	39.6	1.5
U 38	O(4)F(13)	532.5(14)	63.0 (Tied to <i>u</i> ₇₇)	-	62.0	3.1
U 63	O(16)F(24)	532.9(21)	24.6 (Tied to <i>u</i> ₇₇)	_	24.3	0.5
u_{64}	O(16)F(25)	534.0(24)	21.4 (Tied to <i>u</i> ₇₇)	_	21.1	0.4
U 79	Sn(17)F(32)	536.9(8)	20.2 (Tied to <i>u</i> ₇₇)	_	19.9	0.3
U 128	F(25)F(32)	540.4(13)	111.5 (Tied to <i>u</i> ₇₇)	_	109.8	-10.2
U 102	C(20)F(31)	549.6(11)	76.8 (Tied to <i>u</i> ₇₁)	_	57.6	2.9
u 71	Sn(17)F(24)	554.0(8)	20.8(16)	15.6(16)	15.6	0.2
u 111	O(21)F(31)	562.4(10)	81.4 (Tied to <i>u</i> ₇₁)	_	61.0	3.3
u_{20}	O(2)F(15)	574.5(13)	60.9 (Tied to <i>u</i> ₇₁)	_	45.7	1.6
U 30	C(3)F(14)	575.3(14)	103.2 (Tied to <i>u</i> ₇₁)	_	77.4	5.2
U 119	C(22)F(32)	587.7(13)	83.2 (Tied to <i>u</i> ₁₂₇)	_	82.4	5.2
U 116	C(22)C(29)	588.1(13)	56.6 (Tied to <i>u</i> ₁₂₇)	_	56.1	-19.2
u_{110}	O(21)F(30)	589.0(10)	39.6 (Tied to <i>u</i> ₁₂₇)	_	39.2	1.3
u_{40}	O(4)F(15)	591.7(13)	81.8 (Tied to <i>u</i> ₁₂₇)	_	81.1	5.6
U 127	F(24)F(32)	593.7(14)	107.0(10)	_	106.1	8.7
U 45	C(5)F(13)	597.2(20)	121.8 (Tied to <i>u</i> ₁₂₇)	_	120.7	11.3
U 39	O(4)F(14)	600.0(14)	57.7 (Tied to <i>u</i> ₁₂₇)	-	57.2	2.6
U 90	O(19)F(30)	604.7(10)	42.7 (Tied to <i>u</i> ₁₂₇)	_	42.3	1.5
u_{101}	C(20)F(30)	619.9(11)	30.3 (Tied to u_{127})	_	30.1	0.7
u 31	C(3)F(15)	620.7(13)	72.5 (Tied to <i>u</i> ₁₂₇)	_	71.8	4.0
u_{44}	C(5)C(12)	622.1(16)	55.5 (Tied to u_{127})	_	55.0	-7.2
u_{50}	F(6)F(13)	634.6(26)	176.6 (Tied to <i>u</i> ₁₂₇)	-	175.0	23.3
u_{51}	F(6)F(14)	636.8(21)	164.0 (Tied to u_{127})	-	162.5	21.8
U 118	C(22)F(31)	641.9(13)	81.4 (Tied to <i>u</i> ₁₂₇)	_	80.7	4.9
u_{126}	F(24)F(31)	659.4(13)	106.0 (Tied to u_{127})	_	105.0	-23.3
u_{46}	C(5)F(14)	683.5(16)	108.8 (Tied to <i>u</i> ₁₂₇)	_	107.8	8.6
U 54	F(7)F(14)	697.0(16)	131.3 (Tied to u_{127})	_	130.1	-48.6
U 52	F(6)F(15)	711.0(19)	143.0 (Tied to <i>u</i> ₁₂₇)	_	141.7	13.0

Table S44. Internuclear distances (r_a / pm) , refined (u_{GED}) and theoretical (u_{h1}) amplitudes of vibration and restraints and distance corrections (k_{h1}) for 1 and 2, *cont*.^{*a*}

ioration	und restramts un	a anstance ex				
<i>u</i> ₁₂₄	F(23)F(32)	719.9(13)	75.7 (Tied to u_{127})	_	75.0	3.7
u_{117}	C(22)F(30)	731.0(13)	47.5 (Tied to u_{127})	_	47.1	1.4
U 47	C(5)F(15)	732.3(15)	97.4 (Tied to u_{127})	_	96.6	5.9
U 56	F(8)F(15)	736.2(14)	113.1 (Tied to <i>u</i> ₁₂₇)	_	112.1	-56.5
u_{123}	F(23)F(31)	758.3(13)	74.3 (Tied to u_{127})	_	73.6	3.5
U 55	F(7)F(15)	767.2(16)	159.2 (Tied to <i>u</i> ₁₂₇)	_	157.8	15.3
u_{122}	F(23)F(30)	806.7(14)	36.2 (Tied to u_{127})	_	35.9	-42.5

Table S44. Internuclear distances (r_a / pm) , refined (u_{GED}) and theoretical (u_{h1}) amplitudes of vibration and restraints and distance corrections (k_{h1}) for **1** and **2**, *cont*.^{*a*}

^{*a*} All values are tabulated in picometers (pm).

Table S45. Refined Cartesian coordinates in Ångström (Å) for the experimentallydetermined structure of **1** obtained *via* GED.

	x	У	Z
Sn	0.0000	0.0000	-1.6390
0	1.0391	-1.2922	0.0070
С	0.0287	-2.0100	0.1254
Ο	-0.9177	-1.6545	-0.6586
С	0.0049	-3.1802	1.1323
F	0.4790	-2.7953	2.3184
F	-1.2259	-3.6519	1.3021
F	0.7773	-4.1750	0.6732
0	-1.0391	1.2922	0.0070
С	-0.0287	2.0100	0.1254
0	0.9177	1.6545	-0.6586
С	-0.0049	3.1802	1.1323
F	-0.4790	2.7953	2.3184
F	1.2259	3.6519	1.3021
F	-0.7773	4.1750	0.6732

Table S46. Refined Cartesian coordinates in Ångström (Å) for the experimentallydetermined structure of **2** obtained *via* GED.

- 0010		· •	
	x	У	Z
0	0.0000	0.0000	-1.9128
Sn	-0.0043	1.7509	-1.2314
Sn	0.0043	-1.7509	-1.2314
0	-1.5611	1.1394	0.2156
С	-1.9409	-0.0048	0.5709
0	-1.5555	-1.1471	0.2156
С	-3.0769	-0.0076	1.6258
F	-4.2489	0.4035	1.0991
F	-3.2855	-1.2265	2.1318
F	-2.7513	0.8360	2.6126
0	1.5611	-1.1394	0.2156
С	1.9409	0.0048	0.5709
0	1.5555	1.1471	0.2156
С	3.0769	0.0076	1.6258
F	4.2489	-0.4035	1.0991
F	3.2855	1.2265	2.1318
F	2.7513	-0.8360	2.6126

Density Functional Theory (DFT) and Gas-Phase Electron Diffraction (GED) of 6

Table S47. Summary of experimental parameters relating to GED data collection for 6.

Dataset Type	Short	Long
Nozzle-to-Image-Plate Distance / mm	233.5	486.0
Electron Wavelength / pm	5.85	5.85
T _{nozzle, av} / K	408	408
$T_{\text{sample, av}}$ / K	398	398
Exposure Time / s	240	120

Table S48. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M06} , in atomic units (a.u) of **6** as calculated at the M06/def2-SVP level.

$E_{\rm M06} = -2316.91349099$							
Sn	0.000000	0.000000	0.000000	0	2.168435	0.000000	-0.317988
0	0.000000	2.168435	0.317988	С	2.394408	0.000000	0.926142
С	0.000000	2.394408	-0.926142	0	1.456604	0.000000	1.739939
0	0.000000	1.456604	-1.739939	С	3.859818	0.000000	1.381088
С	0.000000	3.859818	-1.381088	F	3.951314	0.000000	2.691732
F	0.000000	3.951314	-2.691732	F	4.45773	-1.076801	0.900932
F	1.076801	4.45773	-0.900932	F	4.45773	1.076801	0.900932
F	-1.076801	4.45773	-0.900932	0	-2.168435	0.000000	-0.317988
0	0.000000	-2.168435	0.317988	С	-2.394408	0.000000	0.926142
С	0.000000	-2.394408	-0.926142	0	-1.456604	0.000000	1.739939
0	0.000000	-1.456604	-1.739939	С	-3.859818	0.000000	1.381088
С	0.000000	-3.859818	-1.381088	F	-3.951314	0.000000	2.691732
F	0.000000	-3.951314	-2.691732	F	-4.45773	-1.076801	0.900932
F	1.076801	-4.45773	-0.900932	F	-4.45773	1.076801	0.900932
F	-1.076801	-4.45773	-0.900932				

Table S49. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M06} , in atomic units (a.u) of **6** as calculated at the M06/def2-TZVP level.

			$E_{\rm M06} = -23$	316.91349099			
Sn	0.000000	0.000000	0.000000	0	2.135398	0.000000	-0.324253
0	0.000000	2.135398	0.324253	С	2.365574	0.000000	0.917616
С	0.000000	2.365574	-0.917616	0	1.436904	0.000000	1.736140
0	0.000000	1.436904	-1.736140	С	3.837518	0.000000	1.366232
С	0.000000	3.837518	-1.366232	F	3.935414	0.000000	2.675278
F	0.000000	3.935414	-2.675278	F	4.437258	-1.075501	0.885907
F	1.075501	4.437258	-0.885907	F	4.437258	1.075501	0.885907
F	-1.075501	4.437258	-0.885907	0	-2.135398	0.000000	-0.324253
0	0.000000	-2.135398	0.324253	С	-2.365574	0.000000	0.917616
С	0.000000	-2.365574	-0.917616	0	-1.436904	0.000000	1.736140
0	0.000000	-1.436904	-1.736140	С	-3.837518	0.000000	1.366232
С	0.000000	-3.837518	-1.366232	F	-3.935414	0.000000	2.675278
F	0.000000	-3.935414	-2.675278	F	-4.437258	-1.075501	0.885907
F	1.075501	-4.437258	-0.885907	F	-4.437258	1.075501	0.885907
F	-1.075501	-4.437258	-0.885907				

	100, 4012 22	1 10 01	
$E_{M06} =$	-2319.49251729)	
Sn	0.000000	0.000000	0.000000
Ο	0.000000	2.133713	0.324164
С	0.000000	2.364684	-0.916574
0	0.000000	1.437195	-1.734956
С	0.000000	3.837399	-1.364268
F	0.000000	3.936537	-2.672712
F	1.075175	4.436618	-0.883462
F	-1.075175	4.436618	-0.883462
Ο	0.000000	-2.133713	0.324164
С	0.000000	-2.364684	-0.916574
Ο	0.000000	-1.437195	-1.734956
С	0.000000	-3.837399	-1.364268
F	0.000000	-3.936537	-2.672712
F	1.075175	-4.436618	-0.883462
F	-1.075175	-4.436618	-0.883462
0	2.133713	0.000000	-0.324164
С	2.364684	0.000000	0.916574
0	1.437195	0.000000	1.734956
С	3.837399	0.000000	1.364268
F	3.936537	0.000000	2.672712
F	4.436618	-1.075175	0.883462
F	4.436618	1.075175	0.883462
0	-2.133713	0.000000	-0.324164
С	-2.364684	0.000000	0.916574
0	-1.437195	0.000000	1.734956
С	-3.837399	0.000000	1.364268
F	-3.936537	0.000000	2.672712
F	-4.436618	-1.075175	0.883462
F	-4.436618	1.075175	0.883462

Table S50. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M06} , in atomic units (a.u) of **6** as calculated at the M06/def2-QZVP level.

Table S51. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M11} , in atomic units (a.u) of **6** as calculated at the M11/def2-SVP level.

(d.d) of v as calculated at the With/del2 5 vi level.							
			$E_{\rm M11} = -23$	16.77650596			
Sn	0.000000	0.000000	0.000000	0	2.132375	0.000000	-0.319500
Ο	0.000000	2.132375	0.319500	С	2.380689	0.000000	0.924499
С	0.000000	2.380689	-0.924499	Ο	1.446277	0.000000	1.738112
0	0.000000	1.446277	-1.738112	С	3.854386	0.000000	1.369494
С	0.000000	3.854386	-1.369494	F	3.944764	0.000000	2.688753
F	0.000000	3.944764	-2.688753	F	4.454812	-1.083464	0.884641
F	1.083464	4.454812	-0.884641	F	4.454812	1.083464	0.884641
F	-1.083464	4.454812	-0.884641	О	-2.132375	0.000000	-0.319500
0	0.000000	-2.132375	0.319500	С	-2.380689	0.000000	0.924499
С	0.000000	-2.380689	-0.924499	О	-1.446277	0.000000	1.738112
Ο	0.000000	-1.446277	-1.738112	С	-3.854386	0.000000	1.369494
С	0.000000	-3.854386	-1.369494	F	-3.944764	0.000000	2.688753
F	0.000000	-3.944764	-2.688753	F	-4.454812	-1.083464	0.884641
F	1.083464	-4.454812	-0.884641	F	-4.454812	1.083464	0.884641
F	-1.083464	-4.454812	-0.884641				

		I level.	
<i>E</i> _{M11} =	-2319.47858823	3	
Sn	0.000000	0.000000	0.000000
0	0.000000	2.108306	0.323714
С	0.000000	2.357560	-0.920132
0	0.000000	1.432383	-1.740580
С	0.000000	3.835325	-1.358709
F	0.000000	3.935929	-2.680973
F	1.086216	4.439761	-0.871154
F	-1.086216	4.439761	-0.871154
0	0.000000	-2.108306	0.323714
С	0.000000	-2.357560	-0.920132
0	0.000000	-1.432383	-1.740580
С	0.000000	-3.835325	-1.358709
F	0.000000	-3.935929	-2.680973
F	1.086216	-4.439761	-0.871154
F	-1.086216	-4.439761	-0.871154
0	2.108306	0.000000	-0.323714
С	2.357560	0.000000	0.920132
0	1.432383	0.000000	1.740580
С	3.835325	0.000000	1.358709
F	3.935929	0.000000	2.680973
F	4.439761	-1.086216	0.871154
F	4.439761	1.086216	0.871154
0	-2.108306	0.000000	-0.323714
С	-2.357560	0.000000	0.920132
0	-1.432383	0.000000	1.740580
С	-3.835325	0.000000	1.358709
F	-3.935929	0.000000	2.680973
F	-4.439761	-1.086216	0.871154
F	-4.439761	1.086216	0.871154

Table S52. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M11} , in atomic units (a.u) of **6** as calculated at the M11/def2-TZVP level.

Table S53. Optimised Cartesian coordinates in Ångström (Å) and energy, E_{M11} , in atomic units (a.u) of **6** as calculated at the M11/def2-OZVP level.

			$E_{\rm M11} = -23$	19.66659259			
Sn	0.000000	0.000000	0.000000	0	2.109252	0.000000	-0.326053
Ο	0.000000	2.109252	0.326053	С	2.357633	0.000000	0.916728
С	0.000000	2.357633	-0.916728	О	1.432524	0.000000	1.737270
Ο	0.000000	1.432524	-1.737270	С	3.835078	0.000000	1.357267
С	0.000000	3.835078	-1.357267	F	3.934629	0.000000	2.679227
F	0.000000	3.934629	-2.679227	F	4.440013	-1.086074	0.870573
F	1.086074	4.440013	-0.870573	F	4.440013	1.086074	0.870573
F	-1.086074	4.440013	-0.870573	О	-2.109252	0.000000	-0.326053
Ο	0.000000	-2.109252	0.326053	С	-2.357633	0.000000	0.916728
С	0.000000	-2.357633	-0.916728	О	-1.432524	0.000000	1.737270
Ο	0.000000	-1.432524	-1.737270	С	-3.835078	0.000000	1.357267
С	0.000000	-3.835078	-1.357267	F	-3.934629	0.000000	2.679227
F	0.000000	-3.934629	-2.679227	F	-4.440013	-1.086074	0.870573
F	1.086074	-4.440013	-0.870573	F	-4.440013	1.086074	0.870573
F	-1.086074	-4.440013	-0.870573				

$E_{\text{SOGGA11X}} = -2316.82492269$							
Sn	0.000000	0.000000	0.000000				
Ο	0.000000	2.156941	0.313825				
С	0.000000	2.391863	-0.928596				
0	0.000000	1.453111	-1.738483				
С	0.000000	3.858116	-1.393900				
F	0.000000	3.935733	-2.708341				
F	1.078452	4.465536	-0.922910				
F	-1.078452	4.465536	-0.922910				
0	0.000000	-2.156941	0.313825				
С	0.000000	-2.391863	-0.928596				
0	0.000000	-1.453111	-1.738483				
С	0.000000	-3.858116	-1.393900				
F	0.000000	-3.935733	-2.708341				
F	1.078452	-4.465536	-0.922910				
F	-1.078452	-4.465536	-0.922910				
0	2.156941	0.000000	-0.313825				
С	2.391863	0.000000	0.928596				
Ο	1.453111	0.000000	1.738483				
С	3.858116	0.000000	1.393900				
F	3.935733	0.000000	2.708341				
F	4.465536	-1.078452	0.922910				
F	4.465536	1.078452	0.922910				
Ο	-2.156941	0.000000	-0.313825				
С	-2.391863	0.000000	0.928596				
Ο	-1.453111	0.000000	1.738483				
С	-3.858116	0.000000	1.393900				
F	-3.935733	0.000000	2.708341				
F	-4.465536	-1.078452	0.922910				
F	-4.465536	1.078452	0.922910				

Table S54. Optimised Cartesian coordinates in Ångström (Å) and energy, $E_{SOGGA11X}$, in atomic units (a.u.) of **6** as calculated at the SOGGA11X/def2-SVP level.

Table S55. Optimised Cartesian coordinates in Ångström (Å) and energy, $E_{SOGGA11X}$, in atomic units (a.u) of **6** as calculated at the SOGGA11X/def2-TZVP level.

			$E_{\text{SOGGA11X}} = .$	-2319.40649637			
Sn	0.000000	0.000000	0.000000	0	2.121597	0.000000	-0.323822
Ο	0.000000	2.121597	0.323822	С	2.361864	0.000000	0.918005
С	0.000000	2.361864	-0.918005	0	1.429048	0.000000	1.733017
Ο	0.000000	1.429048	-1.733017	С	3.835584	0.000000	1.375491
С	0.000000	3.835584	-1.375491	F	3.924326	0.000000	2.690782
F	0.000000	3.924326	-2.690782	F	4.444543	-1.079189	0.901714
F	1.079189	4.444543	-0.901714	F	4.444543	1.079189	0.901714
F	-1.079189	4.444543	-0.901714	О	-2.121597	0.000000	-0.323822
Ο	0.000000	-2.121597	0.323822	С	-2.361864	0.000000	0.918005
С	0.000000	-2.361864	-0.918005	О	-1.429048	0.000000	1.733017
Ο	0.000000	-1.429048	-1.733017	С	-3.835584	0.000000	1.375491
С	0.000000	-3.835584	-1.375491	F	-3.924326	0.000000	2.690782
F	0.000000	-3.924326	-2.690782	F	-4.444543	-1.079189	0.901714
F	1.079189	-4.444543	-0.901714	F	-4.444543	1.079189	0.901714
F	-1.079189	-4.444543	-0.901714				

	Esogga11x	= -2319.50412	150
Sn	0.000000	0.000000	0.000000
0	0.000000	2.120466	0.323860
С	0.000000	2.360683	-0.917081
0	0.000000	1.428527	-1.731776
С	0.000000	3.834530	-1.375045
F	0.000000	3.922812	-2.689624
F	1.078579	4.443525	-0.901708
F	-1.078579	4.443525	-0.901708
0	0.000000	-2.120466	0.323860
С	0.000000	-2.360683	-0.917081
0	0.000000	-1.428527	-1.731776
С	0.000000	-3.834530	-1.375045
F	0.000000	-3.922812	-2.689624
F	1.078579	-4.443525	-0.901708
F	-1.078579	-4.443525	-0.901708
0	2.120466	0.000000	-0.323860
С	2.360683	0.000000	0.917081
0	1.428527	0.000000	1.731776
С	3.834530	0.000000	1.375045
F	3.922812	0.000000	2.689624
F	4.443525	-1.078579	0.901708
F	4.443525	1.078579	0.901708
0	-2.120466	0.000000	-0.323860
С	-2.360683	0.000000	0.917081
0	-1.428527	0.000000	1.731776
С	-3.834530	0.000000	1.375045
F	-3.922812	0.000000	2.689624
F	-4.443525	-1.078579	0.901708
F	-4.443525	1.078579	0.901708

Table S56. Optimised Cartesian coordinates in Ångström (Å) and energy, $E_{SOGGA11X}$, in atomic units (a.u) of **6** as calculated at the SOGGA11X/def2-QZVP level.

Table S57. Optimised Cartesian coordinates in Ångström (Å) and energy, $E_{SOGGA11X}$, in atomic units (a.u) of **6** as calculated at the SOGGA11X/DZP-DKH level.

	•		$E_{SOGGA11-X} =$	-8276.16859272			
Sn	0.000000	0.000000	-0.000181	0	2.090650	0.000000	-0.321054
Ο	0.000000	2.090607	0.320971	С	2.379700	0.000000	0.922964
С	0.000000	2.379824	-0.923008	Ο	1.486575	0.000000	1.776924
Ο	0.000000	1.486813	-1.777088	С	3.874553	0.000000	1.298731
С	0.000000	3.874727	-1.298575	F	4.031611	0.000000	2.610264
F	0.000000	4.031960	-2.610086	F	4.458057	-1.081891	0.791020
F	1.081891	4.458163	-0.790785	F	4.458057	1.081891	0.791020
F	-1.081891	4.458163	-0.790785	Ο	-2.090650	0.000000	-0.321054
Ο	0.000000	-2.090607	0.320971	С	-2.379700	0.000000	0.922964
С	0.000000	-2.379824	-0.923008	Ο	-1.486575	0.000000	1.776924
Ο	0.000000	-1.486813	-1.777088	С	-3.874553	0.000000	1.298731
С	0.000000	-3.874727	-1.298575	F	-4.031611	0.000000	2.610264
F	0.000000	-4.031960	-2.610086	F	-4.458057	-1.081891	0.791020
F	1.081891	-4.458163	-0.790785	F	-4.458057	1.081891	0.791020
F	-1.081891	-4.458163	-0.790785				

Table S58. Optimised Cartesian coordinates in Ångström (Å) and energy, $E_{SOGGA11X}$, in atomic units (a.u) of **6** as calculated at the SOGGA11X/TZP-DKH level.

units (a.	diffs (a.d) of 0 as calculated at the SOOOATTA TET-DRITIEVEL							
	$E_{\text{SOGGA11-X}} = -8276.16859272$							
Sn	0.000000	0.000000	-0.000143	0	-2.100459	0.000000	-0.391210	
Ο	0.000000	-2.100417	0.391147	С	-2.365911	0.000000	0.844450	
С	0.000000	-2.366001	-0.844484	0	-1.457366	0.000000	1.684767	
О	0.000000	-1.457545	-1.684898	С	-3.849421	0.000000	1.267085	
С	0.000000	-3.849556	-1.266962	F	-3.968170	0.000000	2.579393	
F	0.000000	-3.968444	-2.579257	F	-4.445986	1.079058	0.779533	
F	-1.079058	-4.446069	-0.779346	F	-4.445986	-1.079058	0.779533	
F	1.079058	-4.446069	-0.779346	0	2.100459	0.000000	-0.391210	
О	0.000000	2.100417	0.391147	С	2.365911	0.000000	0.844450	
С	0.000000	2.366001	-0.844484	0	1.457366	0.000000	1.684767	
О	0.000000	1.457545	-1.684898	С	3.849421	0.000000	1.267085	
С	0.000000	3.849556	-1.266962	F	3.968170	0.000000	2.579393	
F	0.000000	3.968444	-2.579257	F	4.445986	1.079058	0.779533	
F	-1.079058	4.446069	-0.779346	F	4.445986	-1.079058	0.779533	
F	1.079058	4.446069	-0.779346					

Table S59. Definitions of the parameters used in the parameterized molecular model of 6.

	Parameter	Definition
p_1	rSn-O ^{<i>a</i>}	$\frac{1}{2} r \text{Sn}(1) - O(2) + \frac{1}{2} r \text{Sn}(1) - O(4)$
p_2	rSn-O ^b	rSn(1)-O(4) - rSn(1)-O(2)
p_3	<i>r</i> Sn-C	$r\mathrm{Sn}(1)$ -C(3)
p_4	$rC-O^a$	$\frac{1}{2} rO(2)-C(3) + \frac{1}{2} rO(4)-C(3)$
p_5	rC-O ^b	rO(2)-C(3) - rO(4)-C(3)
p_6	rC-C	<i>r</i> C(3)-C(5)
p_7	$rC-F^a$	$\frac{1}{3} rC(5)-F(6) + \frac{2}{3} rC(5)-F(7)$
p_8	$rC-F^b$	rC(5)-F(7) - rC(5)-F(6)
p_9	aO-C-C	aO(2)-C(3)-C(5)
p_{10}	$aC-C-F^a$	$\frac{1}{3} aC(3)-C(5)-F(6) + \frac{2}{3} aC(3)-C(5)-F(7)$
p_1	$aC-C-F^b$	aC(3)-C(5)-F(7) - aC(3)-C(5)-F(6)
p_{12}	aO-Sn-O	aO(2)-Sn(1)-O(9)

^a Multiplicity-weighted average. ^b Refinable difference.

Table S60. Summary of experimental parameters relating to GED data reduction and refinement for **6**.

Dataset Type	Short	Long
$\Delta s / nm^{-1}$	2.0	1.0
s_{\min} / nm^{-1}	90.0	54.0
sw_1 / nm^{-1}	104.0	68.0
sw_2 / nm^{-1}	240.0	101.0
$s_{\rm max}$ / ${\rm nm}^{-1}$	262.0	114.0
Correlation parameter	0.4936	0.4975
Scale factor (k)	0.0023(1)	0.0010(1)

	$r_{\rm h1}$	Гe	Restraint
p_1	218.6(3)	218.2	_
p_2	8.8(6)	9.1	9.1(5)
p_3	125.5(2)	125.1	_
p_4	2.7(4)	2.6	2.6(3)
p_5	247.4(6)	251.2	_
p_6	153.1(3)	154.3	154.3(3)
p_7	133.0(2)	132.3	_
p_8	0.8(8)	0.8	0.8(6)
p_9	117.8(4)	118.0	118.0(3)
p_{10}	111.0(2)	110.0	—
p_{11}	1.7(3)	1.7	1.7(3)
p_{12}	158.7(3)	158.9	158.9(4)

Table S61. Refined (r_{hl}) and theoretical^{*a*} (r_e) parameter values^{*b*} and SARACEN restraints^{*c*} applied in the least-squares refinement of **6**.

^{*a*} Calculations at the SOGGA11X/TZP-DKH level. ^{*b*} Interatomic distances (*r*) are tabulated in picometers (pm) and angles (*a*) are tabulated in degrees. ^{*c*} SARACEN restraint uncertainties are derived from sequential DFT geometry optimizations using the M06, M11 and SOGGA11X functionals and the def2-SVP, def2-TZVP and def2-QZVP basis sets.

Table S62. Least-squares correlation matrix^a (×100) for **6**.

	p_1	<i>p</i> ₃	p_5	p_7	p_{10}	u_1	U 35	U 42	U 53	k_1
p_1	100		81			55				
p_3		100							54	
p_5			100							
p_7				100	78					
p_{10}					100					51
u_1						100				57
U 35							100	63		
u_{42}								100		
U 53									100	55
k_1										100

^{*a*} Only values \geq 50% are tabulated. k_1 is a scale factor.

Amp.	Atomic Pair	ľa	UGED	Restraint	$k_{ m h1}$	$u_{ m h1}$
U 25	C(3)-O(4)	124.3(3)	1.7 (Tied to <i>u</i> ₅₃)	_	0.1	4.1
u_7	O(2)-C(3)	126.9(3)	1.8 (Tied to u_{53})	_	0.1	4.2
U 52	C(5)-F(6)	132.5(2)	2.4 (Tied to <i>u</i> ₅₃)	_	0.1	5.7
<i>u</i> ₅₃	C(5)-F(7)	133.3(2)	2.8(4)	6.6(7)	0.2	6.6
u_{26}	C(3)-C(5)	152.9(3)	5.9(6)	5.0(5)	0.1	5.0
u_1	Sn(1)-O(2)	214.1(4)	6.0(3)	8.6(9)	0.2	8.6
u_{61}	F(6)F(7)	214.4(2)	5.7 (Tied to u_1)	_	0.2	8.2
u_{67}	F(7)F(8)	216.2(2)	6.5 (Tied to u_1)	_	0.2	9.4
u_8	O(2)O(4)	221.7(5)	3.3 (Tied to u_1)	_	0.1	4.8
<i>U</i> 3	Sn(1)-O(4)	222.9(4)	7.5 (Tied to u_1)	_	0.3	10.8

Table S63. Internuclear distances (r_a / pm), refined (u_{GED}) and theoretical (u_{h1}) amplitudes of vibration and restraints and distance corrections (k_{h1}) for **6**.^{*a*}

ioran				00111.		
u_{28}	C(3)F(7)	235.4(4)	8.7 (Tied to u_1)	_	0.3	12.6
u_{27}	C(3)F(6)	237.1(4)	5.9 (Tied to u_1)	_	0.1	8.4
u_{40}	O(4)C(5)	238.4(6)	4.6 (Tied to u_1)	_	0.1	6.6
U 9	O(2)C(5)	240.1(6)	4.7 (Tied to u_1)	_	0.1	6.8
u_2	Sn(1)C(3)	247.3(6)	4.1(2)	5.9(6)	0.1	5.9
u_{41}	O(4)F(6)	262.0(9)	17.4 (Tied to u_2)	_	1.2	24.8
u_{20}	O(2)O(18)	272.1(6)	12.6 (Tied to u_2)	_	0.5	18.0
u_{11}	O(2)F(7)	284.8(7)	24.4 (Tied to <i>u</i> ₂)	_	2.2	34.8
u_{19}	O(2)C(17)	316.1(7)	19.9 (Tied to <i>u</i> ₄₂)	_	0.7	20.9
u_{18}	O(2)O(16)	319.8(6)	21.6 (Tied to <i>u</i> ₄₂)	_	0.8	22.8
U 42	O(4)F(7)	326.6(5)	37.6(17)	_	2.4	39.7
U 43	O(4)O(11)	336.7(11)	19.3 (Tied to <i>u</i> ₃₅)	_	-0.1	16.6
u_{10}	O(2)F(6)	351.6(5)	13.8 (Tied to u_{35})	_	0.2	11.9
U 35	C(3)O(18)	351.7(7)	20.1(13)	17.4(17)	0.4	17.4
U 34	C(3)C(17)	354.9(9)	21.8 (Tied to <i>u</i> ₃₅)	_	0.5	18.8
u_{47}	O(4)O(18)	375.7(6)	20.7 (Tied to u_{35})	_	0.4	17.9
\mathcal{U}_4	Sn(1)C(5)	400.1(6)	10.2(5)	7.0(7)	0.1	7.0
u_{12}	O(2)O(9)	401.4(10)	17.0 (Tied to <i>u</i> ₄)	_	0.1	11.6
u_{30}	C(3)O(11)	423.3(10)	19.5 (Tied to <i>u</i> ₆)	_	0.3	15.1
u_{14}	O(2)O(11)	429.5(7)	19.6 (Tied to <i>u</i> ₆)	_	0.3	15.1
u_{21}	O(2)C(19)	440.3(7)	39.1 (Tied to <i>u</i> ₆)	_	1.0	30.1
u_{71}	F(7)F(22)	450.7(12)	149.2 (Tied to <i>u</i> ₆)	_	13.0	114.9
U 24	O(2)F(22)	451.3(7)	88.1 (Tied to <i>u</i> ₆)	_	5.0	67.9
<i>u</i> 13	O(2)C(10)	459.6(10)	14.2 (Tied to <i>u</i> ₆)	_	0.1	11.0
u_6	Sn(1)F(7)	461.7(7)	24.3(7)	18.7(19)	0.4	18.7
U 39	C(3)F(22)	465.0(9)	72.9 (Tied to <i>u</i> ₆)	_	3.1	56.1
U 5	Sn(1)F(6)	468.7(8)	17.9 (Tied to <i>u</i> ₆)	_	0.2	13.8
U 36	C(3)C(19)	475.1(8)	37.1 (Tied to <i>u</i> ₆)	_	0.8	28.6
U 51	O(4)F(22)	477.0(10)	49.4 (Tied to <i>u</i> ₆)	_	1.4	38.1
u_{48}	O(4)C(19)	478.2(7)	28.6 (Tied to <i>u</i> ₆)	_	0.5	22.0
u 22	O(2)F(20)	481.6(10)	58.9 (Tied to <i>u</i> ₆)	_	2.0	45.4
u_{29}	C(3)C(10)	485.4(12)	14.5 (Tied to u_6)	-	-0.3	11.2
u_{60}	C(5)F(22)	530.5(10)	86.8 (Tied to <i>u</i> ₆₆)	-	5.2	77.6
U 37	C(3)F(20)	544.5(9)	47.6 (Tied to <i>u</i> ₆₆)	_	1.5	42.6
U 23	O(2)F(21)	547.3(7)	39.8 (Tied to <i>u</i> ₆₆)	-	1.2	35.6
u_{50}	O(4)F(21)	548.6(9)	50.7 (Tied to <i>u</i> ₆₆)	_	1.8	45.3
u_{44}	O(4)C(12)	568.4(11)	18.9 (Tied to <i>u</i> ₆₆)	_	0.3	16.9
u_{38}	C(3)F(21)	570.4(8)	54.3 (Tied to u_{66})	-	2.0	48.5
u_{49}	O(4)F(20)	570.7(6)	32.9 (Tied to <i>u</i> ₆₆)	_	0.7	29.4
U 57	C(5)C(19)	571.6(8)	49.9 (Tied to <i>u</i> ₆₆)	_	1.6	44.6
u_{66}	F(6)F(22)	578.9(11)	98.3(73)	87.8(88)	6.0	87.8

Table S63. Internuclear distances (r_a / pm) , refined (u_{GED}) and theoretical (u_{h1}) amplitudes of vibration and restraints and distance corrections (k_{h1}) for **6**, ^{*a*} cont.

Ioratio	ii and restraints	and distance c	(n_{n1}) for 0 , 0	<i>com</i>		
U 45	O(4)F(13)	595.7(15)	36.0 (Tied to <i>u</i> ₆₆)	_	0.9	32.2
U 15	O(2)C(12)	612.0(9)	13.4 (Tied to <i>u</i> ₆₆)	_	0.1	12.0
u_{58}	C(5)F(20)	633.5(8)	68.9 (Tied to <i>u</i> ₇₀)	_	2.8	61.7
U 31	C(3)C(12)	637.8(12)	14.8 (Tied to <i>u</i> ₇₀)	_	0.1	13.2
u_{46}	O(4)F(14)	639.1(10)	53.3 (Tied to <i>u</i> ₇₀)	_	1.9	47.7
u_{70}	F(7)F(21)	640.8(10)	121.3(104)	108.5(109)	8.7	108.5
u_{17}	O(2)F(14)	664.4(11)	30.6 (Tied to <i>u</i> ₇₀)	_	0.5	27.3
U 59	C(5)F(21)	673.5(8)	80.4 (Tied to <i>u</i> ₇₀)	_	3.7	72.0
U 16	O(2)F(13)	682.3(10)	23.3 (Tied to <i>u</i> ₇₀)	_	0.3	20.9
<i>u</i> ₃₂	C(3)F(13)	684.9(14)	30.5 (Tied to <i>u</i> ₇₀)	_	0.5	27.3
<i>u</i> ₃₃	C(3)F(14)	700.2(11)	43.9 (Tied to <i>u</i> ₇₀)	_	1.1	39.3
u_{64}	F(6)F(20)	713.8(9)	80.9 (Tied to <i>u</i> ₇₀)	_	3.4	72.4
U 65	F(6)F(21)	720.0(9)	103.0 (Tied to <i>u</i> ₇₀)	_	5.6	92.2
U 72	F(7)F(28)	782.0(10)	93.9 (Tied to <i>u</i> ₆₃)	_	3.9	80.1
U 54	C(5)C(12)	788.3(12)	18.8 (Tied to u_{63})	_	-0.3	16.0
U 55	C(5)F(13)	829.3(17)	38.0 (Tied to <i>u</i> ₆₃)	_	0.6	32.4
U 62	F(6)F(13)	848.6(25)	56.8 (Tied to <i>u</i> ₆₃)	_	0.7	48.4
U 56	C(5)F(14)	850.5(11)	55.0 (Tied to <i>u</i> ₆₃)	_	1.3	46.8
U 68	F(7)F(14)	893.8(14)	87.3 (Tied to <i>u</i> ₆₃)	_	3.1	74.4
U 63	F(6)F(14)	897.3(14)	73.7(2)	_	2.3	62.8
u_{69}	F(7)F(15)	922.6(13)	57.2 (Tied to <i>u</i> ₆₃)	_	1.3	48.8

Table S63. Internuclear distances (r_a / pm) , refined (u_{GED}) and theoretical (u_{h1}) amplitudes of vibration and restraints and distance corrections (k_{h1}) for **6**, ^{*a*} cont.

^{*a*} All values are tabulated in picometers (pm).

	x	У	Z
Sn	0.0000	0.0000	0.0000
0	2.0088	0.7434	0.0000
С	2.4318	-0.4525	0.0000
0	1.6930	-1.4509	0.0000
С	3.9468	-0.6736	0.0000
F	4.2630	-1.9596	0.0000
F	4.4972	-0.1230	1.0814
F	4.4972	-0.1230	-1.0814
0	-2.0088	0.7434	0.0000
С	-2.4318	-0.4525	0.0000
0	-1.6930	-1.4509	0.0000
С	-3.9468	-0.6736	0.0000
F	-4.2630	-1.9596	0.0000
F	-4.4972	-0.1230	1.0814
F	-4.4972	-0.1230	-1.0814
0	0.0000	-0.7434	2.0088
С	0.0000	0.4525	2.4318
0	0.0000	1.4509	1.6930
С	0.0000	0.6736	3.9468
F	0.0000	1.9596	4.2630
F	-1.0814	0.1230	4.4972
F	1.0814	0.1230	4.4972
0	0.0000	-0.7434	-2.0088
С	0.0000	0.4525	-2.4318
0	0.0000	1.4509	-1.6930
С	0.0000	0.6736	-3.9468
F	0.0000	1.9596	-4.2630
F	-1.0814	0.1230	-4.4972
F	1.0814	0.1230	-4.4972

Table S64. Refined Cartesian coordinates in Ångström (Å) for the experimentally-
determined structure of 6 obtained via GED.xyzxyzxyzxyz