Synthesis of Sterically Hindered Primary Amines by Concurrent Tandem Photoredox Catalysis

Michael C. Nicastri, ${ }^{1}$ Dan Lehnherr,, ${ }^{* 2}$ Yu-hong Lam, ${ }^{3}$ Daniel A. DiRocco, ${ }^{2}$ Tomislav Rovis, ${ }^{*}$
${ }^{1}$ Department of Chemistry, Columbia University, New York, New York, 10027, United States
${ }^{2}$ Process Research and Development, Merck \& Co., Inc., Rahway, New Jersey, 07065, United States
${ }^{3}$ Computational and Structural Chemistry, Merck \& Co., Inc., Rahway, New Jersey, 07065, United States

dan.lehnherr@merck.com
tr2504@columbia.edu

Table of contents

1. General Experimental Methods 2
2. Optimization of Reaction Conditions 4
2.1 High-throughput Experimentation: Photocatalyst Screen (Selected Data) 4
2.2 The Effect of Super-stoichiometric Equivalents of 4-cyanopyridine. 8
2.3 The Effect of the Stoichiometric Reductant 11
3. O-Benzoyl Oxime \& Iminium Hydrochloride Substrate Scope 16
4. Cyanoarene Scope 61
5. Synthesis of \boldsymbol{O}-Benzoyl Oximes Starting Materials 83
5.1 Oxime Synthesis: 83
5.2 Benzoylation of Oximes: 83
6. Synthesis of Iminium Hydrochlorides 126
7. UV-Vis Absorption/Emission Spectra and Stern-Volmer Plot 128
8. DFT Computational Study. 129
8.1 Computational Method 129
8.3 DFT Illustrations of Alpha-Amino Radical Without and With ortho-Methyl Substituent 132
8.4 Illustration of Data Against Cyclopropane Ring Opening 133
8.5 Cartesian Coordinates and Energies of DFT Optimized Structures. 134
9. References 204

1. General Experimental Methods

Heating of reaction mixtures was performed using a temperature-controlled hotplate equipped with stirring and an active thermocouple. Stirring of reaction mixtures was performed using magnetic stirring, unless noted otherwise. Preparative scale photochemical reactions run in 4 mL vials refer to ChemGlass vials part number CG-4912-01 (1 Dram, $15 \times 45 \mathrm{~mm}, 13-425 \mathrm{Thread}$) equipped with pressure relief septa caps (prevents pressure over 150 psig); glass made from 33 expansion borosilicate glass which conforms to ASTM E-438 Type 1-Class A, USP Type 1 and ISO 3585; vials were equipped with a magnetic stir bar (Biotage ${ }^{\circledR}$ Stirbars, part number 355543). Evaporation and concentration in vacuo were done using variable vacuum via a vacuum controlled (ca. $400-40 \mathrm{mmHg}$).
Materials. Reagents were purchased in reagent grade from commercial suppliers (Advanced ChemBlocks, Inc.; Alfa Aesar; Angene International Limited; AsaTech, Inc.; AURUM Pharmatech LLC; ChemBridge Corporation; CombiBlocks, Inc.; Enamine LLC; Key Organics Inc.; Life Chemicals, Inc.; Matrix Scientific; Princeton BioMolecular Research, Inc.; Sigma-Aldrich; TCI America) and used without further purification, unless otherwise described. Anhydrous solvents (acetonitrile, dimethylsulfoxide) were obtained from Sigma-Aldrich as part of their Sure/Seal ${ }^{\text {TM }}$ bottles product line. NMR solvents, specifically, d_{6}-DMSO (anhydrous, $99.9 \% d$-content, catalog 570672-50G) and $\mathrm{CD}_{3} \mathrm{CN}$ (anhydrous, $99.8 \% d$-content, catalog $151807-10 \mathrm{X} 1 \mathrm{ML}$), were purchased from Sigma-Aldrich Isotope Laboratories in sealed ampules and used as received. HPLC and UPLC eluent mixtures made use of HPLC grade MeCN and $\mathrm{H}_{2} \mathrm{O}$.

Instrumentation. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra, carbon nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\right.$ NMR) spectra, proton coupled fluorine nuclear magnetic resonance ($\left.{ }^{19} \mathrm{~F} \mathrm{NMR}\right)$, and proton decoupled fluorine nuclear magnetic resonance (${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR) were recorded at $25{ }^{\circ} \mathrm{C}$ (unless stated otherwise) on a Bruker DRX-500 spectrometer. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual proton of the NMR solvent according to values reported in the literature. ${ }^{1}$ Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the NMR solvent. For samples in CDCl_{3} the residual solvent signal was referenced to 7.26 ppm for ${ }^{1} \mathrm{H}$ and 77.0 ppm for ${ }^{13} \mathrm{C}$, for samples in $\mathrm{CD}_{3} \mathrm{CN}$ the residual solvent signal was referenced to 1.94 ppm for ${ }^{1} \mathrm{H}$ and 1.32 ppm for ${ }^{13} \mathrm{C}$, and for samples in d_{6} - DMSO the residual solvent signal was referenced to 2.50 ppm for ${ }^{1} \mathrm{H}$ and 39.52 ppm for ${ }^{13} \mathrm{C}$. Data are represented as follows: chemical shift, integration, multiplicity ($\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, $\mathrm{m}=$ multiplet, $\mathrm{dt}=$ doublet of triplets $)$, coupling constants (J) in Hertz (Hz). Quantitative ${ }^{1} \mathrm{H}$ NMR analysis (${ }^{1} \mathrm{H}$ qNMR) refers to standard ${ }^{1} \mathrm{H}$ NMR using the following parameters: $\mathrm{d} 1=60$ seconds, number of scans $=8$. Details of the electrochemistry equipment setup are described below. LRMS data was obtained using a Waters Acquity UPLC interfaced with a Waters Xevo G2 QTof ESI with the source temperature set to $120{ }^{\circ} \mathrm{C}$. UV-vis absorption and emission spectra were collected using a Horiba Duetta Simultaneous EEM Fluorescence and UV-Vis-NIR Spectrophotometer using a $1 \mathrm{~cm} \times 1 \mathrm{~cm}$ quartz cuvette.

Photochemistry Equipment. Photochemical reactions were conducted on four different scales: $0.01 \mathrm{mmol} ; 0.1 \mathrm{mmol}$; 0.3 mmol ; and 3.6 mmol , in three separate photoreactor setups. High-throughput experimentation reactions (0.01 mmol scale) were conducted as described by DiRocco et. al. ${ }^{2}$ The reaction optimization and scope reactions, conducted, at 0.1 mmol and 0.3 mmol respectively, were irradiated for 2.5 hours in a temperature controlled $\left(40^{\circ} \mathrm{C}\right)$ TAK 120 photoreactor with 455 nm light (5 W per vial), enabling up to 10 reactions to be run in parallel at a time. ${ }^{3} \mathrm{~A}$ large scale reaction $(3.6 \mathrm{mmol})$ was conducted in a PennOC ml photoreactor which can accommodate a 40 mL glass vial. ${ }^{4}$

Abbreviations. $\mathrm{DMSO}=$ dimethylsulfoxide, $\mathrm{ESI}=$ electrospray ionization $\left(\mathrm{ESI}^{+}\right.$and ESI^{-}denote positive or negative mode, respectively), $\mathrm{EtOAc}=$ ethyl acetate, $\mathrm{GC}=$ gas chromatography, $\mathrm{HPLC}=$ high pressure liquid chromatography, UPLC = ultrahigh pressure liquid chromatography, UPLC-MS = HR = high resolution, $\mathrm{LC}=$ liquid chromatography, $\mathrm{LED}=$ light emitting diode, $\mathrm{LR}=$ low-resolution, $\mathrm{MeCN}=$ acetonitrile, $\mathrm{MeOH}=$ methanol, $\mathrm{MS}=$ mass spectrometry, $\mathrm{NA}=$ not available, $\mathrm{ND}=$ not detected, $\mathrm{PTFE}=$ polytetrafluoroethylene, $\mathrm{qNMR}=$ quantitative $\mathrm{NMR}, \mathrm{QToF}=$ quadrupole time of flight, $\mathrm{RBF}=$ round bottom flask, $\mathrm{rpm}=$ rounds per minute, $\mathrm{RT}=$ room temperature $\left(\mathrm{ca} .25^{\circ} \mathrm{C}\right)$, $\mathrm{THF}=$ tetrahydrofuran, $\mathrm{v} / \mathrm{v}=$ volume per volume percent, $\mathrm{w} / \mathrm{v}=$ weight per volume percent, DIPA $=$ diisopropylamine, DIPEA = diisopropylethylamine, $\mathrm{BzOH}=$ benzoic acid.

Symbols. $\delta=$ parts per million (ppm), $T=$ time, $t_{r}=$ retention time, $t_{r r}=$ relative retention time, $[\text { compound }]_{\mathrm{o}}=$ initial concentration of specific compound, $[\text { compound }]_{\mathrm{T}}=$ total initial concentration of specific compound assuming no speciation of the compound has occurred.

UPLC MS Method for Assay Yield and LRMS Determination. Samples were dissolved in MeCN and $1 \mu \mathrm{~L}$ injection volumes were used. The Waters UPLC was equipped with an ACQUITY UPLC ${ }^{\text {TM }}$ BEH C18 VanGuard Precolumn ($130 \AA$ pore size, $1.7 \mu \mathrm{~m}$ particle size, $2.1 \mathrm{~mm} \times 5 \mathrm{~mm}$ length; part number for $3 / \mathrm{pkg}$: 186003975) flowing into an ACQUITY UPLC ${ }^{\text {TM }}$ HSS T3 Column ($100 \AA$ pore size, $1.8 \mu \mathrm{~m}$ particle size, 2.1 mm internal diameter $\times 50$ mm length; part number 186003538) operating at $55^{\circ} \mathrm{C}$ with a $0.8 \mathrm{~mL} / \mathrm{min}$ flow rate of a binary eluent mixture (eluent A and B , prepared as described below). The 4 min method used the following eluent gradient: gradient from $95 \% \mathrm{~A}$, $5 \% \mathrm{~B}$ at $t=0 \mathrm{~min}$ to $80 \% \mathrm{~A}, 20 \% \mathrm{~B}$ at $t=1.50 \mathrm{~min}$, followed by a gradient to reach $0.1 \% \mathrm{~A}, 99.9 \% \mathrm{~B}$ at $t=3.90 \mathrm{~min}$, and a subsequent change to $95 \% \mathrm{~A}, 5 \% \mathrm{~B}$ at $t=3.91 \mathrm{~min}$ until $t=4.00 \mathrm{~min}$. Two different eluent systems were used: (system 1) eluent $\mathrm{A}=$ aqueous mobile phase ($3960 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 40 \mathrm{~mL} \mathrm{pH} 3.5$ buffer, details below), eluent $\mathrm{B}=$ organic mobile phase ($3600 \mathrm{~mL} \mathrm{MeCN}, 360 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 40 \mathrm{~mL} \mathrm{pH} 3.5$ buffer, details below. The pH 3.5 buffer is prepared by dissolving ammonium formate ($12.6 \mathrm{~g}, 0.200 \mathrm{~mol}$) and formic acid ($7.9 \mathrm{~mL}, 9.6 \mathrm{~g}, 0.21 \mathrm{~mol}$) in $1000 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. For analysis of the reaction mixture containing product 5 s derived via the oxime photochemistry, a different mobile phase gradient in the context of a 6 min method. The 6 min method used the following eluent gradient: gradient from 95\%A, $5 \% \mathrm{~B}$ at $t=0 \mathrm{~min}$ to $80 \% \mathrm{~A}, 20 \% \mathrm{~B}$ at $t=2.25 \mathrm{~min}$, followed by a gradient to reach $0.1 \% \mathrm{~A}, 99.9 \% \mathrm{~B}$ at $t=5.85 \mathrm{~min}$, and a subsequent change to $95 \% \mathrm{~A}, 5 \% \mathrm{~B}$ at $t=5.87 \mathrm{~min}$ until $t=6.00 \mathrm{~min}$.

UPLC-MS Method for Yield Determination. Reactions were diluted in volumetric flasks with a known amount of biphenyl (Sigma Aldrich, B34656) as an internal standard ratio. Aliquots of this reaction-internal standard mixture were then diluted in vials for UPLC-MS analysis. Samples were then analyzed by the UPLC MS Method for Assay Yield and LRMS Determination. Analysis of the chromatograph for each reaction mixture yielded LRMS data for product identification and a corresponding peak which was analyzed for UV-Vis absorption. The raw area under the curve for the product peak at 210 nm was then compared to the raw area under the curve for the biphenyl internal standard. The ratio between these two values was then utilized to determine yield via calibration of the UPLC-MS from an authentic sample isolated from the reaction mixtures, or obtained from other chemical syntheses.

Reactions were diluted with MeCN in a 25 mL flask containing 5 mL of a 12.5 mM biphenyl solution in MeCN . The theoretical yield in mmol was then utilized to calculate the concentration of product in the 25 mL flask when the reaction was quantitative. Authentic sample was then utilized to develop a calibration curve between a concentration range which encompassed 0% to $>100 \%$ yield. The yield of the reaction was then determined by comparing the obtained product to internal standard ratio vs. the calibration curve.

Caution! Cyanide may be produced as a byproduct in these reactions. Cyanide is toxic and could lead to the release of HCN gas (extremely toxic). Reactions and their aqueous work-up should be conducted in well-ventilated enclosures (e.g. fumehood) and aqueous cyanide-containing waste should be kept basic and disposed of in accordance with local guidelines.

2. Optimization of Reaction Conditions

2.1 High-throughput Experimentation: Photocatalyst Screen (Selected Data)

In a glove box under a nitrogen atmosphere, the components of the reaction were added to a 20 mL vial containing a stir bar. The oxime 3a ($0.66 \mathrm{mmol}, 2.2$ equiv.) was added followed by 4 -cyanopyridine ($\mathbf{4 a}$) (0.3 mmol , $1 \mathrm{eq})$. The contents of the vial were then dissolved in DMSO ($3 \mathrm{~mL}, 0.1 \mathrm{M}$) and stirred until homogeneous. After stirring, DIPA ($157 \mu \mathrm{~L}, 0.9 \mathrm{mmol}, 3.6$ equiv.). The reaction was stirred for 10 minutes until the reaction solution was homogeneous. This was repeated three further times, where acetone, acetonitrile, and 1,2-dichloroethane were used as the reaction solvent. Pre-dosed photocatalysts (22 photocatalysts and 2 control reactions consisting of well with no catalyst and either the presence or absence of light) in 1 mL titer vials for a subtotal of 24 different conditions. These 24 conditions were screened with the stock solutions created in 4 different solvents (DMSO, MeCN, DMF, 1,2dichloroethane) in a single 96 -well plate array. The reactions were irradiated with blue light ($455 \mathrm{~nm}, 30 \mathrm{~mA}$ LED, $37^{\circ} \mathrm{C}$) for 20 h . The reactions were quenched by opening the vials and exposing the contents to oxygen. Triethylamine $(100 \mu \mathrm{~L})$ was added to each reaction to quench any potential hydrogencyanide that was evolved in the reaction. An aliquot from each reaction ($100 \mu \mathrm{~L}$) was diluted into a solution of biphenyl in acetonitrile ($500 \mu \mathrm{~L}, 2 \mathrm{mM}$ biphenyl). Each reaction was analyzed by UPLC-MS. The reaction yield was determined via calibration of the UV-Vis absorption signal for product.

Caution! Cyanide may be produced as a byproduct in these reactions. Cyanide is toxic and could lead to the release of HCN gas (extremely toxic). Reactions and their aqueous work-up should be conducted in well-ventilated enclosures (e.g. fumehood) and aqueous cyanide-containing waste should be kept basic and disposed of in accordance with local guidelines.

Results can be found on the following page.

Table S1. Selected results of reaction discovery via high-throughput experimentation

Photocatalyst	Solvent	Reductant	Yield
4-Cz-IPN	Acetone	DIPA	30\%
4-DPA-IPN	Acetone	DIPA	0\%
Mes-Acri	Acetone	DIPA	0\%
tBu-Acri-N-Ph	Acetone	DIPA	0\%
tetraMeO-Acri-N-Ph	Acetone	DIPA	0\%
tetraMeO-Acri-N-diMeOPh	Acetone	DIPA	0\%
$\mathrm{Ru}(\mathrm{bpz})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	Acetone	DIPA	0\%
$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	Acetone	DIPA	0\%
$\mathrm{Ru}(\mathrm{bpm})_{3}(\mathrm{Cl})_{2}$	Acetone	DIPA	0\%
$\mathrm{Ru}(\mathrm{phen})_{3} \mathrm{Cl}_{2} \mathrm{xH}_{2} \mathrm{O}$	Acetone	DIPA	0\%
$\mathrm{Ru}\left(\mathrm{p}-\mathrm{CF}_{3} \text {-bpy }\right)_{3}\left(\mathrm{BF}_{4}\right)_{2}$	Acetone	DIPA	0\%
$\operatorname{lr}(\mathrm{ppy})_{2}(\mathrm{dtbpy})\left(\mathrm{PF}_{6}\right)$	Acetone	DIPA	0\%
$\left.\operatorname{Ir[dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}(\mathrm{dtbpy}) \mathrm{PF}_{6}$	Acetone	DIPA	0\%
$\operatorname{Ir}(\mathrm{ppy})_{3}$	Acetone	DIPA	0\%
$\operatorname{lr}(\mathrm{dF}-\mathrm{ppy})_{3}$	Acetone	DIPA	0\%
$\mathrm{Ir}[\mathrm{dF}(\mathrm{F}) \mathrm{ppy}]_{2}(\mathrm{dtbpy}) \mathrm{PF}_{6}$	Acetone	DIPA	0\%
$1 \mathrm{r}[\mathrm{dF}(\mathrm{H}) \mathrm{ppy}]_{2}(\mathrm{dtbpy}) \mathrm{PF}_{6}$	Acetone	DIPA	0\%
$\operatorname{Ir[dF}(\mathrm{Me}) \mathrm{ppy}]_{2}(\mathrm{dtbpy}) \mathrm{PF}_{6}$	Acetone	DIPA	0\%
Rhodamine 6G	Acetone	DIPA	0\%
N -Et-Flavinium	Acetone	DIPA	5\%
Ph-phenathiazine	Acetone	DIPA	0\%
DCA	Acetone	DIPA	0\%
No cat	Acetone	DIPA	0\%
No cat/ no light	Acetone	DIPA	0\%
4-Cz-IPN	DMSO	DIPA	2\%
4-DPA-IPN	DMSO	DIPA	4\%
Mes-Acri	DMSO	DIPA	0\%
tBu-Acri-N-Ph	DMSO	DIPA	0\%
tetraMeO-Acri-N-Ph	DMSO	DIPA	0\%
tetraMeO-Acri-N-diMeOPh	DMSO	DIPA	0\%
$\mathrm{Ru}(\mathrm{bpz})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	DMSO	DIPA	0\%
$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	DMSO	DIPA	0\%
$\mathrm{Ru}(\mathrm{bpm})_{3}(\mathrm{Cl})_{2}$	DMSO	DIPA	0\%
$\mathrm{Ru}(\mathrm{phen})_{3} \mathrm{Cl}_{2} \mathrm{xH}_{2} \mathrm{O}$	DMSO	DIPA	0\%
$\mathrm{Ru}\left(\mathrm{p}-\mathrm{CF}_{3} \text {-bpy }\right)_{3}\left(\mathrm{BF}_{4}\right)_{2}$	DMSO	DIPA	0\%
$\operatorname{lr}(\mathrm{ppy})_{2}(\mathrm{dtbpy})\left(\mathrm{PF}_{6}\right)$	DMSO	DIPA	43\%
$\operatorname{lr}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}(\mathrm{dtbpy}) \mathrm{PF}_{6}$	DMSO	DIPA	50\%
$\operatorname{Ir}(\mathrm{ppy})_{3}$	DMSO	DIPA	3\%
$\operatorname{Ir}(\mathrm{dF}-\mathrm{ppy})_{3}$	DMSO	DIPA	0\%
$\mathrm{Ir[dF}(\mathrm{~F}) \mathrm{ppy}]_{2}(\mathrm{dtbpy}) \mathrm{PF}_{6}$	DMSO	DIPA	7\%
$1 \mathrm{r}[\mathrm{dF}(\mathrm{H}) \mathrm{ppy}]_{2}(\mathrm{dtbpy}) \mathrm{PF}_{6}$	DMSO	DIPA	68\%
$\operatorname{Ir[dF}(\mathrm{Me}) \mathrm{ppy}]_{2}(\mathrm{dtbpy}) \mathrm{PF}_{6}$	DMSO	DIPA	71\%
Rhodamine 6G	DMSO	DIPA	0\%
N -Et-Flavinium	DMSO	DIPA	0\%
Ph-phenathiazine	DMSO	DIPA	0\%
DCA	DMSO	DIPA	0\%

No cat	DMSO	DIPA	0\%
No cat/ no light	DMSO	DIPA	0\%
4-Cz-IPN	MeCN	DIPA	4\%
4-DPA-IPN	MeCN	DIPA	0\%
Mes-Acri	MeCN	DIPA	0\%
tBu-Acri-N-Ph	MeCN	DIPA	0\%
tetraMeO-Acri-N-Ph	MeCN	DIPA	0\%
tetraMeO-Acri-N-diMeOPh	MeCN	DIPA	0\%
$\mathrm{Ru}(\mathrm{bpz})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	MeCN	DIPA	0\%
$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	MeCN	DIPA	0\%
$\mathrm{Ru}(\mathrm{bpm})_{3}(\mathrm{Cl})_{2}$	MeCN	DIPA	0\%
$\mathrm{Ru}(\mathrm{phen})_{3} \mathrm{Cl}_{2} \times \mathrm{HH}_{2} \mathrm{O}$	MeCN	DIPA	0\%
$\mathrm{Ru}\left(\mathrm{p}-\mathrm{CF}_{3} \text {-bpy }\right)_{3}\left(\mathrm{BF}_{4}\right)_{2}$	MeCN	DIPA	0\%
$\operatorname{lr}(\mathrm{ppy})_{2}(\mathrm{dtbpy})\left(\mathrm{PF}_{6}\right)$	MeCN	DIPA	0\%
$\mathrm{Ir}[\mathrm{dF}(\mathrm{CF} 3) \mathrm{ppy}]_{2}(\mathrm{dtbpy}) \mathrm{PF}_{6}$	MeCN	DIPA	0\%
$\operatorname{Ir}(\mathrm{ppy})_{3}$	MeCN	DIPA	0\%
$\operatorname{lr}(\mathrm{dF}-\mathrm{ppy})_{3}$	MeCN	DIPA	0\%
$\operatorname{lr}[\mathrm{dF}(\mathrm{F}) \mathrm{ppy}]_{2}$ (dtbpy) PF_{6}	MeCN	DIPA	6\%
$1 \mathrm{Ir}[\mathrm{dF}(\mathrm{H}) \mathrm{ppy}]_{2}$ (dtbpy) PF_{6}	MeCN	DIPA	7\%
$\operatorname{lr}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2}(\mathrm{dtbpy}) \mathrm{PF}_{6}$	MeCN	DIPA	0\%
Rhodamine 6G	MeCN	DIPA	0\%
N -Et-Flavinium	MeCN	DIPA	0\%
Ph-phenathiazine	MeCN	DIPA	0\%
DCA	MeCN	DIPA	0\%
No cat	MeCN	DIPA	0\%
No cat/ no light	MeCN	DIPA	0\%
4-Cz-IPN	1,2-dichloroethane	DIPA	4\%
4-DPA-IPN	1,2-dichloroethane	DIPA	0\%
Mes-Acri	1,2-dichloroethane	DIPA	0\%
tBu-Acri-N-Ph	1,2-dichloroethane	DIPA	0\%
tetraMeO-Acri-N-Ph	1,2-dichloroethane	DIPA	0\%
tetraMeO-Acri-N-diMeOPh	1,2-dichloroethane	DIPA	0\%
$\mathrm{Ru}(\mathrm{bpz})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	1,2-dichloroethane	DIPA	0\%
$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	1,2-dichloroethane	DIPA	0\%
$\mathrm{Ru}(\mathrm{bpm})_{3}(\mathrm{Cl})_{2}$	1,2-dichloroethane	DIPA	0\%
Ru (phen) ${ }_{3} \mathrm{Cl}_{2} \mathrm{xH}_{2} \mathrm{O}$	1,2-dichloroethane	DIPA	0\%
$\mathrm{Ru}\left(\mathrm{p}-\mathrm{CF}_{3}-\mathrm{bpy}\right)_{3}\left(\mathrm{BF}_{4}\right)_{2}$	1,2-dichloroethane	DIPA	0\%
$\operatorname{Ir}(\mathrm{ppy}){ }_{2}(\mathrm{dtbpy})\left(\mathrm{PF}_{6}\right)$	1,2-dichloroethane	DIPA	2\%
$\operatorname{lr}[\mathrm{dF}(\mathrm{CF} 3) \mathrm{ppy}]_{2}(\mathrm{dtbpy}) \mathrm{PF}_{6}$	1,2-dichloroethane	DIPA	0\%
$\operatorname{Ir}(\mathrm{ppy})_{3}$	1,2-dichloroethane	DIPA	0\%
$\operatorname{Ir}(\mathrm{dF}-\mathrm{ppy})_{3}$	1,2-dichloroethane	DIPA	0\%
$\operatorname{Ir[dF}(\mathrm{F}) \mathrm{ppy}]_{2}(\mathrm{dtbpy}) \mathrm{PF}_{6}$	1,2-dichloroethane	DIPA	0\%
$1 \mathrm{Ir}[\mathrm{dF}(\mathrm{H}) \mathrm{ppy}]_{2}$ (dtbpy) PF_{6}	1,2-dichloroethane	DIPA	19\%
$\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2}(\mathrm{dtbpy}) \mathrm{PF}_{6}$	1,2-dichloroethane	DIPA	0\%
Rhodamine 6G	1,2-dichloroethane	DIPA	0\%
N -Et-Flavinium	1,2-dichloroethane	DIPA	0\%
Ph-phenathiazine	1,2-dichloroethane	DIPA	0\%
DCA	1,2-dichloroethane	DIPA	0\%

No cat	1,2-dichloroethane	DIPA	0\%
No cat/ no light	1,2-dichloroethane	DIPA	0\%
4-Cz-IPN	DMSO	DIPEA	9\%
Eosin Y	DMSO	DIPA	0\%
Eosin Y	1,2-dichloroethane	DIPA	0\%
Eosin Y	MeCN	DIPA	0\%
Eosin Y	Acetone	DIPA	0\%
4-DPA-IPN	DMSO	DIPEA	16\%
Mes-Acri	DMSO	DIPEA	2\%
tBu-Acri-N-Ph	DMSO	DIPEA	0\%
tetraMeO-Acri-N-Ph	DMSO	DIPEA	3\%
tetraMeO-Acri-N-diMeOPh	DMSO	DIPEA	0\%
Ru(bpz)3(PF6)2	DMSO	DIPEA	0\%
Ru(bpy)3(PF6)2	DMSO	DIPEA	11\%
$\mathrm{Ru}(\mathrm{bpm}) 3$ (CI)2	DMSO	DIPEA	0\%
$\mathrm{Ru}(\mathrm{phen}) 3 \mathrm{Cl} 2 \mathrm{xH} 2 \mathrm{O}$	DMSO	DIPEA	2\%
Ru(p-CF3-bpy)3 (BF4)2	DMSO	DIPEA	0\%
Ir(ppy)2(dtbpy)(PF6)	DMSO	DIPEA	3\%
Ir[dF(CF3)ppy]2(dtbpy)PF6	DMSO	DIPEA	13\%
$\operatorname{Ir}(\mathrm{ppy}) 3$	DMSO	DIPEA	7\%
Ir(dF-ppy)3	DMSO	DIPEA	4\%
Ir[dF(F)ppy]2(dtbpy)PF6	DMSO	DIPEA	5\%
Ir[dF(H)ppy]2(dtbpy)PF6	DMSO	DIPEA	5\%
Ir[dF(Me)ppy]2(dtbpy)PF6	DMSO	DIPEA	7\%
Rhodamine 6G	DMSO	DIPEA	0\%
N -Et-Flavinium	DMSO	DIPEA	0\%
Ph-phenathiazine	DMSO	DIPEA	0\%
DCA	DMSO	DIPEA	0\%
No cat	DMSO	DIPEA	0\%
No cat/ no light	DMSO	DIPEA	0\%

2.2 The Effect of Super-Stoichiometric Equivalents of 4-Cyanopyridine

A stock solution of 4-cyanopyridine $4 \mathbf{a}$ was made in DMSO (344 mg in 2.2 mL DMSO, 0.5 M) in a 20 mL vial containing a stir bar. In separate vials, stock solutions of the photocatalyst (36 mg in $1200 \mu \mathrm{~L}, 6 \mathrm{E}-3 \mathrm{mmol}$ per $200 \mu \mathrm{~L}$), benzoic acid (220 mg in $1200 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$ in $200 \mu \mathrm{~L}$), and model oxime $\mathbf{3 a}$ (431 mg in $4.5 \mathrm{~mL}, 0.4 \mathrm{M}$) were made in DMSO. Each component of the reaction was added to a 4 mL vial: $200 \mu \mathrm{~L}$ of photocatalyst solution, $200 \mu \mathrm{~L}$ benzoic acid solution, $750 \mu \mathrm{~L}$ of oxime solution, and $200 \mu \mathrm{~L}$ per equivalent of 4 -cyanopyridine solution. DMSO was added to each reaction to yield a final reaction volume of 3 mL . The reaction was stirred in the glovebox for 10 minutes yielding a homogeneous solution. DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 3.6$ equiv) was added to the vial. The reaction was stirred for 10 minutes before being removed from the glovebox and having its cap sealed by parafilm. The reaction was placed into the photoreactor and irradiated with blue light ($455 \mathrm{~nm}, 5 \mathrm{~W}$ per reaction) for two hours. After the two hours, the reaction was quenched by opening the vial and exposing the contents to oxygen. Triethylamine was added to each reaction to quench any hydrogen cyanide that was evolved in the reaction. An aliquot from each reaction $(100 \mu \mathrm{~L})$ was diluted into a solution of biphenyl in acetonitrile ($500 \mu \mathrm{~L}, 2 \mathrm{mM}$ biphenyl). Each reaction was analyzed by UPLC-MS. The reaction yield was determined via calibration of the UV-Vis absorption signal for product.

Table S2. Testing the role of cyanoarene stoichiometry

Equivalents of 4cyanopyridine	Yield	4-cyanopyridine to IS	Byproduct to IS	Byproduct to Product
1	39\%	0.00	0.40	0.22
1.5	64\%	0.00	0.67	0.23
2	86\%	0.00	0.98	0.25
2.5	89\%	0.49	1.05	0.26
3	89\%	1.92	1.09	0.27

Product $(t=1.055)$. Theoretical $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]=199.1230$. Observed: $[\mathrm{M}+\mathrm{H}] 199.1$, $\left[\mathrm{M}-\mathrm{NH}_{2}\right] 182.1$ (fragment).

$\operatorname{DiAr}(t=1.81)$. Theoretical $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]=276.1495$. Observed: $[\mathrm{M}+\mathrm{H}] 276.2,[\mathrm{M}-4 \mathrm{pyr}] 199.1$ (fragment) $\left[\mathrm{M}-\mathrm{NH}_{2}{ }^{-}\right.$ 4pyr] 182.1 (fragment).

(201) \& (205) $(t=2.01 \& t=2.05)$ Theoretical $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]=224.1182$. Observed: $[\mathrm{M}+\mathrm{H}] 224.2,\left[\mathrm{M}-\mathrm{NH}_{2}\right] 202.2$ (fragment). Masses consistent for both observed byproducts.

Figure S1. UPLC-MS analysis of a coupling reaction with 1:1 stoichiometry of 3a:4a

Product $(t=1.055)$. Theoretical $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]=199.1230$. Observed: $[\mathrm{M}+\mathrm{H}] 199.1,\left[\mathrm{M}-\mathrm{NH}_{2}\right] 182.1$ (fragment).

$\operatorname{DiAr}(t=1.81)$. Theoretical $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]=276.1495$. Observed: $[\mathrm{M}+\mathrm{H}] 276.2$, $[\mathrm{M}-4 \mathrm{pyr}] 199.1$ (fragment) $\left[\mathrm{M}-\mathrm{NH}_{2}-\right.$ $4 \mathrm{pyr}] 182.1$ (fragment).

Figure S2. UPLC-MS analysis of a coupling reaction with 1:2.5 stoichiometry of 3a:4a

2.3 The Effect of the Stoichiometric Reductant

In a glovebox under an atmosphere of nitrogen, solid reagents were added to a $4-\mathrm{mL}$ vial: model oxime substrate (3a) ($72 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.); benzoic acid ($37 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; 4-cyanopyridine (4a) ($69 \mathrm{mg}, 0.66 \mathrm{mmol}, 2.2$ equiv.). The reactants were then dissolved by the addition of DMSO (3 mL) and stirred for 10 minutes until the solution was homogeneous. The bases were then added to their respective reactions: DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$), DIPEA ($191 \mu \mathrm{~L}$, 1.1 mmol), Hantzsch ester ($279 \mathrm{mg}, 1.1 \mathrm{mmol}$); or tris-4-methoxyphenyl amine ($369 \mathrm{mg}, 1.1 \mathrm{mmol}$). The reaction was stirred for 10 minutes before being removed from the glovebox and having its cap sealed by parafilm. The reaction was placed into the photoreactor and irradiated with blue light ($455 \mathrm{~nm}, 5 \mathrm{~W}$ per reaction). At 2.5 hours the reaction was considered complete. The reaction is quenched by opening the vial and exposing the vial contents to oxygen. Triethylamine was added to each reaction to quench any hydrogen cyanide that was evolved in the reaction. The reaction is then added to a 25 mL volumetric flask along with a solution of biphenyl in $\mathrm{MeCN}(5 \mathrm{~mL}, 12.5 \mathrm{mM}$ biphenyl). The contents of the flask were then diluted until the volume reached 25 mL . Aliquots $(20 \mu \mathrm{~L}, 50 \mu \mathrm{~L}$, and $100 \mu \mathrm{~L}$) of the diluted reaction were then taken to measure by UPLC-MS. The reaction yield was determined by UPLC-MS calibration relative to a pure sample of model substrate 5.

Table S3. Testing the Effect of Alternative Stoichiometric Reductants

Base / Reductant	Yield
Diisopropylamine (DIPA)	86%
Diisopropylethylamine (DIPEA)	27%
Hantzsch Ester	26%
Tris-para-methoxyphenylamine (PMP) ${ }_{3} \mathrm{~N}$	0%

2.4 Evidence for Iminyl Radicals

Scheme S1. Evidence of the dimerization of Iminyl Radicals

Reaction without DIPA
In a glovebox under an atmosphere of nitrogen, solid reagents were added to a $4-\mathrm{mL}$ vial: model oxime substrate 3a ($72 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.); benzoic acid ($37 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); 4-cyanopyridine $4 \mathrm{a}(69 \mathrm{mg}, 0.66 \mathrm{mmol}, 2.2$ equiv.). The reactants were then dissolved by the addition of DMSO (3 mL) and stirred for 10 minutes until the solution was homogeneous. The reaction was then irradiated for 2.5 h in the TAK 120 photoreactor $\left(455 \mathrm{~nm}, 5 \mathrm{~W}, 40{ }^{\circ} \mathrm{C}\right)$. The reaction is quenched by opening the vial and exposing the vial contents to oxygen.

The reaction was then added to a 25 mL volumetric flask along with a solution of biphenyl in $\mathrm{MeCN}(5 \mathrm{~mL}$, 12.5 mM biphenyl). The contents of the flask were then diluted until the volume reached 25 mL . Aliquots ($20 \mu \mathrm{~L}, 50$ $\mu \mathrm{L}$, and $100 \mu \mathrm{~L}$) of the diluted reaction were then taken to measure by UPLC-MS. The remainder of the diluted reaction was then concentrated under reduced pressure to remove the MeCN . The remaining crude oil is dissolved in methylene chloride (50 mL). Isopropyl amine (2 mL) was then added to the reaction to raise the pH , deprotonate the desired product, and prevent the formation of hydrogen cyanide. The methylene chloride solution was washed with water ($3 \times 50 \mathrm{~mL}$) followed by a wash with brine (50 mL). The remaining organic fraction was then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to afford a crude product.

The crude product was purified by FLASH chromatography using a Teledyne-Isco Combiflash, [12 g column, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Solvent A), MeOH (Solvent B)]. The column utilized a gradient elution: $5 \mathrm{~min}(100 \% \mathrm{~A}), 5 \mathrm{~min}$ $(100 \%$ A to $97.5 \% \mathrm{~A}: 2.5 \% \mathrm{~B}), 10 \mathrm{~min}(97.5 \% \mathrm{~A}: 2.5 \%$ B to $95 \% \mathrm{~A}: 5 \% \mathrm{~B}), 10 \mathrm{~min}(95 \% \mathrm{~A}: 5 \% \mathrm{~B}), 10$ (Hold 95% A: 5% B), $5 \mathrm{~min}(95 \% \mathrm{~A}: 5 \%$ B to 90% A: $10 \% \mathrm{~B}$), 5 min (Hold $90 \% \mathrm{~A}: 10 \% \mathrm{~B}$). The product fractions were collected and concentrated under reduced pressure to afford the pure product $7(10 \mathrm{mg}, 14 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta$ 7.93 (dd, $J=6.8,3.0 \mathrm{~Hz}, 4 \mathrm{H}$), $7.50-7.40(\mathrm{~m}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CD ${ }_{3} \mathrm{CN}$) $\delta 158.35,139.49$, 130.64, 129.37, 127.56, 15.18. MS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$237.1, found 237.7.

Observation of Azine (Dimer of Iminyl Radicals) via UPLC-MS

Exact Mass: 237.1386
Molecular Weight: 237.3255

Exact Mass: 118.0657
Molecular Weight: 118.1590

$\begin{array}{ll}\operatorname{Scan} 632 @ 3.631 \mathrm{~min} M S(+) E S & 9.5 E 07 \text { cnts }\end{array}$

Figure S3. UPLC chromatograph with compound assignments for key UV signals. Low resolution mass spectrum $(\mathrm{ESI}+)$ for the retention time identified as the azine and identification of a fragmentation pattern for $\mathrm{N}-\mathrm{N}$ bond cleavage of the dimeric structure.

Figure S4. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of 7 in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S5. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of 7 in $\mathrm{CD}_{3} \mathrm{CN}$.

2.5 Comparison of Oxime Consumption Without DIPA Reductant

In a glovebox under an atmosphere of nitrogen, solid reagents were added to a $4-\mathrm{mL}$ vial: model oxime substrate 3 a ($72 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.) ; benzoic acid ($37 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.); photocatalyst ($2 \mathrm{E}-3 \mathrm{mmol}, 2$ $\mathrm{mol} \%$) (Table 4); 4-cyanopyridine $4 \mathbf{4 a}(69 \mathrm{mg}, 0.66 \mathrm{mmol}, 2.2$ equiv.). The reactants were then dissolved by the addition of DMSO (3 mL) and stirred for 10 minutes until the solution was homogeneous. The reaction was then irradiated for 2.5 h in the TAK 120 photoreactor ($455 \mathrm{~nm}, 5 \mathrm{~W}, 40^{\circ} \mathrm{C}$). The reaction was quenched by opening the vial and exposing the vial contents to oxygen.

The reaction was then added to a 25 mL volumetric flask along with a solution of biphenyl in $\mathrm{MeCN}(5 \mathrm{~mL}$, 12.5 mM biphenyl). The contents of the flask were then diluted until the volume reached 25 mL . Aliquots ($20 \mu \mathrm{~L}, 50$ $\mu \mathrm{L}$, and $100 \mu \mathrm{~L}$) of the diluted reaction were then taken to measure by UPLC-MS. For each reaction, the ratio of absorbance of the starting oxime was compared to the constant biphenyl internal standard was calculated. The amount of oxime remaining in each reaction was determined by comparing the product to internal standard for each reaction to the product to internal standard ratio of a reaction without photocatalyst added.

Table S4. Comparison of Photocatalysts Triplet Energies in the Coupling Reaction

Entry	Photocatalyst	Amount of Photocatalyst	Triplet Energy (E^{\top}) [kcal mol ${ }^{-1}$]	$E_{\text {red }}$ (V) vs. SCE	E*ox (V) vs. SCE	Oxime Remaining (\%)
1	PC1	6 mg	55.8	-1.42	0.97	0
2	PC3	6 mg	61.8	-1.37	1.21	51
3	PC4	4 mg	58.1	-2.2	0.31	0
4	PC5	5 mg	46	-1.33	0.77	98
5	PC6	4 mg	43.6	-1.06	0.83	98

3. O-Benzoyl Oxime \& Iminium Hydrochloride Substrate Scope

3.1 General Reaction Procedure A:

Reactions were conducted in a 4 mL vial (Chemglass), with a PTFE stir bar, and a vial cap containing a septum. All reaction contents were measured inside of a glovebox where the atmosphere contained $<0.1 \mathrm{ppm}$ oxygen. O-benzoyl oxime substrate ($\mathbf{3 a - 3 r}$) ($0.3 \mathrm{mmol}, 1.0$ equiv.); benzoic acid ($37 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.); photocatalyst (PC1) $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); and cyanoarene (4a-4ai) ($0.66 \mathrm{mmol}, 2.2$ equiv.) were added to a 4 mL vial. The reactants were then dissolved by the addition of DMSO (3 mL) and stirred for 10 minutes until the solution was homogeneous. DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 3.6$ equiv. $)$ was then added to the reaction. The reaction was capped and stirred for ten minutes until the DIPA was miscible with the reaction. The reaction vessel was then removed from the glovebox and sealed with parafilm to further protect the reaction from oxygen. The reaction was then placed into the photoreactor and irradiated with blue light ($455 \mathrm{~nm}, 5 \mathrm{~W}$ per reaction) for 2.5 hours.

Caution! Cyanide may be produced as a byproduct in these reactions. Cyanide is toxic and could lead to the release of HCN gas (extremely toxic). Reactions and their aqueous work-up should be conducted in well-ventilated enclosures (e.g. fumehood) and aqueous cyanide-containing waste should be kept basic and disposed of in accordance with local guidelines.

At 2.5 hours the reaction is considered complete, and the reaction was quenched by opening the vial and exposing the vial contents to oxygen. The reaction was then added to a 25 mL volumetric flask along with a solution of biphenyl in $\mathrm{MeCN}(5 \mathrm{~mL}, 12.5 \mathrm{mM}$ biphenyl). The contents of the flask were then diluted until the volume reached 25 mL . Aliquots ($20 \mu \mathrm{~L}, 50 \mu \mathrm{~L}$, and $100 \mu \mathrm{~L}$) of the diluted reaction were then taken to measure by UPLC-MS. The remainder of the diluted reaction was then concentrated under reduced pressure to remove the MeCN . The remaining crude oil is dissolved in methylene chloride $(50 \mathrm{~mL})$. Isopropyl amine (2 mL) was then added to the reaction to raise the pH , deprotonate the desired product, and prevent the formation of hydrogen cyanide. The methylene chloride solution was washed with water ($3 \times 50 \mathrm{~mL}$) followed by a wash with brine $(50 \mathrm{~mL})$. The remaining organic fraction was then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to afford a crude product.

The crude product was purified by FLASH chromatography using a Teledyne-Isco Combiflash, [12 g column, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Solvent A), MeOH (Solvent B)]. The column utilized a gradient elution: $5 \mathrm{~min}(100 \% \mathrm{~A}), 5 \mathrm{~min}$ (100% A to 97.5% A: 2.5% B), $10 \mathrm{~min}(97.5 \% \mathrm{~A}: 2.5 \%$ B to $95 \% \mathrm{~A}: 5 \% \mathrm{~B}$), $10 \mathrm{~min}(95 \% \mathrm{~A}: 5 \% \mathrm{~B}), 10$ (Hold 95% A: 5% B), $5 \mathrm{~min}(95 \% \mathrm{~A}: 5 \%$ B to 90% A: 10% B), 5 min (Hold 90% A: 10% B). The product fractions were collected and concentrated under reduced pressure to afford the pure product. After characterization, the pure product is used to produce a calibration curve according to the general UPLC calibration procedure.

3.2 General Iminium Salt Reaction Procedure:

Reactions were conducted in a 4 mL vial (Chemglass), with a PTFE stir bar, and a vial cap containing a septum. All reaction contents were measured inside of a glovebox where the atmosphere contained $<0.1 \mathrm{ppm}$ oxygen. Iminium HCl salt ($0.66 \mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}$ ($6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); and 4-cyanopyridine ($31 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.) were added to a 4 mL vial. The reactants were then dissolved by the addition of DMSO (3 mL) and stirred for 10 minutes until the solution was homogeneous. DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.) was then added to the reaction. The reaction was capped and stirred for ten minutes until the DIPA was miscible with the reaction. The reaction vessel was then removed from the glovebox and sealed with parafilm to further protect the reaction from oxygen. The reaction was then placed into the photoreactor and irradiated with blue light ($455 \mathrm{~nm}, 5 \mathrm{~W}$ per reaction).

Caution! Cyanide may be produced as a byproduct in these reactions. Cyanide is toxic and could lead to the release of HCN gas (extremely toxic). Reactions and their aqueous work-up should be conducted in well-ventilated enclosures (e.g. fumehood) and aqueous cyanide-containing waste should be kept basic and disposed of in accordance with local guidelines.

At 2.5 hours the reaction as considered complete, and the reaction was quenched by opening the vial and exposing the vial contents to oxygen. The reaction was then added to a 25 mL volumetric flask along with a solution of biphenyl in MeCN ($5 \mathrm{~mL}, 12.5 \mathrm{mM}$ biphenyl). Isopropyl amine (2 mL) was then added to the reaction to raise the pH , deprotonate the desired product, and prevent the formation of hydrogen cyanide. The contents of the flask were then diluted until the volume reached 25 mL . Aliquots ($20 \mu \mathrm{~L}, 50 \mu \mathrm{~L}$, and $100 \mu \mathrm{~L}$) of the diluted reaction were then taken to measure by UPLC-MS. The yield of the reaction was determined via UPLC-MS calibration.

Compound 5a was synthesized following General Procedure A using 4-pyridinecarbonitrile ($733 \mathrm{mg}, 7.04 \mathrm{mmol}$), PC1 ($72 \mathrm{mg}, 7.2 \mathrm{E}-2 \mathrm{mmol}$), benzoic acid ($444 \mathrm{mg}, 3.2 \mathrm{mmol}$), DIPA ($1.836 \mathrm{~mL}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3a) ($765 \mathrm{mg}, 3.2 \mathrm{mmol}$) in DMSO (36 mL). The product was obtained as a viscous brown oil ($513 \mathrm{mg}, 70 \%$). The yield of product 5 a was determined to be 80% by a calibrated UPLC-MS ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.45(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ $(\mathrm{s}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 160.09,150.51,149.96,129.16,127.49,127.06,122.30,58.73$, 31.31. MS (ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$199.1, found 199.2.

Compound 5a was also synthesized from the corresponding iminium HCl salt $\mathbf{6 a}$ and cyanoarene $\mathbf{4 a}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 a}$ (156 mg .0 .66 $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}$ ($6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and 4 -cyanopyridine ($31 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The yield of product $5 \mathbf{5}$ was determined to be 81% by a calibrated UPLC-MS.

Figure S6. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S7. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S8. COSY NMR (126 MHz) spectrum of $\mathbf{5 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S9. HSQC NMR (126 MHz) spectrum of $\mathbf{5 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S10. HMBC NMR (126 MHz) spectrum of $\mathbf{5 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound 5b was synthesized following General Procedure A using 4-pyridinecarbonitrile $\mathbf{4 a}$ ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 b}$) (88 $\mathrm{mg}, 0.3 \mathrm{mmol}$) in DMSO (3 mL). The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($50 \mathrm{mg}, 64 \%$). The yield of product $\mathbf{5 b}$ was determined to be 91% by a calibrated UPLC-MS ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.47(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.34$ (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 159.14,154.45,150.71,129.03(\mathrm{q}, J=$ $32.2 \mathrm{~Hz}), 126.57(\mathrm{q}, J=271.6,270.8,254.6 \mathrm{~Hz}), 126.00(\mathrm{q}, J=3.7 \mathrm{~Hz}), 122.27,118.30,58.88,31.09 .{ }^{19} \mathrm{~F}$ NMR (471 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta-62.89$. MS (ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$267.1, found 267.2.

Compound $\mathbf{5 b}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 b}$ and cyanoarene $\mathbf{4 a}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt ($\mathbf{6 b}$) ($211 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and 4 -cyanopyridine ($31 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The yield of product $\mathbf{5 b}$ was determined to be 14% by a calibrated UPLC-MS.

Figure S11. ${ }^{1} \mathrm{H}$ qNMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{5 b}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S12. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 b}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S13. ${ }^{19}$ F NMR (471 MHz) spectrum of compound $\mathbf{5 b}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound 5c was synthesized following General Procedure A using 4-pyridinecarbonitrile $\mathbf{4 a}$ ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 c}$) (82 $\mathrm{mg}, 0.3 \mathrm{mmol}$) in DMSO (3 mL). The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($51 \mathrm{mg}, 73 \%$). The yield of product $\mathbf{5 f}$ was determined to be 98% by a calibrated UPLC-MS ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 8.46(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 159.54$, $150.59,148.86,132.78,129.02,128.99,122.23,118.30,58.51,41.38,31.24$. MS (ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClN}_{2}$ ([M $+\mathrm{H}]^{+}$) 233.1, found 233.2.

Compound $5 \mathbf{c}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 c}$ and cyanoarene $\mathbf{4 a}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt (6 c) ($125 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and 4 -cyanopyridine ($31 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The yield of product $5 \mathbf{c}$ was determined to be 66% by a calibrated UPLC-MS.

Figure S14. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 c}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S15. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 c}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Synthesis of 5d was synthesized following General Procedure A using 4-pyridinecarbonitrile $\mathbf{4 a}$ ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 d}$) (77 $\mathrm{mg}, 0.3 \mathrm{mmol}$) in DMSO (3 mL). The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($50 \mathrm{mg}, 77 \%$). The yield of product $\mathbf{5 f}$ was determined to be 94% by a calibrated UPLC-MS. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.46$ (dd, $J=4.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (dd, $J=8.9,5.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=4.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 163.32,161.39,159.85,150.58,146.07,146.05,129.16,129.09,122.23,118.31,115.66,115.49,58.43$, 31.49. ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ-118.40. MS (ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FN}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 217.1$, found 217.2

Compound 5d was also synthesized from the corresponding iminium HCl salt $\mathbf{6 d}$ and cyanoarene $\mathbf{4 a}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt ($\mathbf{6 d}$) $(174 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and 4-cyanopyridine ($31 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The yield of product $\mathbf{5 d}$ was determined to be 87% by a calibrated UPLC-MS.

Figure S16. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 d}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S17. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 d}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S18. ${ }^{19} \mathrm{~F}$ NMR (471 MHz) spectrum of compound $\mathbf{5 d}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Synthesis of 5e was synthesized following General Procedure A using 4-pyridinecarbonitrile ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 e}$) (76 $\mathrm{mg}, 0.3 \mathrm{mmol}$) in DMSO (3 mL). The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($50 \mathrm{mg}, 79 \%$). The yield of product $\mathbf{5 e}$ was determined to be 98% by a calibrated UPLC-MS ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.44(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 160.26$, $150.47,147.05,137.09,129.74,126.99,122.27,58.46,31.37,20.94$. MS (ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 213.1, found 213.2

Compound 5 e was also synthesized from the corresponding iminium HCl salt $\mathbf{6 e}$ and cyanoarene $\mathbf{4 a}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt ($6 \mathbf{e}$) ($112 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}$ ($6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and 4-cyanopyridine ($31 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The yield of product $\mathbf{5 e}$ was determined to be 93% by a calibrated UPLC-MS.

Figure S19. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 e}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S20. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 e}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Synthesis of $\mathbf{5 f}$ was synthesized following General Procedure A using 4-pyridinecarbonitrile $\mathbf{4 a}$ ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 f}$) (81 $\mathrm{mg}, 0.3 \mathrm{mmol}$) in DMSO (3 mL). The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($44 \mathrm{mg}, 64 \%$). The yield of product $\mathbf{5 f}$ was determined to be 79% by a calibrated UPLC-MS ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.44(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ $(\mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $160.37,159.23,150.47,142.05,128.26,122.24,118.30,114.34,58.25,55.85,31.54 . \mathrm{MS}$ (ESI) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$229.1, found 229.2.

Compound $\mathbf{5 f}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 f}$ and cyanoarene $\mathbf{4 a}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt ($\mathbf{6 f}$) ($186 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and 4 -cyanopyridine $\mathbf{4 a}$ ($31 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The yield of product $\mathbf{5 f}$ was determined to be 94% by a calibrated UPLC-MS.

Figure S21. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 f}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

$$
\begin{aligned}
& \stackrel{\sim}{n} \\
& -1.32 \text { CD3CN }
\end{aligned}
$$

Figure S22. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 f}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Synthesis of $\mathbf{5 g}$ was synthesized following General Procedure A using 4-pyridinecarbonitrile $\mathbf{4 a}$ ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 g}$) (76 $\mathrm{mg}, 0.3 \mathrm{mmol}$) in DMSO (3 mL). The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($21 \mathrm{mg}, 30 \%$). The yield of product 5 g was determined to be 32% by a calibrated UPLC-MS ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.43(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.09(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 160.67,150.57,146.52,137.35,133.32,128.25,126.94,126.59,121.74,118.30,59.31$, 32.93, 21.80. MS (ESI) M/Z CALCD. FOR C ${ }_{14} \mathrm{H}_{17} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 213.1$, found 213.2

Compound $\mathbf{5 g}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 g}$ and cyanoarene $\mathbf{4 a}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt ($6 \mathbf{g}$) ($112 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and 4 -cyanopyridine ($31 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The yield of product 5 g was determined to be 82% by a calibrated UPLC-MS.

Figure S23. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 g}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S24. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 g}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound $\mathbf{5 h}$ was synthesized following General Procedure A using 4-pyridinecarbonitrile $\mathbf{4 a}$ ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 h}$) (87 $\mathrm{mg}, 0.3 \mathrm{mmol})$ in DMSO (3 mL). The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($37 \mathrm{mg}, 50 \%$). The yield of product $\mathbf{5 h w a s}$ determined to be 50% by a calibrated UPLC-MS ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.45(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-$ $7.85(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{pd}, J=6.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 3 \mathrm{H}), 2.18$ $(\mathrm{s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 159.81,150.56,147.31,134.11,133.09,129.03,128.75,128.33$, 127.22, 126.93, 126.48, 124.77, 122.41, 58.93, 31.19. MS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 249.1$, found 249.2.

Compound $\mathbf{5 h}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 h}$ and cyanoarene $\mathbf{4 a}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt ($\mathbf{6 h}$) ($136 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and 4 -cyanopyridine ($31 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The yield of product $\mathbf{5 h}$ was determined to be 98% by a calibrated UPLC-MS.

Figure S25. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5} \mathbf{h}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S26. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5} \mathbf{h}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound $\mathbf{5 i}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 i}$ and cyanoarene $\mathbf{4 a}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt ($\mathbf{6 i}$) ($130 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and 4 -cyanopyridine ($31 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The yield of product $5 \mathbf{i}$ was determined to be 76% by a calibrated UPLC-MS. Product characterization matched as described. ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.38(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 161.08,150.66,143.96,136.00,131.30,129.96,129.47,127.97,126.07,125.02,121.62,59.44$, 33.86. MS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$249.1, found 249.2.

Figure S27. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 i}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S28. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 i}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound 51 was synthesized following General Procedure A using 4-pyridinecarbonitrile $\mathbf{4 a}$ ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 1}$) (84 $\mathrm{mg}, 0.3 \mathrm{mmol}$) in DMSO (3 mL). The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($51 \mathrm{mg}, 71 \%$). The yield of product $\mathbf{5 l}$ was determined to be 94% by a calibrated UPLC-MS. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.45-8.43(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 159.27,150.41,149.04,129.11,127.39,127.38,122.67,61.37,42.23$, 26.92, 23.80, 14.35. MS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$241.2, found 241.2.

Compound 51 was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 a}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt (6 l) ($130 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and 4 -cyanopyridine ($31 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The yield of product $\mathbf{5 l}$ was determined to be 76% by a calibrated UPLC-MS.

Figure S29. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 1}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S30. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 1}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound $\mathbf{5 m}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 m}$ and cyanoarene $\mathbf{4 a}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt ($\mathbf{6 m}$)($130 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and 4 -cyanopyridine ($31 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). MS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 241.2$, found 242.3. The product 5 m was synthesized in 84% yield (retention time $\left.\mathrm{t}=2.310, \mathrm{~m} / \mathrm{z}=242.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination..$^{5} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.41$ (dd, $J=1.6,4.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.43-7.39 (m, 2H), 7.39-7.36 (dd, $J=$ $1.7,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ $\delta 158.48,149.63,147.96,130.22,128.04,127.16,125.42,67.85,38.68,28.17$. MS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2}$ ([M $+\mathrm{H}]^{+}$) 241.2 , found 241.3.

Figure S31. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 m}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S32. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of 5 m (ppm) in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound 5j was synthesized following General Procedure A using 4-pyridinecarbonitrile $\mathbf{4 a}$ ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 j}$) (73 $\mathrm{mg}, 0.3 \mathrm{mmol})$ in DMSO (3 mL). The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($25 \mathrm{mg}, \mathbf{3 4 \%}$). The yield of product $\mathbf{5 j}$ was determined to be 42% by a calibrated UPLC-MS 1H NMR: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN} \delta 8.44$ (d, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (d, $J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{q}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 160.09,150.51,148.54,147.06,144.20,122.18,120.15,108.42,108.00,102.27,58.60,31.55$. MS (ESI) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$243.1, found 243.2.

Figure S33. ${ }^{1} \mathrm{H}$ qNMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{5 j}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S34. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 j}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound $5 \mathbf{0}$ was synthesized following General Procedure A using 4-pyridinecarbonitrile $\mathbf{4 a}$ ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L} \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3o) ($90 \mathrm{mg}, 0.3 \mathrm{mmol}$) in DMSO (3 mL). The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($29 \mathrm{mg}, 32 \%$). The yield of product 50 was determined to be 32% by a calibrated UPLC-MS ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.46(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 166.24,159.42,154.67,150.63,131.35,130.02,127.24,122.27,118.29$ (MeCN residual solvent), 81.69, 58.90, 31.09, 28.33. MS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$299.2, found 299.2

Figure $\mathbf{S 3 5}{ }^{1} \mathrm{H}$ qNMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{5 o}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S36. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of 5 o in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound 5k was synthesized following General Procedure A using 4-pyridinecarbonitrile $\mathbf{4 a}$ ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L} \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 k}$) $(84 \mathrm{mg}, 0.3 \mathrm{mmol})$ in DMSO (3 mL). The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($16 \mathrm{mg}, 31 \%$). The yield of product $\mathbf{5} \mathbf{k}$ was determined to be 39% by a calibrated UPLC-MS ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.50(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\mathrm{CD}_{3} \mathrm{CN}$) $\delta 150.67,125.17,123.92,122.14,121.94,118.31,111.78,102.91,56.43,29.44 . \mathrm{MS}$ (ESI) M/Z CALCD. FOR $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$239.1, found 239.2.

Figure S37. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 k}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S38. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 k}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound 5n was synthesized following General Procedure A using 4-pyridinecarbonitrile $\mathbf{4 a}$ ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L} \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3n) ($80 \mathrm{mg}, 0.3 \mathrm{mmol}$) in DMSO (3 mL). The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($38 \mathrm{mg}, 56 \%$). The yield of product $\mathbf{5 n}$ was determined to be 56% by a calibrated UPLC-MS ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.46(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 2 \mathrm{H}), 1.63(\mathrm{tt}, J=8.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.59-0.33$ $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 159.52,150.32,149.40,128.96,127.97,127.59,123.09,60.69,22.42,2.08$, 1.71. MS (ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 225.1$, found 225.2

Figure S39. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 n}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S40. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5} \mathbf{n}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound 5p was synthesized following General Procedure A using 4-pyridinecarbonitrile $\mathbf{4 a}$ ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L} \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 p}$) $(89 \mathrm{mg}, 0.3 \mathrm{mmol})$ in DMSO $(3 \mathrm{~mL})$. The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($44 \mathrm{mg}, 58 \%$). The yield of product $\mathbf{5 p}$ was determined to be 65% by a calibrated UPLC-MS ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetonitrile- d_{3}) $\delta 8.57(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.43(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 179.34,168.90$, $162.33,159.04,157.95,157.88,157.11,156.23(\mathrm{q}, J=285.5 \mathrm{~Hz}), 151.92,146.83,94.93(\mathrm{q}, J=26.6 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR (471 MHz, $\mathrm{CD}_{3} \mathrm{CN}$) δ-73.24. MS (ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$253.1, found 253.2.

Figure S41. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 p}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S42. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 p}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

$$
\begin{aligned}
& \stackrel{\underset{N}{N}}{\underset{\sim}{N}}
\end{aligned}
$$

(ppm)

Figure S43. ${ }^{19} \mathrm{~F}$ NMR (471 MHz) spectrum of compound $\mathbf{5 p}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound $\mathbf{5 q}$ was synthesized following General Procedure A using 4-pyridinecarbonitrile $\mathbf{4 a}$ ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L} \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 q}$) ($99 \mathrm{mg}, 0.3 \mathrm{mmol}$) in DMSO (3 mL). The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($25 \mathrm{mg}, 25 \%$). The yield of product $\mathbf{5 q}$ was determined to be 29% by a calibrated UPLC-MS. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetonitrile- d_{3}) $\delta 8.57(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 4 \mathrm{H}), 2.60(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 150.97,150.11,139.80,132.37$, $126.29(\mathrm{q}, ~ J=285.5 \mathrm{~Hz}), 123.29,123.27,123.18,66.23(\mathrm{q}, J=27.0 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-73.40 . \mathrm{MS}$ (ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrF}_{3} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 331.0$, found 331.0.

Figure $\mathbf{S 4 4} .{ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 q}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S45. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 q}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S46. ${ }^{19}$ F NMR (471 MHz) spectrum of compound $\mathbf{5 q}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound 5r was synthesized following General Procedure A using 4-pyridinecarbonitrile $\mathbf{4 a}$ ($69 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 ($6 \mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L} \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 r}$) $(108 \mathrm{mg}, 0.3 \mathrm{mmol})$ in DMSO $(3 \mathrm{~mL})$. The product was purified according to the general chromatography method for oximes. The product was obtained as a film on a vial ($46 \mathrm{mg}, 48 \%$). The yield of product $\mathbf{5 r}$ was determined to be 57% by a calibrated UPLC-MS ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 1.7: 1$ mixture of rotamers) $\delta 8.58(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H})$, $8.14(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.50$ $(\mathrm{s}, 1 \mathrm{H}), 2.63(\mathrm{br} \mathrm{s}, 1.3 \mathrm{H}), 2.14(\mathrm{br} \mathrm{s}, 0.8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 1.7: 1$ mixture of rotamers) $\delta 150.96,150.43$, $150.40,142.25,140.96,138.21,138.18,129.92(\mathrm{q}, J=1.7 \mathrm{~Hz}), 128.32,127.64(\mathrm{q}, J=285.8 \mathrm{~Hz}), 123.35(\mathrm{q}, J=1.7$ $\mathrm{Hz}), 119.36,108.87,66.21(\mathrm{q}, J=26.8 \mathrm{~Hz}), 66.13(\mathrm{q}, J=26.7 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta-73.55(\mathrm{~s}$, 3F).MS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 319.1$, found 318.8

Figure S47. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 r}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S48. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 r}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S49. ${ }^{19}$ F NMR (471 MHz) spectrum of compound $\mathbf{5 r}$ in $\mathrm{CD}_{3} \mathrm{CN}$

4. Cyanoarene Scope

Table S5. Table of Purchased Cyanoarenes Starting Materials

4-pyridyl

Authentic samples of compound 5s-5ad, 5ag, 5ai-5az were synthesized and characterized as described previously. ${ }^{5}$ NMR characterization of the authentic samples included as line listing for each compound.

Compound 5s was synthesized following General Procedure A using cyanoarene $\mathbf{4 b}$ ($123 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 I) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) M/Z CALCD. FOR $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 323.2$, found 323.2. The product was synthesized in 42% yield (retention time $\left.t=2.783, \mathrm{~m} / \mathrm{z}=323.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound $5 \mathbf{s}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 c}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 l}(130 \mathrm{mg}, 0.66 \mathrm{mmol}$, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 3.6$ equiv.); and cyanoarene $4 \mathrm{~s}(41 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product was synthesized in 54% yield (retention time $\left.\mathrm{t}=2.783, \mathrm{~m} / \mathrm{z}=323.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.36(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 3 \mathrm{H})$, $7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.38-1.28$ (m, 2H), 1.26-1.09 (m, 2H), $0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 160.38,153.17,150.07$, 148.94, $146.28,129.14,128.61,127.43,127.41,125.57,121.52,117.38,61.56,42.14,26.95,23.81,14.38$. ESI LRMS m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 323.2$, found 323.2.

Compound 5t was synthesized following General Procedure A using cyanoarene $\mathbf{4 c}(122 \mathrm{mg}, 0.66 \mathrm{mmol})$, PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 I) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 321.2$, found 321.3. The product was synthesized in 73% yield (retention time $\left.\mathrm{t}=1.930, \mathrm{~m} / \mathrm{z}=321.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.37(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 4 \mathrm{H})$, $7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 2 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.10(\mathrm{~m}$, $2 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 163.04,151.75,149.57,148.60,145.45,129.23,128.33$, $127.60,127.42,121.76,120.26,116.45,61.73,42.12,26.91,23.78,15.40,14.33$.

Compound 5u was synthesized following General Procedure A using cyanoarene $\mathbf{4 d}$ ($123 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol})$, benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and O-benzoyl oxime (X) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) M/Z CALCD. FOR C $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 307.2$, found 307.2. The product 5 u was synthesized in 82% yield (retention time $\left.t=2.662, \mathrm{~m} / \mathrm{z}=307.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination

Compound $\mathbf{5 u}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 d}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt 31 ($130 \mathrm{mg}, 0.66 \mathrm{mmol}$, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 3.6$ equiv.); and cyanoarene $\mathbf{4 d}(41 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $\mathbf{5 u}$ was synthesized in 69% yield (retention time $\left.\mathrm{t}=2.662, \mathrm{~m} / \mathrm{z}=307.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.53(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 2.28-2.18$ $(\mathrm{m}, 2 \mathrm{H}), 2.05(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ $\delta 163.05,152.61,148.86,148.78,142.77,129.20,127.95,127.55,127.45,120.97,110.94,108.63,61.75,42.17,26.90$, 23.78, 14.34.

Compound 5v was synthesized following General Procedure A using cyanoarene $\mathbf{4 e}(112 \mathrm{mg}, 0.66 \mathrm{mmol}), \mathbf{P C 1}$ (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol})$, benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (31) ($84 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ in DMSO $(3 \mathrm{~mL})$. MS (ESI) M/Z CALCD. FOR $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 307.2$, found 307.2. The product was synthesized in 35% yield (retention time $\left.t=2.558, \mathrm{~m} / \mathrm{z}=307.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination

Compound $5 v$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 e}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}(130 \mathrm{mg}, 0.66 \mathrm{mmol}$, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 3.6$ equiv.); and cyanoarene $4 \mathbf{e}$ ($37 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product was synthesized in 69% yield (retention time $\left.\mathrm{t}=2.558, \mathrm{~m} / \mathrm{z}=307.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.42(\mathrm{dd}, J=0.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=0.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=0.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=1.8$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.30 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 160.37,155.04,150.42,150.00,149.03,144.50,129.17,127.46,127.45,121.35,117.17$, $113.05,109.42,61.56,42.17,26.94,23.81,14.35$.

Compound $\mathbf{5 w}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 f}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}(130 \mathrm{mg}, 0.66 \mathrm{mmol}$, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%) ; \operatorname{DIPA}(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 3.6$ equiv.); and cyanoarene $\mathbf{6 1}\left(41 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0\right.$ equiv.). MS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{4}([\mathrm{M}+\mathrm{H}]+$) 308.2, 308.2. The product 5 w was synthesized in 25% yield (retention time $\left.\mathrm{t}=2.245, \mathrm{~m} / \mathrm{z}=321.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.33-8.29(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09 \mathrm{~s},(1 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.39-1.29$ $(\mathrm{m}, 2 \mathrm{H}), 1.26-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 163.43,150.41,149.48,148.63$, $136.07,131.04,129.23,127.60,127.41,121.61,117.54,111.50,61.79,42.09,26.89,23.79,14.33$.

Compound 5x was synthesized following General Procedure A using cyanoarene $\mathbf{4 g}(120 \mathrm{mg}, 0.66 \mathrm{mmol}), \mathbf{P C 1}$ (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 l) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3}([\mathrm{M}+\mathrm{H}]+) 318.2$, found 318.3. The product was synthesized in 32% yield (retention time $\left.\mathrm{t}=2.342, \mathrm{~m} / \mathrm{z}=318.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound $\mathbf{5 x}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 g}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 l}(130 \mathrm{mg}, 0.66 \mathrm{mmol}$, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%) ; \operatorname{DIPA}(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 3.6$ equiv.); and cyanoarene $\mathbf{4 g}(40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $\mathbf{5 x w a s}$ synthesized in 18% yield (retention time $\left.\mathrm{t}=2.342, \mathrm{~m} / \mathrm{z}=318.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.65(\mathrm{dd}, J=1.7,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.57(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=0.5,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.93 (dd, $J=1.7,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{dd}, J=1.7,5.2, \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{tt}, J=1.1$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 160.91,155.12,151.35,150.75,148.91,147.43,129.20,127.51,127.45,123.20$, 121.90, 119.84, 61.69, 42.19, 26.96, 23.81, 14.34.

Compound 5y was synthesized following General Procedure A using cyanoarene $\mathbf{4 h}(119 \mathrm{mg}, 0.66 \mathrm{mmol}), \mathbf{P C 1}$ (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and O-benzoyl oxime (3 l) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 317.2$, found 317.2. The product 5 y was synthesized in 89% yield (retention time $\left.\mathrm{t}=2.342, \mathrm{~m} / \mathrm{z}=317.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound $5 \mathbf{y}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 h}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}(130 \mathrm{mg}, 0.66 \mathrm{mmol}$, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 3.6$ equiv.); and cyanoarene $\mathbf{4 h}(40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $5 y$ was synthesized in 66% yield (retention time $\left.\mathrm{t}=2.342, \mathrm{~m} / \mathrm{z}=317.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.51(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~d}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 4 \mathrm{H})$, $7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.34$ (sextet, $J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.27-1.11(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 160.38,157.73,150.34$, $149.09,140.60,129.66,129.13,127.74,127.44,127.41,121.56,119.19,61.64,42.22,26.99,23.82,14.38$. ESI LRMS m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 317.2$, found 317.2.

Compound $\mathbf{5 z}$ was synthesized following General Procedure A using cyanoarene $\mathbf{4 i}(139 \mathrm{mg}, 0.66 \mathrm{mmol}), \mathbf{P C 1}(6 \mathrm{mg}$, $6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 I}$) ($84 \mathrm{mg}, 0.3 \mathrm{mmol}$) in DMSO $(3 \mathrm{~mL})$. MS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 347.2$, found 347.3 . The product 5 z was synthesized in 97% yield (retention time $\left.\mathrm{t}=2.790, \mathrm{~m} / \mathrm{z}=347.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound $\mathbf{5 z}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 i}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}(130 \mathrm{mg}, 0.66 \mathrm{mmol}$, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 3.6$ equiv.); and cyanoarene $\mathbf{4 i}$ ($46 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $\mathbf{5 z}$ was synthesized in 95% yield (retention time $\left.t=2.790, m / z=347.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.46(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.04(\mathrm{~s}, 2 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 161.50$, $160.24,157.46,150.19,149.18,133.10,129.12,129.05,127.45,127.38,120.85,118.29,114.98,61.63,56.02,42.21$, 27.01, 23.83, 14.37.

Compound 5aa was synthesized following General Procedure A using cyanoarene $\mathbf{4 j}$ ($157 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and O-benzoyl oxime ($\mathbf{3 1}$) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO $(3 \mathrm{~mL})$. MS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 375.2$, found 375.3 . The product 5aa was synthesized in 25% yield (retention time $\left.\mathrm{t}=2.905, \mathrm{~m} / \mathrm{z}=375.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound $\mathbf{5 a a}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4} \mathbf{j}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $61(130 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 j}$ ($52 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $\mathbf{5 a a}$ was synthesized in $\mathbf{4 6 \%}$ yield (retention time $\left.\mathrm{t}=2.905, \mathrm{~m} / \mathrm{z}=375.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.54(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~s}$, $1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 13 \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{CN}$) $\delta 167.49,160.68,156.46,150.57,149.00,144.76,131.34,130.65,129.17,127.85,127.46$, $127.44,122.34,119.81,61.67,52.77,42.20,26.98,23.82,14.36$.

Compound 5ab was synthesized following General Procedure A using cyanoarene $\mathbf{4 k}$ ($85 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and O-benzoyl oxime (3 l) ($84 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ in DMSO $(3 \mathrm{~mL})$. MS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 265.2$, found 265.2. The product 5ab was synthesized in 9% yield (retention time $\left.\mathrm{t}=2.362, \mathrm{~m} / \mathrm{z}=265.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound 5ab was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 k}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $6 \mathbf{l}(130 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 k}(28 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $\mathbf{5 a b}$ was synthesized in 45% yield (retention time $\mathrm{t}=2.362, \mathrm{~m} / \mathrm{z}=265.2(\mathrm{M}+\mathrm{H}]^{+}$) as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.44(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H})$, $7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 2 \mathrm{H})$, $1.25-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})(\mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 160.08,150.80,148.58,142.82$, $129.19,127.53,127.39,126.54,122.78,84.09,77.90,61.33,42.01,26.84,23.74,14.32$.

Compound 5ac was synthesized following General Procedure A using cyanoarene $4 \mathbf{1}$ ($89 \mathrm{mg}, 0.66 \mathrm{mmol}$), $\mathbf{P C 1}$ (6 mg , $6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 I}$) ($84 \mathrm{mg}, 0.3 \mathrm{mmol}$) in DMSO $(3 \mathrm{~mL})$. MS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 271.2$, found 271.3. The product 5 ac was synthesized in 89% yield (retention time $\left.\mathrm{t}=1.968, \mathrm{~m} / \mathrm{z}=265.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound 5ac was also synthesized from the corresponding iminium HCl salt $\mathbf{6 1}$ and cyanoarene $\mathbf{4 1}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}(130 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 l}(30 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $\mathbf{5 a c}$ was synthesized in 90% yield (retention time $\left.\mathrm{t}=1.968, \mathrm{~m} / \mathrm{z}=265.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.36(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.23(\mathrm{~d}, J=5.1,1 \mathrm{H}), 7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 2.30-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.07(\mathrm{~m}$, $2 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 161.63,160.09,149.37,149.08,129.12,127.40$, 121.16, 119.10, 65.41, 61.52, 42.28, 26.93, 23.81, 14.35.

Compound 5ai was synthesized following General Procedure A using cyanoarene $\mathbf{4 m}(91 \mathrm{mg}, 0.66 \mathrm{mmol})$, PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol})$, benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and O-benzoyl oxime (3I) ($84 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ in DMSO $(3 \mathrm{~mL})$. MS (ESI) m / z calcd. for $\mathrm{C}_{1} 6 \mathrm{H}_{20} \mathrm{ClN} 2\left([\mathrm{M}+\mathrm{H}]^{+}\right) 275.1$, found 275.2. The product 5ai was synthesized in 0% yield (retention time $\left.\mathrm{t}=2.568, \mathrm{~m} / \mathrm{z}=275.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound 5ai was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 m}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}(130 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 m}(30 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product 5ai was synthesized in 39% yield (retention time $\mathrm{t}=2.568, \mathrm{~m} / \mathrm{z}=275.2(\mathrm{M}+\mathrm{H}]^{+}$) as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.22(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .7 .31(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=1.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 163.47$, 152.16, $150.36,148.37,129.25,127.65,127.37,123.01,122.12,61.60,42.03,26.82,23.73,14.30$.

Compound 5aj was synthesized following General Procedure A using cyanoarene $\mathbf{4 n}$ ($114 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and O-benzoyl oxime (3 l) $(84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) m / z calcd. for $\mathrm{C}_{1} 7 \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 309.2$, found 309.3. The product 5aj was synthesized in 0% yield (retention time $t=2.91, \mathrm{~m} / \mathrm{z}=309.3(\mathrm{M}+\mathrm{H}]^{+}$) as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound 5aj was also synthesized from the corresponding iminium HCl salt $\mathbf{3 1}$ and cyanoarene $\mathbf{4 n}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $6 \mathbf{1}$ ($130 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}$ ($6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $4 \mathrm{n}(38 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product 5 aj was synthesized in 65% yield (retention time $\left.\mathrm{t}=2.91, \mathrm{~m} / \mathrm{z}=309.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.59(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=1.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-$ $7.39(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.25-$ $1.06(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 161.97,150.90,148.32(\mathrm{q}, J=33.6 \mathrm{~Hz})$, 148.28, 129.32, 127.73, 127.42, 125.89, 123.07 (q, $J=273.4 \mathrm{~Hz}$), 119.55 (q, $J=2.9 \mathrm{~Hz}$), 61.71, 42.08, 26.83, 23.73, 14.30. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-68.29(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-68.29(\mathrm{~s}, 3 \mathrm{~F})$.

Compound 5ad was synthesized following General Procedure A using cyanoarene 40 ($87 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 l) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 269.2$, found 269.0. The product 5ad was synthesized in 94% yield (retention time $\left.t=2.922, \mathrm{~m} / \mathrm{z}=269.0(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound 5ad was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 0}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $61(130 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 0}(29 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $\mathbf{5 a d}$ was synthesized in 56% yield (retention time $\left.\mathrm{t}=2.922, \mathrm{~m} / \mathrm{z}=269.0(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}$, $2 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.32($ sextet, $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.20-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 159.87,158.25,149.33,129.02,127.34,127.24,118.92,61.25,42.28,26.93,24.62$, 23.84, 14.37.

Compound 5ae was synthesized following General Procedure A using cyanoarene $\mathbf{4 p}(95 \mathrm{mg}, 0.66 \mathrm{mmol}), \mathbf{P C 1}$ (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 I) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.27(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-$ $7.29(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=5.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.36$ $(\mathrm{h}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{dd}, J=16.9,11.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.98-0.91(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 163.28,159.20,149.89,149.25,129.06,127.36,127.30,120.30,119.60,118.27,61.31,42.20,26.96$, 23.83, 17.68, 14.37, 10.11, 10.09. MS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 281.2$, found 280.9. The product 5ae was synthesized in 89% yield (retention time $\left.\mathrm{t}=2.478, \mathrm{~m} / \mathrm{z}=280.9(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Figure S50. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of $\mathbf{5 a e}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S51. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 a e}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound 5af was synthesized following General Procedure A using cyanoarene $\mathbf{4 q}(106 \mathrm{mg}, 0.66 \mathrm{mmol}), \mathbf{P C 1}$ (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 I) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.35(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 2 \mathrm{H})$, $1.30(\mathrm{~s}, 12 \mathrm{H}), 1.16(\mathrm{ddq}, J=21.2,14.1,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 169.83$, 159.34, 149.26, 149.04, 129.04, 127.36, 127.28, 119.94, 117.71, 61.62, 42.37, 38.19, 30.54, 27.00, 23.80, 14.38. MS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$297.2, found 296.9. The product 5af was synthesized in 97% yield (retention time $\left.\mathrm{t}=2.718, \mathrm{~m} / \mathrm{z}=296.9(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Figure S52. ${ }^{1} \mathrm{H}$ qNMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{5 a f}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S53. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 a f}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound 5ag was synthesized following General Procedure A using cyanoarene $\mathbf{4 q}(99 \mathrm{mg}, 0.66 \mathrm{mmol}), \mathbf{P C 1}$ (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol})$, benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and O-benzoyl oxime (3 l) $(84 \mathrm{mg}, 0.3$ mmol) in DMSO $(3 \mathrm{~mL})$. MS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 287.2$, found 287.2. The product 40 was synthesized in 79% yield (retention time $\left.\mathrm{t}=2.55, \mathrm{~m} / \mathrm{z}=287.0(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound 5ag was also synthesized from the corresponding iminium HCl salt $\mathbf{6 1}$ and cyanoarene $\mathbf{4 q}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}$ ($130 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 q}(33 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $\mathbf{5 a g}$ was synthesized in 60% yield (retention time $\left.\mathrm{t}=2.55, \mathrm{~m} / \mathrm{z}=287.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.26(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}) 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 160.61,159.66,149.96,148.84,129.14,127.46,127.37,119.70,118.92,61.45,49.90$, 42.02, 26.92, 23.79, 14.34, 13.43.

Compound 5ah was synthesized following General Procedure A using cyanoarene $\mathbf{4 s}(89 \mathrm{mg}, 0.66 \mathrm{mmol}), \mathbf{P C 1}$ (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 I) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). The product was isolated as a film on a vial ($54 \mathrm{mg}, 67 \%$). The product 5ah was synthesized in 81% yield (retention time $\mathrm{t}=2.420, \mathrm{~m} / \mathrm{z}=254.2(\mathrm{M}+\mathrm{H}]^{+}$) as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.98(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 2 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.23-1.07$ $(\mathrm{m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 165.46,162.57,149.02,147.35,129.07$, 127.37, $127.34,118.28,116.63,108.93,61.39,53.81,42.06,26.93,23.81,14.36$. MS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}([\mathrm{M}+$ $\left.\mathrm{H}-\mathrm{NH}_{2}\right]^{+}$) 254.2 , found 254.2.

Figure S54. ${ }^{1} \mathrm{H}$ qNMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{5 a h}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S55. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{5 a h}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Compound 5al was synthesized following General Procedure A using cyanoarene $\mathbf{4 u}$ ($97 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and O-benzoyl oxime (3 l) ($84 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ in DMSO $(3 \mathrm{~mL})$. MS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 284.2$, found 284.3. The product 5al was synthesized in 22% yield (retention time $\left.\mathrm{t}=2.110, \mathrm{~m} / \mathrm{z}=284.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound 5al was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 u}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}$ ($130 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}$ ($6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $4 \mathbf{u}(32 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product 5 al was synthesized in 64% yield (retention time $\left.\mathrm{t}=2.110, \mathrm{~m} / \mathrm{z}=284.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.45(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.22(\mathrm{~d}$ of quintet, $J=5.2,13.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.99(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.04(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ $\delta 167.66,161.27,150.84,149.37,148.64,129.20,127.53,127.44,125.33,120.93,61.61,42.15,26.85,23.74,14.34$.

Synthesis of 5ak was synthesized following General Procedure A using cyanoarene $\mathbf{4 t}(107 \mathrm{mg}, 0.66 \mathrm{mmol}), \mathbf{P C 1}$ (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol})$, benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and O-benzoyl oxime (3 l) $(84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). The reaction was unsuccessful.

Compound 5ak was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 t}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}$ ($130 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}$ ($6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $4 \mathbf{t}(36 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The reaction was unsuccessful.

Compound 5am was synthesized following General Procedure A using cyanoarene $\mathbf{4 v}$ ($119 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 I) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 317.2$, found 317.3. The product 5amwas synthesized in 10% yield (retention time $\left.\mathrm{t}=2.68, \mathrm{~m} / \mathrm{z}=317.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound 5am was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 v}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}(130 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 v}(40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product 5 am was synthesized in 42% yield (retention time $\left.\mathrm{t}=2.68, \mathrm{~m} / \mathrm{z}=317.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.58(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{td}, J=4.9,12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.89(\mathrm{td}, J=12.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.29-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.14-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 155.75,152.92,150.43,149.58,140.30,137.98,130.50,128.86,128.19,127.92$, 127.24, 127.12, 122.51, 61.85, 41.60, 26.93, 23.80, 14.34.

Compound 5an was synthesized following General Procedure A using cyanoarene $\mathbf{4 w}$ ($85 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and O-benzoyl oxime ($\mathbf{3 1}$) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO $(3 \mathrm{~mL})$. MS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 266.2$, found 265.9. The product 5 an was synthesized in 0% yield (retention time $\left.t=2.24, \mathrm{~m} / \mathrm{z}=265.9(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound 5an was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 w}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $6 \mathbf{1}$ ($130 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 w}$ ($28 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product 5 an was synthesized in 0% yield (retention time $\left.\mathrm{t}=2.24, \mathrm{~m} / \mathrm{z}=265.9(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound 5ao was synthesized following General Procedure A using cyanoarene $\mathbf{4 x}$ ($91 \mathrm{mg}, 0.66 \mathrm{mmol}$), $\mathbf{P C 1}$ (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 I) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClN}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 275.1$, found 275.2. The product 5ao was synthesized in 17% yield (retention time $\left.t=2.587, \mathrm{~m} / \mathrm{z}=275.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound 5ao was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 x}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}(130 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 x}(30 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $\mathbf{5 a o}$ was not synthesized by this method. However, des-halogenated product 51 was synthesized in 23% yield (retention time $\left.t=2.587, \mathrm{~m} / \mathrm{z}=275.2(\mathrm{M}+\mathrm{H}]^{+}\right)$ as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.51(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 5 \mathrm{H})$, 2.49 (ddd, $J=4.7,12.3,13.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15-2.19 (m, 1H), 2.07 (br s, 2H), 1.29 (sextet, $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.18-0.97 (m, $2 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 155.08,151.65,148.97,148.26,131.74,128.94,127.28$, 127.06, 124.23, 61.98, 40.14, 26.98, 23.78, 14.30.

Compound 5ap was synthesized following General Procedure A using cyanoarene $\mathbf{4 y}$ ($81 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and O-benzoyl oxime (3 l) ($84 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ in DMSO $(3 \mathrm{~mL})$. MS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FN}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 259.2$, found 259.3. The product 5ap was synthesized in 44% yield (retention time $\left.\mathrm{t}=2.310, \mathrm{~m} / \mathrm{z}=259.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination

Compound 5ap was also synthesized from the corresponding iminium HCl salt 6 l and cyanoarene $\mathbf{4 y}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}$ ($130 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 y}(28 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $\mathbf{5 a p}$ was synthesized in 76% yield (retention time $\left.\mathrm{t}=2.310, \mathrm{~m} / \mathrm{z}=259.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.42(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=5.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dt}, J=4.3,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dt}, J=4.4$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.37-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.14-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 13 \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{CN}$) $\delta 159.57,157.55,148.43,146.86,146.82,145.47$, 145.40, $139.28,139.07,129.05,127.54,126.76,126.75,123.51,123.49,60.33,60.32,40.68,40.66,26.91,23.77,14.33$. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta-126.87(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-126.87(\mathrm{dd}, J=3.5,7.2 \mathrm{~Hz}$, 1F).

Compound 5aq was synthesized following General Procedure A using cyanoarene $\mathbf{4 z}$ ($120 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 I) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 317.2$, found 317.2. The product 5aq was synthesized in 95% yield (retention time $\left.t=2.832, \mathrm{~m} / \mathrm{z}=317.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination

Compound 5aq was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 z}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}(130 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}$ ($6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 z}(40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $\mathbf{5 a q}$ was synthesized in 22% yield (retention time $\left.\mathrm{t}=2.832, \mathrm{~m} / \mathrm{z}=317.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.52(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.41(\mathrm{~m}, 5 \mathrm{H})$, $7.39(\mathrm{dd}, J=1.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $1.39-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 169.02,149.95$, $149.48,149.27,139.40,130.10,130.00,128.84,127.99,127.48,127.00,120.09,119.22,63.45,42.25,27.12,23.98$, 14.46 .

Compound 5ar was synthesized following General Procedure A using cyanoarene $\mathbf{4 a a}$ ($107 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 I) ($84 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ in DMSO $(3 \mathrm{~mL})$. MS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 299.2$ found 299.2. The product 5ar was synthesized in 16% yield (retention time $\left.t=2.393, \mathrm{~m} / \mathrm{z}=299.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination

Compound 5ar was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 a a}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}$ ($130 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}$ ($6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 a a}$ ($36 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product 5 ar was synthesized in 0% yield (retention time $\left.\mathrm{t}=2.393, \mathrm{~m} / \mathrm{z}=299.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.65(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=1.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.36-$ $1.28(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.11(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 169.73,166.75,150.32$, $148.90,138.84,128.96,127.43,127.21,121.17,120.63,63.47,53.28,42.28,26.97,23.91,14.41$.

Compound 5as was synthesized following General Procedure A using cyanoarene 4ab ($85 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime ($\mathbf{3 I}$) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 402.3$ found 402.4. The product 5as was synthesized in 0% yield (retention time $\left.t=2.435, \mathrm{~m} / \mathrm{z}=402.4(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination

Compound 5as was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 a b}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}$ ($130 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}$ ($6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 a b}(28 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product 5 as was synthesized in 14% yield (retention time $\mathrm{t}=2.435, \mathrm{~m} / \mathrm{z}=402.4(\mathrm{M}+\mathrm{H}]^{+}$) as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.66-8.61(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 2.58-$ $2.47(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.19(\mathrm{~m}, 2 \mathrm{H}) 1.44-1.13(\mathrm{~m}, 6 \mathrm{H}), 1.13-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.81(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 169.93$, 160.68, 157.98, 157.87, 149.81, 149.79, 145.81, 145.73, 141.27, 130.16, 130.12, $129.95,129.88,129.69,129.66,128.67,128.62,127.98,127.91,127.63,127.60,122.38,122.35,121.48,66.32,66.31$, $63.29,63.26,27.21,26.83,26.82,23.94,23.90,23.78,23.75,14.29,14.27,14.19,14.18$.

Compound 5at was synthesized following General Procedure A using cyanoarene 4ac ($85 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 I) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). Reaction was unsuccessful.

Compound 5at was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene $\mathbf{4 a c}$. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $6 \mathbf{l}$ ($130 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 a c}(28 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). Reaction was unsuccessful

Compound 5au was synthesized following General Procedure A using cyanoarene $\mathbf{4 a d}$ ($101 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 I) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). Reaction was unsuccessful.

Compound 5au was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene 4ad. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $61(130 \mathrm{mg}, 0.66$ $\mathrm{mmol}, 2.2$ equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 a d}(34 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). Reaction was unsuccessful.

Compound 5av was synthesized following General Procedure A using cyanoarene 4ae ($94 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and O-benzoyl oxime (3 I) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 280.2$ found 280.2. The product 5av was synthesized in 39% yield (retention time $\left.t=2.18, \mathrm{~m} / \mathrm{z}=280.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound 5av was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene 4ae. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $\mathbf{6 1}(130 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \text { ppy }]_{2} \mathrm{dtbbpyPF}_{6}$ ($6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 a e}(31 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $\mathbf{5 a v}$ was synthesized in 27% yield (retention time $\left.\mathrm{t}=2.18, \mathrm{~m} / \mathrm{z}=280.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 10.49(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{td}, J=12.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{td}, J=12.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ $(\mathrm{s}, 2 \mathrm{H}), 1.35-1.13(\mathrm{~m}, 3 \mathrm{H}), 1.08-0.96(\mathrm{~m}, 1 \mathrm{H}), 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 151.36$, $150.27,149.92,143.72,128.87,127.44,127.15,125.11,118.57,113.91,101.96,61.92,41.53,27.01,23.88,14.36$. ESI LRMS m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2}\left(\left[\mathrm{M}-\mathrm{NH}_{2}\right]^{+}\right)$280.2, found 280.3.

Compound 5aw was synthesized following General Procedure A using cyanoarene $\mathbf{4 a f}$ ($88 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and O-benzoyl oxime (3 l) $(84 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ in DMSO $(3 \mathrm{~mL})$. MS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 270.2$ found 270.2. The product 5aw was not successfully synthesized.

Compound $\mathbf{5 w}$ was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene 4af. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $6 \mathbf{l}(130 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%$); DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 a f}(29 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $5 \mathbf{a w}$ was synthesized in 8% yield (retention time $\left.\mathrm{t}=2.37, \mathrm{~m} / \mathrm{z}=270.2(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.46(\mathrm{dd}, J=1.2,8.4,2 \mathrm{H}), 7.27(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H})$, $2.52(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ 176.07, 168.20, 167.58, 148.22, 128.93, 127.42, 127.32, 114.97, 62.90, 41.62, 26.84, 26.18, 24.34, 23.88, 14.36

Compound 5ax was synthesized following General Procedure A using cyanoarene $\mathbf{4 a g}$ ($81 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA $(153 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and O-benzoyl oxime (3 l) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 295.2$ found 295.3. The product 5ax was synthesized in 0% yield (retention time $\left.\mathrm{t}=2.565, \mathrm{~m} / \mathrm{z}=295.3(\mathrm{M}+\mathrm{H}]^{+}\right)$as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.

Compound 5ax was also synthesized from the corresponding iminium HCl salt $\mathbf{6 l}$ and cyanoarene 4ag. The reaction was conducted by following the General Iminium Salt Reaction Procedure using iminium HCl salt $6 \mathbf{l}$ ($130 \mathrm{mg}, 0.66$ mmol, 2.2 equiv.); photocatalyst $\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2} \mathrm{dtbbpyPF}_{6}(6 \mathrm{mg}, 2 \mathrm{E}-3 \mathrm{mmol}, 2 \mathrm{~mol} \%)$; DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$, 3.6 equiv.); and cyanoarene $\mathbf{4 a g}(29 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv.). The product $\mathbf{5 a x}$ was synthesized in 10% yield (retention time $\mathrm{t}=2.565, \mathrm{~m} / \mathrm{z}=295.3(\mathrm{M}+\mathrm{H}]^{+}$) as determined by a calibrated UPLC generated from an authentic sample using the UPLC-MS Method for Yield Determination.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.73(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (very br s, 2H), $2.57(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{dt}, J=4.2,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dt}, J=4.2,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.24-1.14(\mathrm{~m}, 2 \mathrm{H})$, $1.14-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.81(\mathrm{~m}, 1 \mathrm{H}), 0.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 165.67,162.07$, $152.92,152.60,144.02,143.03,128.84,127.58,118.28,74.75,40.82,27.26,23.58,22.95,22.48,14.27$.

Compound 5ay was synthesized following General Procedure A using cyanoarene 4ah ($95 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 I) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 295.2$ found 295.3. The product 5ay was not successfully synthesized.

Compound 5az was synthesized following General Procedure A using cyanoarene 4ai ($96 \mathrm{mg}, 0.66 \mathrm{mmol}$), PC1 (6 $\mathrm{mg}, 6 \mathrm{E}-3 \mathrm{mmol}$), benzoic acid ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPA ($153 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) and O-benzoyl oxime (3 I) ($84 \mathrm{mg}, 0.3$ mmol) in DMSO (3 mL). MS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 295.2$ found 295.3. The product $\mathbf{5 a z}$ was not successfully synthesized.

5. Synthesis of \boldsymbol{O}-Benzoyl Oximes Starting Materials

5.1 Oxime Synthesis:

Hydroxyl amine was suspended in $\operatorname{EtOH}(0.5 \mathrm{M})$, and pyridine (2.5 equivalents) was added. The suspension was heated to $75^{\circ} \mathrm{C}$ to generate a homogeneous solution. The ketone was then added in one portion. The reaction was considered complete when the starting ketone was no longer detected via UPLC-MS. The crude reaction was cooled to room temperature and concentrated under reduced pressure. The concentrate was dissolved in EtOAc and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (1 equal volume). The reaction was washed twice with water (2×1 equal volume), and once with brine. The organic layer was then collected, dried over sodium sulfate and concentrated to a crude solid. The identity of the crude product was confirmed via UPLC-MS analysis, and the isolated material was utilized in the following benzoylation reaction without further purification.

5.2 Benzoylation of Oximes:

General Method A:
Oxime (1 equivalent) was added to a round bottom flask containing a stir bar and placed under an atmosphere of nitrogen. The oxime was dissolved in methylene chloride to afford a 1.65 M solution. The solution was then diluted with hexanes until the total concentration of oxime was 0.33 M . Pyridine (1.1 equivalent) was then added to the reaction flask via syringe. Benzoyl chloride (1.1 equivalent) was then added to the reaction dropwise via a syringe. If a substantial increase in reaction temperature was observed, addition of benzoyl chloride was halted for two minutes. During addition of benzoyl chloride, a white precipitate was formed. The reaction was stirred at $23^{\circ} \mathrm{C}$, until the oxime is observed to be consumed by LC-MS. Upon completion of the reaction, the reaction was diluted $1: 1$ with deionized water and contents of the reaction were placed into a separatory funnel. The two immiscible layers were mixed, and then upon separation, the aqueous layer was removed, and the organic layer was washed with water ($3 \times 50 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated under reduced pressure to afford a mostly pure crude product. The products were then recrystallized to afford pure product.

General Method B:

Note: Used when starting materials were insoluble in high concentrations of hexanes.

Oxime (1 equivalent) was added to a round bottom flask containing a stir bar and placed under an atmosphere of nitrogen. The oxime was dissolved in methylene chloride to afford a 0.33 M solution. Pyridine (1.1 equivalent) was then added to the reaction flask via syringe. Benzoyl chloride (1.1 equivalent) was then added to the reaction dropwise via a syringe. If a substantial increase in reaction temperature was observed, addition of benzoyl chloride was halted for two minutes. During addition of benzoyl chloride, a white precipitate was formed. The reaction is stirred at $23{ }^{\circ} \mathrm{C}$, until the oxime is observed to be consumed by LC-MS. Upon completion of the reaction, the reaction was diluted 1:1 with deionized water and contents of the reaction were placed into a separatory funnel. The two immiscible layers were mixed, and then upon separation, the aqueous layer was removed, and the organic layer was washed with water $(3 \times 50 \mathrm{~mL})$. The organic layer was dried over sodium sulfate and concentrated under reduced pressure to afford a mostly pure crude product. The products were then recrystallized to afford pure product.

General Method C:

Note: Used for heterocyclic ketones.

Oxime (1 equivalent) was added to a round bottom flask containing a stir bar and placed under an atmosphere of nitrogen. The oxime was dissolved in methylene chloride to afford a 0.33 M solution. Triethylamine (1.1 equivalent) was then added to the reaction flask via syringe. Benzoyl chloride (1.1 equivalent) was then added to the reaction dropwise via a syringe. If a substantial increase in reaction temperature was observed, addition of benzoyl chloride was halted for two minutes. During addition of benzoyl chloride, a white precipitate was formed. The reaction is stirred at $23^{\circ} \mathrm{C}$, until the oxime is observed to be consumed by LC-MS. Upon completion of the reaction, the reaction was diluted $1: 1$ with deionized water and contents of the reaction were placed into a separatory funnel. The two immiscible layers were mixed, and then upon separation, the aqueous layer was removed, and the organic layer was
washed with water ($3 \times 50 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated under reduced pressure to afford a mostly pure crude product. The products were then recrystallized to afford pure product.

Table S6. Table of O-Benzoylated Oximes Synthesized

O-Benzoyl Oximes

3p

$3 q$

Compound 3a was synthesized according to general method A using acetophenone ($9.33 \mathrm{~mL}, 80 \mathrm{mmol}$), pyridine ($16.11 \mathrm{~mL}, 200 \mathrm{mmol}$), hydroxylamine hydrochloride ($8.339 \mathrm{~g}, 120 \mathrm{mmol}$), and ethanol (160 mL). Then the crude material of the first step was reacted with pyridine ($6450 \mathrm{~mL}, 80 \mathrm{mmol}$), benzoyl chloride ($9.286 \mathrm{~mL}, 80 \mathrm{mmol}$), in methylene chloride $(48 \mathrm{~mL})$ and hexanes $(194 \mathrm{~mL})$ according to the General Method A. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}$ to afford the product as a white crystalline solid $(15.636 \mathrm{~g}, 80 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.09(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.56-7.48(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 164.01,162.89,134.48,133.71,130.77$, 129.24, 128.97, 128.68, 128.55, 126.94, 14.34. MS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 240.1$, found 240.2

Figure S56. ${ }^{1} \mathrm{H}$ qNMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{3 a}$ in DMSO- d_{6}.

Figure S57. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of 3a in DMSO- d_{6}.

Compound $\mathbf{3 f}$ was synthesized according to general method A using 4-methylacetophenone ($3.73 \mathrm{~mL}, 28$ mmol), pyridine ($5.537 \mathrm{~mL}, 70 \mathrm{mmol}$), hydroxylamine hydrochloride ($2.918 \mathrm{~g}, 42 \mathrm{mmol}$), and ethanol (80 mL). Then the crude material of the first step was reacted with pyridine ($2.258 \mathrm{~mL}, 28 \mathrm{mmol}$), benzoyl chloride ($3.250 \mathrm{~mL}, 28$ mmol), in methylene chloride (17 mL) and hexanes (68 mL) according to the general method. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}$ to afford the product as a white crystalline solid $(4.449 \mathrm{~g}, 63 \%) .{ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.49(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 163.78,162.91,140.68,133.67,131.59,129.25,129.22$, 128.97, 128.61, 126.87, 20.89, 14.19. MS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 254.1$, found $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 254.2$.

Figure S58. ${ }^{1} \mathrm{H}$ qNMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{3 f}$ in DMSO- d_{6}.

Figure S59. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{3 f}$ in DMSO- d_{6}.

Compound 3b was synthesized according to general method A using 4-trifluoromethyl acetophenone (2.822 $\mathrm{g}, 15 \mathrm{mmol})$, pyridine ($3.0 \mathrm{~mL}, 37.5 \mathrm{mmol}$), hydroxylamine hydrochloride ($1.564 \mathrm{~g}, 22.5 \mathrm{mmol}$), and ethanol (30 mL). Then the crude material of the first step was reacted with pyridine ($1.33 \mathrm{~mL}, 16.5 \mathrm{mmol}$), benzoyl chloride (1.741 mL , $15 \mathrm{mmol})$, in methylene chloride $(9 \mathrm{~mL})$ and hexanes (24 mL) according to the general method. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}$ to afford the product as a white crystalline solid $(1.41 \mathrm{~g}, 31 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 163.10,162.75,138.47,133.88$, $130.80(\mathrm{q}, J=31.9 \mathrm{~Hz}), 129.33,129.03,128.29,127.87,125.60(\mathrm{q}, J=3.8 \mathrm{~Hz}), 125.26(\mathrm{q}, J=272.7,271.6 \mathrm{~Hz})$, 14.41. ${ }^{19} \mathrm{~F}$ NMR (471 MHz, DMSO- d_{6}) δ-61.41. MS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 308.1$, found 308.1

Figure S60. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of compound $\mathbf{3 b}$ in DMSO- d_{6}

Figure S61. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of 3b in DMSO- d_{6}.

Figure S62. ${ }^{19}$ F NMR (471 MHz) spectrum of compound $\mathbf{3 b}$ in DMSO- d_{6}

Compound 3d was synthesized according to general method A using 4-fluoroacetophenone (1.381 g, 10 mmol), pyridine ($2.013 \mathrm{~mL}, 25 \mathrm{mmol}$), hydroxylamine hydrochloride ($1.042 \mathrm{~g}, 15 \mathrm{mmol}$), and ethanol (20 mL). Then the crude material of the first step was reacted with pyridine $(0.806 \mathrm{~mL}, 10 \mathrm{mmol})$, benzoyl chloride $(1.16 \mathrm{~mL}, 10$ mmol), in methylene chloride (6 mL) hexanes (24 mL) according to the general method. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes to afford the product as a white crystalline solid ($1.311 \mathrm{~g}, 51 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.94-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 164.61,163.07,162.84,162.63$, $133.73,130.93,130.90,129.44,129.37,129.24,128.97,128.46,115.77,115.60,14.33 . \mathrm{MS}$ (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FNO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 258.1$, found 258.3

Figure S63. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of compound 3d in DMSO- d_{6}

Figure S64. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of 3d in DMSO- d_{6}.

Compound 3c was synthesized according to general method A using 4-chloroacetophenone ($3.242 \mathrm{~mL}, 25$ mmol), pyridine ($5.03 \mathrm{~mL}, 62.5 \mathrm{mmol}$), hydroxylamine hydrochloride ($2.61 \mathrm{~g}, 37.5 \mathrm{mmol}$), and ethanol (50 mL). Then the crude material of the first step was reacted with pyridine $(1.582 \mathrm{~mL}, 20 \mathrm{mmol})$, benzoyl chloride ($2.321 \mathrm{~mL}, 20$ mmol), in methylene chloride (12 mL) and hexanes (48 mL) according to the general method. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}$ to afford the product as a white crystalline solid ($2.556 \mathrm{~g}, 47 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.09(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.53(\mathrm{~m}, 4 \mathrm{H})$, $2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 163.06,162.78$, 135.61, 133.78, 133.27, 129.26, 128.99, 128.77 (2C), 128.39, 14.23. MS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$274.1, found 274.1.

Figure S65. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of compound $\mathbf{3 c}$ in DMSO- d_{6}

| 0 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

Figure S66. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{3 c}$ in DMSO- d_{6}.

Compound 3 g was synthesized according to general method A using 4-methoxyacetophenone $(4.505 \mathrm{~g}, 18$ mmol), pyridine ($6 \mathrm{~mL}, 27 \mathrm{mmol}$), hydroxylamine hydrochloride ($3.12 \mathrm{~g}, 45 \mathrm{mmol}$), and ethanol (60 mL). Then the crude material of the first step (3.3 g) was reacted with pyridine ($1.61 \mathrm{~mL}, 20 \mathrm{mmol}$), benzoyl chloride ($2.32 \mathrm{~mL}, 20$ $\mathrm{mmol})$, in methylene chloride (12 mL) and hexanes (49 mL) according to the general method. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}$ to afford the product as a white crystalline solid ($3.35 \mathrm{~g}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.94-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 163.31,162.94,161.32$, 133.62, $129.18,128.95,128.67,128.54,126.51,114.06,55.31,14.04$. MS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 270.1$, found 270.2

Figure S67. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of compound $\mathbf{3 g}$ in DMSO- d_{6}

Figure S68. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{3 g}$ in DMSO- d_{6}.

Compound 31 was synthesized according to general method A using valerophenone ($4.597 \mathrm{~g}, 28 \mathrm{mmol}$), pyridine ($5.64 \mathrm{~mL}, 70 \mathrm{mmol}$), hydroxylamine hydrochloride ($2.92 \mathrm{~g}, 42 \mathrm{mmol}$), and ethanol (56 mL). Then the crude material of the first step was reacted with pyridine ($2.258 \mathrm{~mL}, 28 \mathrm{mmol}$), benzoyl chloride ($3.25 \mathrm{~mL}, 28 \mathrm{mmol}$), in methylene chloride (17 mL) and hexanes (68 mL) according to the General Method A. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}$ to afford the product as a white crystalline solid $(6.09 \mathrm{~g}, 77 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left.d_{6}\right) \delta 8.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.51(\mathrm{q}, J=8.1,6.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 167.65,162.94,133.73,133.58,130.74,129.12,129.04,128.80,127.16$, 28.45, 27.34, 22.05, 13.53. MS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$280.1, found 280.2

Figure S69. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of compound 31 in DMSO- d_{6}

Figure S70. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{3 1}$ in DMSO- d_{6}.

Compound $\mathbf{3 h}$ was synthesized according to general method A using 2-methylacetophenone ($3.9 \mathrm{~mL}, 30$ mmol), pyridine ($6.0 \mathrm{~mL}, 75 \mathrm{mmol}$), hydroxylamine hydrochloride ($3.13 \mathrm{~g}, 45 \mathrm{mmol}$), and ethanol (60 mL). Then the crude material of the first step was reacted with pyridine ($2.39 \mathrm{~mL}, 29.6 \mathrm{mmol}$), benzoyl chloride ($3.44 \mathrm{~mL}, 29.6$ mmol), in methylene chloride (18 mL) and hexanes (72 mL) according to the General Method A. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}$, filtered cold $\left(-20^{\circ} \mathrm{C}\right)$ to afford the product as a beige solid ($5.74 \mathrm{~g}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dt}$, $J=7.8,1.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 166.53$, 162.90, 135.42, 135.39, 133.67, 130.67, 129.37, 129.22, 128.95, 128.58, 128.15, 125.87, 19.68, 17.84. MS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 254.1$, found $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 254.2$

Figure S71. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of compound $\mathbf{3 h}$ in DMSO- d_{6}

Figure S72. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{3 h}$ in DMSO- d_{6}.

Compound $\mathbf{3 j}$ was synthesized according to general method A using acetonapthophenone ($4.26 \mathrm{~g}, 25 \mathrm{mmol}$), pyridine ($5.03 \mathrm{~mL}, \mathrm{mmol}$), hydroxylamine hydrochloride ($2.61 \mathrm{~g}, 37.5 \mathrm{mmol}$), and ethanol (50 mL). Then the crude material of the first step (ca. 20 mmol recovered) was reacted with pyridine ($1.61 \mathrm{~mL}, 20 \mathrm{mmol}$), benzoyl chloride $(2.32 \mathrm{~mL}, 20 \mathrm{mmol})$, in methylene chloride $(12 \mathrm{~mL})$ and hexanes $(48 \mathrm{~mL})$ according to the General Method A. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}$ to afford the product as a white crystalline solid ($5.04 \mathrm{~g}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 2 \mathrm{H}), 7.98$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 163.74,162.93,133.87,133.78,132.56,131.74,129.30,129.03,128.76,128.54,128.20,127.81,127.59,127.57$, 126.78, 123.39, 14.14. MS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 290.1$, found 290.1.

Figure S73. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of compound $\mathbf{3 j}$ in DMSO- d_{6}

Figure S74. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{3 j}$ in DMSO- d_{6}.

Compound 3s was synthesized according to general method C using 2-acetylpyridine ($3.028 \mathrm{~g}, 25 \mathrm{mmol}$), triethylamine ($5.03 \mathrm{~mL}, 62.5 \mathrm{mmol}$), hydroxylamine hydrochloride ($2.61 \mathrm{~g}, 37.5 \mathrm{mmol}$), and ethanol (50 mL). Then the crude material of the first step was reacted with pyridine $(1.451 \mathrm{~mL}, 18 \mathrm{mmol})$, benzoyl chloride ($2.09 \mathrm{~mL}, 18$ mmol), in methylene chloride (55 mL) according to the general method. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the product as a white crystalline solid ($3.792 \mathrm{~g}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 8.74-8.68$ $(\mathrm{m}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dt}, J=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $\left.d_{6}\right) \delta 164.41,162.70,151.85$, $149.34,137.16,133.87,129.32,129.02,128.28,125.56,121.39,12.83$. MS (ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$ ([M + $\mathrm{H}]^{+}$) 241.1 , found 241.2

Figure S75. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of compound $\mathbf{3 s}$ in DMSO- d_{6}

Figure S76. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of 3s in DMSO- d_{6}.

Compound 3t was synthesized according to general method C using 2-acetylpyrazine ($2.422 \mathrm{~g}, 20 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(6.97 \mathrm{~mL}, 50 \mathrm{mmol})$, hydroxylamine hydrochloride ($2.08 \mathrm{~g}, 30 \mathrm{mmol}$), and ethanol (40 mL). Then the crude material of the first step was reacted with pyridine ($1.45 \mathrm{~mL}, 18 \mathrm{mmol}$), benzoyl chloride ($2.1 \mathrm{~mL}, 18 \mathrm{mmol}$), in methylene chloride (55 mL) and according to the general method. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}$ to afford the product as a white crystalline solid ($2.35 \mathrm{~g}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $9.20(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) $\delta 163.08,162.56,147.69,146.04,144.19,142.61,134.04,129.41,129.08,128.03,12.75$. MS (ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 242.1$, found 242.2

Figure S77. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of compound $\mathbf{3 t}$ in DMSO- d_{6}

Figure S78. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{3 t}$ in DMSO- d_{6}.

Compound $\mathbf{3 u}$ a was synthesized according to general method A using 1-(furan-2-yl)ethan-1-one (5.0 mL , 50 mmol), pyridine ($10 \mathrm{~mL}, 125 \mathrm{mmol}$), hydroxylamine hydrochloride ($5.212 \mathrm{~g}, 75 \mathrm{mmol}$), and ethanol (100 mL). Then the crude material (5.8 g) of the first step was reacted with pyridine ($3.73 \mathrm{~mL}, 46.4 \mathrm{mmol}$), benzoyl chloride $(5.38 \mathrm{~mL}, 46.4 \mathrm{mmol})$, in methylene chloride $(28 \mathrm{~mL})$ and hexanes $(112 \mathrm{~mL})$ according to the general method. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}$ to afford the product as a dark brown solid. The product required further purification and was dissolved in hot $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}$, filtered, and recrystallized to afford the product as a brown solid $(4.212 \mathrm{~g}, 39 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=3.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 162.68,154.93,147.61,146.12,133.72,129.25,128.94,128.42,115.10,112.13,13.16$. MS (ESI) M/Z CALCD. FOR C13H11NO3 ([M + H $]^{+}$) 230.1, found 230.1

Figure S79. ${ }^{1} \mathrm{H}$ qNMR $(500 \mathrm{MHz})$ spectrum of compound $\mathbf{3 u}$ in DMSO- d_{6}

10	200	190	180	170	160	150	140	130	120	${ }^{110} f_{f 1}$	$\begin{array}{r} 100 \\ 1(\mathrm{ppm}) \end{array}$	90	80	70	60	50	40	30	20	10	0

Figure S80. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{3 u}$ in DMSO- d_{6}.

Compound $\mathbf{3 n}$ was synthesized according to general method B using 1-(benzofuran-2-yl)ethan-1-one (4.00 $\mathrm{g}, 25 \mathrm{mmol})$, pyridine ($5.03 \mathrm{~mL}, 62.5 \mathrm{mmol}$), hydroxylamine hydrochloride ($2.61 \mathrm{~g}, 37.5 \mathrm{mmol}$), and ethanol (50 mL). Then the crude material of the first step was reacted with pyridine ($1.61 \mathrm{~mL}, 20 \mathrm{mmol}$), benzoyl chloride (2.32 mL , 20 mmol), in methylene chloride (60 mL) according to the general method. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes to afford the product as a white crystalline solid ($2.645 \mathrm{~g}, 47 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.10(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.78-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.59(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 162.59,155.35,154.94,149.57$, $133.89,129.37,129.02,128.23,127.26,126.97,123.63,122.22,111.65,111.62,13.35 . \mathrm{MS}$ (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 280.1$, found 280.1

Figure S81. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of compound $\mathbf{3 n}$ in DMSO- d_{6}

Figure S82. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{3 n}$ in DMSO- d_{6}.

Compound 3k was synthesized according to general method A using $3^{\prime}, 4^{\prime}$-(Methylenedioxy)acetophenone $(1.970 \mathrm{~g}, 12.0 \mathrm{mmol})$, pyridine ($2.42 \mathrm{~mL}, 30 \mathrm{mmol}$), hydroxylamine hydrochloride $(1.250 \mathrm{~g}, 18.0 \mathrm{mmol})$, and ethanol $(24 \mathrm{~mL})$. Then the crude material of the first step was reacted with pyridine $(0.90 \mathrm{~mL}, 11.16 \mathrm{mmol})$, benzoyl chloride $(1.30 \mathrm{~mL}, 11.16 \mathrm{mmol})$, in methylene chloride (7 mL) and hexanes (27 mL) according to the general method. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes to afford the product as a white crystalline solid ($2.134 \mathrm{~g}, 63 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 8.11-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.35$ $(\mathrm{m}, 2 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) δ 163.37, 162.89, 149.53, 147.70, 133.68, 129.20, 128.97, 128.58, 128.23, 121.99, 108.28, 106.54, 101.69, 14.28. MS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{4}([\mathrm{M}+\mathrm{H}]+)$ 284.1, found 284.1

Figure S83. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of compound $\mathbf{3 k}$ in DMSO- d_{6}

Figure S84. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{3 k}$ in DMSO- d_{6}.

Compound $\mathbf{3 m}$ was synthesized according to general method A using tert-butyl 4 -acetylbenzoate $(1.652 \mathrm{~g}$, 7.5 mmol), pyridine ($1.51 \mathrm{~mL}, 18.75 \mathrm{mmol}$), hydroxylamine hydrochloride ($782 \mathrm{mg}, 11.25 \mathrm{mmol}$), and ethanol (15.0 $\mathrm{mL})$. Then the crude material of the first step was reacted with pyridine $(0.610 \mathrm{~mL}, 7.5 \mathrm{mmol})$, benzoyl chloride (0 . $870 \mathrm{~mL}, 7.5 \mathrm{mmol}$), in methylene chloride (23 mL) according to the general method. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the product as a white crystalline solid ($1.02 \mathrm{~g}, 40 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.73$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 164.37$, 163.38 , $162.78,138.41,133.85,133.07,129.31,129.27,129.02,128.35,127.19,81.17,27.73,14.41 . \mathrm{MS}$ (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 340.1$, found 340.2

Figure S85. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of compound $\mathbf{3 m}$ in DMSO- d_{6}

Figure S86. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{3 m}$ in DMSO- d_{6}.

Compound $\mathbf{3 p}$ was synthesized according to general method A using 2,2,2-trifluoro-1-phenylethan-1-one $(1.80 \mathrm{~g}, 10.0 \mathrm{mmol})$, pyridine ($2.01 \mathrm{~mL}, 25.0 \mathrm{mmol}$), hydroxylamine hydrochloride ($1.042 \mathrm{~g}, 15.0 \mathrm{mmol}$), and ethanol $(20 \mathrm{~mL})$. Then the crude material of the first step was reacted with pyridine $(0.81 \mathrm{~mL}, 10.0 \mathrm{mmol})$, benzoyl chloride $(1.15 \mathrm{~mL}, 10.0 \mathrm{mmol})$, in methylene chloride $(6 \mathrm{~mL})$ and hexanes $(24 \mathrm{ml})$ according to the general method. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}$ to afford the product as a white crystalline solid ($1.299 \mathrm{~g}, 44 \%$). The remaining mother liquor contained product which could not be purified by further recrystallization. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 161.57,153.93(\mathrm{q}, ~ J=32.7 \mathrm{~Hz}), 134.44,131.63,129.35,129.05,128.92,128.23,125.30,120.01(\mathrm{q}, J=$ $276.7 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR (471 MHz, DMSO) $\delta-65.93$. MS (ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$294.1, found 294.2.

Figure S87. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of compound $\mathbf{3 p}$ in DMSO- d_{6}

Figure S88. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{3 p}$ in DMSO- d_{6}.
\qquad

Figure S89. ${ }^{19}$ F NMR (471 MHz) spectrum of compound 3p in DMSO- d_{6}.

Compound $3 \mathbf{q}$ was synthesized according to general method A using 1-(4-bromophenyl)-2,2,2-trifluoroethan-1-one ($2.532 \mathrm{~g}, 10 \mathrm{mmol}$), pyridine ($2.01 \mathrm{~mL}, 25.0 \mathrm{mmol}$), hydroxylamine hydrochloride ($1.042 \mathrm{~g}, 15$ $\mathrm{mmol})$, and ethanol (20 mL). Then the crude material of the first step was reacted with pyridine ($0.887 \mathrm{~mL}, 11 \mathrm{mmol}$), benzoyl chloride ($1.16 \mathrm{~mL}, 10 \mathrm{mmol}$), in methylene chloride (6 mL) and hexanes (24 mL) according to the general method. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}\left(-20^{\circ} \mathrm{C}\right.$ and rapid filtration required) to afford the product as a white crystalline solid ($1.1 \mathrm{~g}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 161.55,153.24$, $152.97,152.71,152.45,134.57,130.53,129.44,129.19,126.67,125.54,124.35,123.14,120.94,118.74,116.54 .{ }^{19} \mathrm{~F}$ NMR (471 MHz, DMSO) $\delta-65.84 . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd. For $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{BrNO}_{2}([\mathrm{M}+\mathrm{H}]+$) 372.0 , found 372.1

9p-OSWO Tsz-
оон $\angle \varepsilon \varepsilon-$

Figure S90. ${ }^{1} \mathrm{H}$ qNMR (500 MHz) spectrum of compound $\mathbf{3 q}$ in DMSO- d_{6}

Figure S91. ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectrum of $\mathbf{3 q}$ in DMSO- d_{6}.

Figure S92. ${ }^{19}$ F NMR (471 MHz) spectrum of compound $\mathbf{3 q}$ in DMSO- d_{6}.

Compound $3 \mathbf{r}$ was synthesized according to general method A using 1-(4-(1H-pyrazol-1-yl)phenyl)-2,2,2-trifluoroethan-1-one ${ }^{6}(2.40 \mathrm{~g}, 10.0 \mathrm{mmol})$, pyridine ($2.0 \mathrm{~mL}, 25.0 \mathrm{mmol}$), hydroxylamine hydrochloride ($1.042 \mathrm{~g}, 15.0$ $\mathrm{mmol})$, and ethanol $(20 \mathrm{~mL})$. Then the crude material of the first step was reacted with triethylamine $(1.35 \mathrm{~mL}, 9.68$ mmol), benzoyl chloride ($1.06 \mathrm{~mL}, 9.68 \mathrm{mmol}$), in methylene chloride (6 mL) and hexanes (24 mL) according to the general method. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}$ to afford the product as a white crystalline solid $(3.233 \mathrm{~g}, 90 \%)$. The crystalline solid is observed to be a mixture of isomers the oxime. ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 8.66(\mathrm{dd}, J=9.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16-8.12(\mathrm{~m}, 1 \mathrm{H}), 8.08(\mathrm{ddd}, J=11.5,7.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.76(\mathrm{~m}$, $5 \mathrm{H}), 7.71-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{dt}, J=2.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 161.65$, $161.42,153.39,153.35,153.14,153.10,152.88,152.86,152.62,142.04,141.95,141.66,134.68,134.45,130.61$, $130.17,129.47,129.44,129.32,129.13,128.28,128.24,126.78,126.68,124.92,123.37,122.37,121.17,121.03$, 118.97, 118.77, 118.28, 118.26, 116.77, 116.51, 114.26, 108.68, 108.66. MS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$ ([M $+\mathrm{H}]^{+}$) 360.1 , found 360.1

Figure S93. ${ }^{1} \mathrm{H}$ qNMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{3 r}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S94. ${ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz})$ spectrum of $\mathbf{3 r}$ in DMSO- d_{6}.

Figure S95. ${ }^{19}$ F NMR (471 MHz) spectrum of compound $\mathbf{3 r}$ in DMSO- d_{6}.

6. Synthesis of Iminium Hydrochlorides

3. Synthesis of Substrates

Synthesis of $\mathbf{6 l} \cdot \mathbf{H C l}$ was prepared following a literature procedure. ${ }^{7}$

Synthesis of $\mathbf{6 b} \cdot \mathbf{H C l}$ was prepared following a literature procedure. ${ }^{7}$

Synthesis of $\mathbf{6 c \bullet} \cdot \mathbf{H C l}$ was prepared following a literature procedure. ${ }^{7}$

Synthesis of $\mathbf{6 d} \bullet \mathbf{H C l}$ was prepared following a literature procedure. ${ }^{7}$

Synthesis of $\mathbf{6 a} \cdot \mathbf{H C l}$ was prepared following a literature procedure. ${ }^{7}$

Synthesis of $\mathbf{6 e} \cdot \mathbf{H C l}$ was prepared following a literature procedure. ${ }^{7}$

Synthesis of $\mathbf{6 f} \cdot \mathbf{H C l}$ was prepared following a literature procedure. ${ }^{7}$

Synthesis of $\mathbf{6 g} \cdot \mathbf{H C l}$ was prepared following a literature procedure. ${ }^{7}$

Synthesis of $\mathbf{6 h} \cdot \mathbf{H C l}$ was prepared following a literature procedure. ${ }^{7}$

Synthesis of $\mathbf{6 i} \cdot \mathbf{H C l}$ was prepared following a literature procedure. ${ }^{7}$

Synthesis of $\mathbf{6 m} \cdot \mathbf{H C l}$ was prepared following a literature procedure. ${ }^{7}$

7. UV-Vis Absorption/Emission Spectra and Stern-Volmer Plot

Figure S96. (A) UV-vis absorption spectra of PC1 and oxime 3a in DMSO illustrating the absorbance edge for PC1 (ca. 470 nm) and 3a (ca. 330 nm).

Figure S97. (Left) Emission spectra of PC1* ([PC1] = 0.01 M in DMSO) as a function of concentration of oxime 3a $(0,2,4,8,15 \mathrm{mM})$ in DMSO using $\lambda_{\mathrm{exc}}=380 \mathrm{~nm}$. (Right) Stern-Volmer plot for the quenching of PC1* ([PC1] = 0.01 M in DMSO) by oxime 3a ($\left.\lambda_{\mathrm{ex}}=380 \mathrm{~nm}, \lambda_{\mathrm{em}}=529 \mathrm{~nm}\right)$.

If one wants to estimate the rate constant for the quenching event $\left(k_{\mathrm{q}}\right)$, the data from the Stern-Volmer plot in Figure S93B can be fit to the following Stern-Volmer equation: ${ }^{8}$

$$
I_{\mathrm{o}} / I=1+K_{\mathrm{SV}}[\mathbf{3 a}]
$$

where I_{0} is the emission intensity of $\mathbf{P C 1} \mathbf{*}^{*}([\mathbf{P C 1}]=0.01 \mathrm{M})$ at 529 nm with no oxime present $([\mathbf{3 a}]=0 \mathrm{mM}), I$ is the emission intensity of $\mathbf{P C 1}$ * $([\mathbf{P C 1}]=0.01 \mathrm{M})$ at 529 nm with oxime present $([\mathbf{3 a}]=2,4,8,15 \mathrm{mM})$ and the $K_{\text {SV }}$ is the Stern-Volmer constant. Since $K_{\mathrm{SV}}=k_{\mathrm{q}} \bullet \tau_{0}$ where τ_{o} is the lifetime of the excited state $\left(\mathbf{P C 1}{ }^{*}\right)$, if one estimates this lifetime to be between 0.5 and $2.5 \mu \mathrm{~s},{ }^{9}$ typical values for Ir-based photocatalysts containing two phenyl-pyridyl ligands and one bipyridyl ligand (e.g. $\operatorname{Ir}(\mathrm{ppy})_{2} \mathrm{dtbbpy}^{2} \mathrm{PF}_{6}, \tau_{\mathrm{o}}=0.54 \mu \mathrm{~s}$), one arrives at an estimated k_{q} value between 1.3×10^{7} $\mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}$ and $6.3 \times 10^{7} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}$.

8. DFT Computational Study

8.1 Computational Method

All of the quantum chemical calculations were performed using the Gaussian 16 program. ${ }^{10}$ Geometry optimizations and frequency calculations were performed at the M06-2X/6-31+G(d,p) level of theory ${ }^{11,12}$ with SMD ${ }^{13}$ solvation in DMSO. A "tight" geometry convergence (opt=tight), an "ultrafine" integration grid, and a 2-electron integral accuracy of 10^{-14} (int=(Acc2E=14,ultrafine)) were used. The stationary points were characterized by the presence of only positive eigenvalues of the Hessian for minima. All Gibbs energies were calculated for a temperature of 298.15 K and a pressure of 1 atm using the quasiharmonic approximation proposed by Cramer and Truhlar, in which all of the real vibrational frequencies lower than $100 \mathrm{~cm}^{-1}$ were set to $100 \mathrm{~cm}^{-1} .^{14}$ All molecular structures were rendered in CYLView ${ }^{15}$ in combination with POV-Ray 3.6. ${ }^{16}$ All CYLView generated images have the following color-coding for labeling elements: $\mathrm{C}=$ silver, $\mathrm{H}=$ white, $\mathrm{O}=$ light red, $\mathrm{N}=$ blue.

The DFT-calculated reduction potentials against SCE were obtained using the following equation:

$$
\begin{aligned}
E^{\circ} \text { calc } & =-\left[(\text { energy of reduced species }- \text { energy of oxidized species }) /\left(n_{\mathrm{e}} \bullet \mathrm{~F}\right)\right]-3.96 \mathrm{~V}-0.244 \mathrm{~V} \\
& =\left[E A /\left(n_{\mathrm{e}} \bullet \mathrm{~F}\right)\right]-3.96 \mathrm{~V}-0.244 \mathrm{~V}
\end{aligned}
$$

where $n_{\mathrm{e}}=1$, and $n_{\mathrm{e}} \bullet \mathrm{F}=23.061 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~V}^{-1}$. The adoption of the SHE reference potential is explained below. In the second equality, $E A$ refers to the electron affinity and follows the conventional definition, namely, energy of the oxidized species minus energy of the reduced species. More positive values of $E A$ correspond to more favorable singleelectron reductions. To convert $E A$ and E°,calc to reduction potential values that are comparable to experiment, appropriate values of SHE and conversion factors between different electrodes needed to be identified. The value of SHE in DMSO of 3.96 V was adopted from the review of Marenich et al., ${ }^{17}$ while the conversion factor from SHE to SCE (-0.244 V) was taken from Pavlishchuk et al. ${ }^{18}$

8.2 DFT Calculations Regarding the PCET Reduction of 4-Cyanopyridine

B. Benzoic Acid Protonates DIPA Favorably Over 4-Cyanopyridine

C. Summary of DFT Calculated Redox Potentials

Figure S98. DFT calculated energies and redox potentials using M06-2X/6-31+G(d,p) SMD=DMSO.

Scheme S99. DFT analysis (using M06-2X/6-31+G(d,p) SMD=DMSO) of hydrogen bonded complex $\left[\boldsymbol{i}-\mathbf{P r N H}_{\mathbf{2}} \bullet \mathbf{4} \mathbf{4}\right]^{+}$ and its reduction potential (vs SCE).

Scheme S100. DFT calculated energies (M06-2X/6-31+G(d,p) SMD=DMSO) for the proton exchange equilibrium between diisopropylammonium DIPA $\cdot \mathbf{H}^{+}$and 4-cyanopyridine (4a).

To characterize the hydrogen bonded complex $\left[\mathbf{i}-\mathbf{P r N H}_{2}{ }^{\bullet} \mathbf{4 a}\right]^{+}$, the DFT data in Scheme S 99 (top left) were obtained and the hydrogen-bonding interaction contributes $-5.9 \mathrm{kcal} / \mathrm{mol}$ by enthalpy but is disfavored by entropy, resulting in a net $+6.3 \mathrm{kcal} / \mathrm{mol}$ in Gibbs energy relative to infinitely separated DIPA $\cdot \mathrm{H}^{+}+\mathbf{4 a}$. Thus, the hydrogen-bonding is enthalpically favorable but not strong enough to overcome the entropy loss due to complex formation. The Gibbs energy change suggests that complex formation between DIPA $\cdot \mathrm{H}^{+}$ and $\mathbf{4 a}$ is slightly endergonic but not prohibitive.

We also calculated the energy of $\left[\boldsymbol{i}-\mathbf{P r N H}_{2} \cdot \mathbf{4 a}\right]^{+}$relative to the pyridinium ion $\mathbf{4 a} \cdot \mathrm{H}^{+}$and neutral DIPA. [i$\left.\mathbf{P r N H}_{2} \cdot \mathbf{4 a}\right]^{+}$is lower in energy than infinitely separated DIPA and $\mathbf{4 a} \cdot \mathrm{H}^{+}$by $22.5 \mathrm{kcal} / \mathrm{mol}$ by enthalpy and $10.2 \mathrm{kcal} / \mathrm{mol}$ by Gibbs energy (Scheme S99, top right). The more favorable energies in this equation compared with the energy changes discussed in the preceding paragraph are a consequence of the lower stability of pyridinium $\mathbf{4 a} \cdot \mathrm{H}^{+}$relative to $\mathbf{D I P A} \cdot \mathbf{H}^{+}$. This is further supported by the computed equilibrium in Scheme S100.

To characterize the association of the diisoproylammonium (DIPA $\cdot \mathrm{H}^{+}$) and 4-cyanopyridine (4a), we used DFT calculations to evaluate the energies of two tautomerically related hydrogen-bonded complexes: the diisopropylammonium•pyridine complex DIPA $\cdot \mathrm{H}^{+} \ldots 4 \mathrm{a}$ and the diisopropylamine•pyridinium complex DIPA...4a• H^{+}(Scheme S101). The DIPA $\cdot \mathrm{H}^{+} \ldots \mathbf{4}$ a complex could be located as a minimum. However, the "pyridinium complex" (DIPA...4a•H ${ }^{+}$) could not be located as a stationary point. All attempts of full optimization of the "pyridinium complex" (DIPA...4a•H ${ }^{+}$) led back to DIPA $\cdot \mathrm{H}^{+} . .4$ a in which the proton in the $\mathrm{N}-\mathrm{H}^{+} \ldots \mathrm{N}$ hydrogen bond resides on the diisopropylammonium. Constraining the $\mathrm{N}^{+}-\mathrm{H}$ bond of the pyridinium moiety of the complex DIPA...4a• H^{+}at $1.02 \AA$ (that is, the bond length found in 4cyanopyridinium ion) led to a structure that is $12.5 \mathrm{kcal} / \mathrm{mol}$ less stable than DIPA $\cdot \mathrm{H}^{+} \ldots \mathbf{4 a}$. These calculations suggest that the hydrogen-bonded complex associating the proton donor and acceptor is best described by the diisopropylammonium-pyridine form DIPA $\cdot \mathrm{H}^{+} \ldots \mathbf{4}$. Thus, the proton in the PCET step to generated $\mathbf{4 a} \cdot \mathbf{H}$ is best understood as coming from diisopropylammonium at early stages of the reaction. At later stages of the reaction, the iminium benzoate ($\mathbf{6} \mathbf{l}^{\prime}$) may be the source of the proton for the PCET to generated $\mathbf{4 a} \cdot \mathbf{H}$.

$\ldots 4 \mathrm{a}=\left[i-\mathrm{PrNH}_{2} \bullet 4 \mathrm{a}\right]^{+}$
(fully optimized)

[DIPA...4a•H']
(not a stationary point) $12.5 \mathrm{kcal} / \mathrm{mol}$ less stable than DIPA $\cdot \mathrm{H}^{+} \ldots 4$ a when $d=1.02 \AA$

Figure S101. DFT computed structure of DIPA $\cdot \mathrm{H}^{+} \ldots \mathbf{4 a}=\left[\boldsymbol{i}-\mathbf{P r N H}_{\mathbf{2}} \bullet \mathbf{4 a}\right]^{+}$.

8.3 DFT Illustrations of Alpha-Amino Radical Without and With ortho-Methyl Substituent

XII

conformer 2

Figure S103. Newman projection (blue circle) illustrating the dihedral angle between the arene and the imine derived π-systems for alpha-amino radicals derived from iminium chloride $\mathbf{6 a}$ (left) and $\mathbf{6 g}$ (middle $=$ conformer $\mathbf{1}$; right $=$ conformer 2), conformer 2 is $+0.25 \mathrm{kcal} / \mathrm{mol}$ relative to conformer 1 . SOMO energies of alpha-amino radicals (left) -4.74 eV vs vacuum, (middle) -4.74 eV vs vacuum, and (right) -4.64 eV vs vacuum.

8.4 Illustration of Data Against Cyclopropane Ring Opening

Figure S104. DFT calculated Gibbs free energy for ring opening of methylcyclopropyl radical illustrating the process is unfavored. S1-closed is the preferred form of the radical due to the radical being benzylic and α - to a heteroatom.

8.5 Cartesian Coordinates and Energies of DFT Optimized Structures

S1-closed
Structure: S1-closed
Charge $=0$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: $\quad-442.819949$ hartree
SCF Energy + ZPVE: - 442.623246 hartree
Enthalpy: $\quad-442.612292$ hartree
Free Energy: -442.659624 hartree
Free Energy with quasiharmonic correction: -442.658537 hartree

```
6 1.502068 1.189465 -0.055328
6 2.862346 0.913815-0.042011
6 3.332723-0.403069 0.003444
6 2.397525 -1.447618 0.032901
6 1.035872 -1.191582 0.020050
1 1.186109 2.225818 -0.121266
1 3.568117 1.739845 -0.075182
1 2.739525 -2.478443 0.073637
1 0.350406 -2.030796 0.066585
1 4.397593-0.611968 0.014655
6 0.531422 0.142672 -0.023622
6-0.864517 0.428250-0.017092
6-1.893913-0.618299-0.188000
6-3.093520-0.692656 0.742006
6-3.284634-0.291827-0.687070
1 -1.516237 -1.576660 -0.521253
1 -3.174835 0.083210 1.498006
1 -3.420371 -1.678815 1.053828
1 -3.735431 -1.009944 -1.363519
1 -3.527848 0.744284 -0.902198
7 -1.292005 1.737250 0.093276
1 -0.702066 2.373121 0.616757
1-2.273159 1.884695 0.295347
```


Z-S2-open
Structure: \boldsymbol{Z}-S2-open
Charge $=0$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: $\quad-442.797087$ hartree
SCF Energy + ZPVE: -442.603118 hartree
Enthalpy: $\quad-442.591141$ hartree
Free Energy: -442.640989 hartree
Free Energy with quasiharmonic correction: -442.639757 hartree

```
6 -1.655945 1.113847 -0.206183
6 -2.998070 0.736000 -0.230890
6-3.357306-0.596818-0.033522
6-2.362328-1.549050 0.195026
6 -1.021868 -1.172017 0.224225
1 -1.386835 2.152437-0.373704
1 -3.763420 1.486044 -0.407998
1 -2.631170 -2.587430 0.365710
1 -0.259322 -1.916940 0.431943
1 -4.402509 -0.890720 -0.050237
6 -0.647871 0.163020 0.010466
71.004762 1.891723 0.437985
1 0.425212 2.184719 1.217662
1 1.974969 2.134633 0.597146
6 0.785401 0.571324 0.023882
6 1.752029 -0.256348-0.425177
1 1.447063-1.212321-0.842471
6 3.240938 0.013560-0.417451
1 3.599843 0.132410-1.447973
1 3.461196 0.951501 0.104356
6 3.971692 -1.109955 0.247384
1 4.258770 -1.990615 -0.317311
1 4.002837 -1.167151 1.330420
```


E-S2-open

Structure: \boldsymbol{E}-S2-open

Charge $=0$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -442.794540 hartree
SCF Energy + ZPVE: -442.600941 hartree
Enthalpy: $\quad-442.588890$ hartree
Free Energy: -442.638817 hartree
Free Energy with quasiharmonic correction: -442.637674 hartree

```
6 1.367039 0.894038 0.771167
6 2.625698 0.318292 0.934805
6 2.989525-0.798916 0.181642
6 2.088004 -1.334251 -0.738863
6 0.827521 -0.760614 -0.900281
1 1.086255 1.763239 1.358968
1 3.323009 0.742418 1.651395
1 2.368301 -2.194742 -1.339259
1 0.136491 -1.167878 -1.633373
1 3.971598 -1.245308 0.306525
6 0.447718 0.352407 -0.138544
7-0.842948 2.390877-0.352861
1 -0.085667 2.761910 -0.918161
1 -1.727074 2.817398 -0.610500
6-0.888753 0.985026-0.315440
```

```
6-2.052547 0.305611 -0.365554
1 -2.958271 0.886568 -0.545443
6 -2.273727 -1.165825-0.080272
1 -2.619820 -1.675630-0.988542
1 -1.329506 -1.634416 0.214667
6 -3.284678-1.334975 1.009743
1 -4.343960-1.385979 0.780936
1 -2.995524 -1.168473 2.042405
```


E-3a
Structure: \boldsymbol{E}-3a
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -784.309711 hartree
SCF Energy + ZPVE: -784.063000 hartree
Enthalpy: -784.046606 hartree
Free Energy: -784.108172 hartree
Free Energy with quasiharmonic correction: -784.104475 hartree

```
6 1.687461 2.522671 0.829926
6 1.336856 1.204200 0.206520
6 2.378408 0.160440 0.009200
6 3.719934 0.530430-0.141905
6 4.697335-0.442003-0.349896
6 4.345757-1.790370-0.395577
6 3.010019 -2.165281 -0.235531
6 2.030400-1.197203 -0.035916
7 0.167459 0.881938-0.209455
8-0.746949 1.935786-0.015996
6-2.050976 1.606203-0.228217
6-2.486523 0.191958-0.047652
6 -1.981840 -0.611878 0.980797
6 -2.494343-1.892892 1.166667
6-3.490909 -2.379460 0.318302
6-3.993043-1.576485-0.706100
6-3.502188-0.284535-0.880678
8-2.808172 2.506219 -0.503039
1 2.570011 2.426848 1.462611
1 1.898740 3.259221 0.046513
1 0.853998 2.897650 1.425090
1 4.003712 1.578350-0.112107
1 5.733790-0.143685-0.474558
1 5.108932 -2.547302 -0.549576
1 2.732196-3.214636-0.260049
1 0.992809 -1.488837 0.098293
1 -1.206440 -0.236765 1.641279
1 -2.113370 -2.512888 1.972180
1 -3.878589 -3.383955 0.459163
```

```
1 -4.769670 -1.952808 -1.364479
```

$1-3.8954510 .354423-1.665526$

E-3a
Structure: $\boldsymbol{E}-\mathbf{3 a}^{--}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -784.385248 hartree
SCF Energy + ZPVE: -784.141864 hartree
Enthalpy: $\quad-784.125164$ hartree
Free Energy: -784.187921 hartree
Free Energy with quasiharmonic correction: -784.184134 hartree

```
6 1.086306 2.272483 1.171533
6 1.119836 1.204291 0.110997
6 2.234482 0.326179 -0.055276
6 3.462517 0.460337 0.673036
6 4.518419 -0.416748 0.489994
6 4.442889 -1.479783-0.430218
6 3.258803 -1.620492 -1.172320
6 2.190679 -0.753477 -1.007264
7 0.085863 1.027403-0.736860
8-0.946609 1.993432-0.436337
6-2.187912 1.504598-0.402721
6-2.395553 0.065686-0.042808
6 -1.682900 -0.534879 1.002256
6 -1.981381 -1.839968 1.382722
6 -2.975348-2.557801 0.711384
6 -3.686480-1.958839 -0.327534
6-3.408355 -0.641889-0.693554
8 -3.124051 2.254168 -0.617386
1 1.881663 2.141415 1.905056
1 1.184111 3.278431 0.742257
1 0.131620 2.253497 1.707680
1 3.587269 1.270601 1.384374
1 5.427069 -0.270024 1.070110
1 5.275841 -2.161614 -0.568081
1 3.171931 -2.427737 -1.897169
1 1.291231 -0.898091 -1.596781
1 -0.902084 0.018354 1.516344
1 -1.434591 -2.301203 2.199523
1 -3.195924 -3.580553 1.002406
1 -4.461826-2.512290-0.848576
1-3.968080 -0.161604 -1.490701
```


E-3a $\left(T_{1}\right)$
Structure: $\boldsymbol{E} \mathbf{- 3 a}\left(\boldsymbol{T}_{1}\right)$
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: -784.218448 hartree
SCF Energy + ZPVE: -783.975083 hartree
Enthalpy: -783.958257 hartree
Free Energy: -784.021835 hartree
Free Energy with quasiharmonic correction: -784.018044 hartree

```
6 1.254270 2.461851 -0.650418
6 1.319436 1.050463-0.157735
6 2.530580 0.349773 0.134881
6 3.786766 0.986099-0.023920
64.964281 0.305428 0.256433
64.931745 -1.019564 0.702199
6 3.698927 -1.661243 0.865622
6 2.514478-0.994551 0.588067
7 0.091063 0.399234 0.045567
8-0.251123 -0.234752 -1.141878
6 -1.465006 -0.904153 -1.115385
6-2.561999-0.358115-0.276528
6 -2.739365 1.017176 -0.085379
6 -3.840788 1.472436 0.633590
6-4.749400 0.561760 1.175914
6-4.570116 -0.808817 0.984740
6-3.484121 -1.270320 0.246265
8-1.559213 -1.869049 -1.826871
1 1.813023 3.139476 0.004817
1 1.685648 2.545215 -1.656569
1 0.216959 2.801450-0.694881
1 3.830681 2.013404 -0.372178
1 5.917029 0.810236 0.125717
1 5.855524 -1.546291 0.920160
1 3.664677 -2.689811 1.212556
1 1.565406 -1.505398 0.723013
1 -2.035792 1.727727 -0.507077
1 -3.988593 2.538611 0.772726
1 -5.600598 0.921989 1.745817
1 -5.277062 -1.516517 1.405803
1 -3.339782 -2.333642 0.081063
```


Structure: \boldsymbol{E}-3b
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -1121.270489 hartree
SCF Energy + ZPVE: -1121.018920 hartree
Enthalpy: $\quad-1120.998874$ hartree
Free Energy: -1121.070562 hartree
Free Energy with quasiharmonic correction: -1121.064238 hartree

```
6 3.244790 -1.006756 0.524240
6 4.113940-0.051294 0.003231
6 3.638234 1.177677 -0.454598
6 2.277492 1.452486 -0.387705
6 1.389205 0.496719 0.122072
6 1.882406-0.730161 0.580675
6 -0.070553 0.783341 0.155302
7 -0.821243-0.245164-0.000454
8-2.168101 0.135290 0.045078
6-3.039800 -0.898007-0.100376
6-4.447121 -0.408627-0.064798
8-2.710435 -2.049185 -0.237447
6-4.763045 0.948528 0.067466
6 -6.098041 1.344961 0.089571
6-7.113643 0.393954 -0.018814
6-6.796770 -0.959355 -0.149744
6-5.464905 -1.361558-0.173191
6 -0.579079 2.182666 0.341128
6 5.589481 -0.311134 -0.066122
96.291860 0.543471 0.709246
9 5.922760-1.551185 0.327332
9 6.071154 -0.156483-1.317524
1 3.622570 -1.956136 0.888193
1 4.324198 1.915322 -0.861016
1 1.908368 2.406227-0.751180
1 1.198414 -1.463995 0.993432
1 -3.974284 1.688906 0.151520
1-6.345382 2.396979 0.190939
1 -8.153039 0.707700 -0.001121
1 -7.586709 -1.699066-0.233900
1 -5.203108 -2.409979 -0.275026
1 -1.353588 2.194860 1.111991
1 0.223588 2.857765 0.634462
1 -1.031549 2.545856 -0.587681
```


E-3b ${ }^{-}$
Structure: $\boldsymbol{E}-\mathbf{3 b}^{-}{ }^{-}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -1121.356768 hartree
SCF Energy + ZPVE: -1121.108423 hartree
Enthalpy: -1121.088097 hartree
Free Energy: -1121.161452 hartree
Free Energy with quasiharmonic correction: -1121.154437 hartree

```
6-3.303220 -1.150084 -0.236288
6-4.120184 -0.011257-0.051611
6 -3.510432 1.208610 0.324316
6 -2.145420 1.292037 0.490831
6 -1.288870 0.154598 0.304312
6 -1.938811 -1.075020-0.073653
60.125330 0.235525 0.471687
7 0.826008 -0.877726 0.219874
8 2.228362 -0.689601 0.455612
6 2.930237-0.156979-0.549875
6 4.396984 -0.137506 -0.247246
8 2.450768 0.271200-1.578757
6 4.918047 -0.663911 0.939756
6 6.290795 -0.616343 1.174072
6 7.143720-0.044213 0.229169
6 6.623695 0.481712 -0.954762
6 5.252540 0.435957-1.192564
6 0.745524 1.542689 0.896605
6-5.584735-0.118657-0.149061
9-6.205496-0.463134 1.026862
9-6.184313 1.040482 -0.516814
9 -5.995975 -1.061233-1.032833
1 -3.757237 -2.097614 -0.516447
1 -4.121872 2.094560 0.475160
1 -1.717897 2.252536 0.760193
1 -1.336838-1.963249-0.231896
1 4.253887 -1.108197 1.673201
1 6.694679-1.025851 2.094810
1 8.213014 -0.008159 0.415419
1 7.286000 0.927427-1.690524
1 4.833337 0.841624 -2.107882
1 0.207840 1.966810 1.750045
1 1.788519 1.423954 1.189763
10.702336 2.279464 0.085134
```


$E-3 b\left(T_{1}\right)$
Structure: $\boldsymbol{E} \mathbf{- 3 b}\left(\boldsymbol{T}_{\mathbf{1}}\right)$
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: -1121.180623 hartree
SCF Energy + ZPVE: -1120.932202 hartree
Enthalpy: -1120.911795 hartree
Free Energy: -1120.985396 hartree
Free Energy with quasiharmonic correction: -1120.978951 hartree

```
6 2.451490 -0.525248 0.942240
6 3.512995-0.305913 0.061089
6 3.434384 0.697378 -0.912851
6 2.299132 1.481678-1.006464
6 1.205688 1.278392 -0.124702
6 1.310463 0.255738 0.852112
6 0.034217 2.084285 -0.230433
7 -1.017497 1.876987 0.680370
8 -1.886696 0.977171 0.104240
6-3.004850 0.705526 0.876024
6-3.884582 -0.282088 0.204093
8-3.199035 1.222988 1.941456
6-3.561008-0.854246-1.032100
6 -4.429819 -1.777480-1.608130
6 -5.613118-2.127902 -0.956967
6 -5.933697 -1.556067 0.275968
6 -5.070911 -0.633773 0.858071
6 -0.155258 3.183031 -1.226473
6 4.754586 -1.136514 0.127405
9 5.865613 -0.384475 0.295134
94.737753 -2.027711 1.133490
9 4.960783-1.841791 -1.008486
1 2.516265 -1.301985 1.696970
1 4.263858 0.859625-1.595906
1 2.246324 2.254578 -1.766074
1 0.492344 0.083272 1.544527
1 -2.641587 -0.584618-1.540052
1 -4.182038 -2.223754 -2.565891
1 -6.287146 -2.848115 -1.410948
1 -6.854292 -1.829218 0.781790
1 -5.306723 -0.181216 1.815945
1 -1.084193 3.720280 -1.024044
1 0.675215 3.896822 -1.193069
1-0.205299 2.779167-2.245936
```


Structure: $\boldsymbol{E}-\mathbf{3 c}$
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: $\quad-1243.885638$ hartree
SCF Energy + ZPVE: -1243.648406 hartree
Enthalpy: -1243.630784 hartree
Free Energy: -1243.696147 hartree
Free Energy with quasiharmonic correction: -1243.691383 hartree

```
6 3.930814 -1.108366 0.502753
6 4.807598-0.162883-0.022603
64.359434 1.068381-0.488424
6 2.998902 1.358099 -0.421534
6 2.094146 0.422023 0.091241
6 2.573765 -0.810121 0.554658
60.639977 0.727791 0.122746
7-0.128181-0.291231-0.014658
8-1.469500 0.112407 0.038698
17 6.516276-0.531007-0.091254
6-2.359548-0.902020-0.116594
6-3.758103-0.388522-0.060440
8-2.052815 -2.056697-0.277524
6 -4.048427 0.970729 0.104710
6 -5.375726 1.390839 0.146122
6 -6.409391 0.461219 0.024058
6-6.118209-0.894171 -0.140220
6-4.794038-1.319896-0.182905
60.149105 2.136136 0.291037
1 4.301506 -2.058852 0.871836
1 5.057462 1.791417 -0.896973
1 2.648205 2.316487-0.791829
1 1.881932 -1.534807 0.971333
1 -3.245815 1.694696 0.199431
1 -5.602920 2.444594 0.273389
1 -7.442713 0.793310 0.057060
1 -6.922080 -1.617391 -0.235087
1 -4.552331 -2.370304 -0.310565
1 0.962815 2.808776 0.557890
1 -0.317911 2.486549 -0.635367
1-0.610835 2.170147 1.075794
```


Structure: $\boldsymbol{E}-\mathbf{3 c}{ }^{-}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -1243.958380 hartree
SCF Energy + ZPVE: -1243.724631 hartree
Enthalpy: $\quad-1243.706621$ hartree
Free Energy: -1243.773059 hartree
Free Energy with quasiharmonic correction: -1243.768575 hartree

```
6 2.868148-0.864633-0.948771
6 3.952674 -0.446719 -0.170566
6 3.812445 0.643081 0.702774
6 2.598841 1.298331 0.803813
61.451306 0.900157 0.042009
6 1.651759 -0.211453-0.852855
6 0.184969 1.553702 0.122750
7-0.764307 1.125312 -0.730137
8-1.963002 1.905112 -0.534675
17 5.499847 -1.275514 -0.296408
6 -3.101312 1.207398 -0.518615
6-3.075006 -0.226728-0.088498
8-4.141239 1.772065 -0.806417
6 -2.305849 -0.649406 1.002520
6 -2.398794 -1.965371 1.446224
6-3.240329 -2.869539 0.792308
6-4.006448-2.448591 -0.293920
6-3.936402 -1.123590-0.723941
6 -0.092506 2.659870 1.105397
1 2.980026 -1.704789 -1.629252
1 4.658444 0.976712 1.297217
1 2.541841 2.144084 1.480762
1 0.823451 -0.556519 -1.462067
1 -1.644285 0.050068 1.505173
1 -1.810457 -2.288472 2.299654
1 -3.300456 -3.898720 1.133635
1 -4.664064 -3.147585 -0.801714
1 -4.542658-0.781898-1.557698
1 0.699603 2.755337 1.847273
1 -0.205380 3.628819 0.602698
1 -1.030375 2.473037 1.639170
```


Structure: $\boldsymbol{E}-\mathbf{3 c}\left(\boldsymbol{T}_{1}\right)$
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: -1243.794686 hartree
SCF Energy + ZPVE: -1243.560851 hartree
Enthalpy: -1243.542786 hartree
Free Energy: -1243.610674 hartree
Free Energy with quasiharmonic correction: -1243.605375 hartree

```
6 2.939841 -0.935680 0.983988
64.019807-0.825482 0.106714
64.058247 0.163399-0.876031
6 3.001136 1.054282 -0.984812
6 1.884954 0.972227-0.115408
6 1.883560-0.046292 0.872444
6 0.796456 1.885553-0.240582
7 -0.277056 1.787934 0.663466
8-1.213686 0.947753 0.095814
17 5.350623 -1.951771 0.240636
6 -2.346752 0.763293 0.868473
6-3.298177 -0.159603 0.200645
8-2.502764 1.295402 1.933467
6 -3.020488-0.753165 -1.036641
6 -3.954513 -1.612113 -1.610038
6-5.157521 -1.877663-0.955099
6 -5.432558 -1.284578 0.278857
6-4.504332 -0.426208 0.858328
6 0.714018 2.975592 -1.261374
1 2.928020 -1.709678 1.744643
1 4.906102 0.233130-1.549747
1 3.035623 1.819230-1.753922
1 1.047014 -0.133495 1.559339
1 -2.086049 -0.549110-1.547629
1 -3.742070 -2.074726 -2.568561
1 -5.882487 -2.548264 -1.406595
1 -6.368576 -1.491849 0.787648
1 -4.704411 0.041849 1.816927
1 1.603040 3.615588-1.233966
1 0.637630 2.557923 -2.273780
1 -0.165511 3.597368 -1.080459
```


Structure: \boldsymbol{E}-3d
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -883.527583 hartree
SCF Energy + ZPVE: -883.289015 hartree
Enthalpy: -883.271775 hartree
Free Energy: -883.335964 hartree
Free Energy with quasiharmonic correction: -883.331397 hartree

```
6 4.329488-1.236996 0.470638
6 5.204289-0.293705-0.046817
6 4.793543 0.948603-0.500910
6 3.437647 1.258441 -0.428151
6 2.518860 0.330641 0.077752
6 2.977710 -0.915448 0.527991
6 1.070673 0.660678 0.115089
7 0.281955-0.341581-0.031954
8-1.051542 0.089392 0.031142
9 6.521923-0.598877 -0.103439
6-1.963610 -0.904649-0.120660
6-3.350560-0.360190-0.058789
8-1.683740-2.066231 -0.282303
6-3.609480 1.005538 0.105226
6 -4.926690 1.455658 0.153046
6 -5.981729 0.549443 0.038487
6-5.722002 -0.812417 -0.124816
6-4.407946-1.268045-0.173849
60.605457 2.075955 0.300870
1 4.704669 -2.191255 0.824880
1 5.518144 1.650709 -0.899213
1 3.099627 2.225486-0.787364
1 2.272682 -1.630859 0.938363
1 -2.790504 1.711640 0.194076
1 -5.129311 2.514525 0.279486
1 -7.007132 0.904759 0.076552
1 -6.542419 -1.517581 -0.213719
1 -4.190843 -2.323909 -0.300739
1-0.154446 2.114221 1.085445
1 1.431189 2.730041 0.576692
1 0.145705 2.446853-0.621186
```


Structure: $\boldsymbol{E}-\mathbf{3 d}^{-}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -883.604701 hartree
SCF Energy + ZPVE: -883.369685 hartree
Enthalpy: $\quad-883.352195$ hartree
Free Energy: -883.416815 hartree
Free Energy with quasiharmonic correction: -883.412918 hartree

```
6 4.325546 -1.266492 0.373489
6 5.210152 -0.300452 -0.081664
6 4.807623 0.970410-0.454708
6 3.452680 1.284518-0.364607
6 2.520805 0.338147 0.082997
6 2.976624 -0.936871 0.453706
6 1.076187 0.675510 0.146445
7 0.264212 -0.311942 -0.003995
8-1.040851 0.105909 0.069977
9 6.527784-0.613093-0.158079
6-2.001691 -0.924004 -0.064423
6-3.317836-0.387562-0.052918
8-1.659520 -2.111938-0.163622
6-3.615397 1.016033 0.056709
6 -4.923252 1.464183 0.063658
6-6.012632 0.571977-0.035113
6 -5.734979-0.808299-0.142899
6-4.437745 -1.283193-0.152204
60.619282 2.090270 0.362056
1 4.691517 -2.245272 0.665755
1 5.536968 1.691696-0.808059
1 3.124983 2.274711 -0.665721
1 2.266675 -1.671862 0.818444
1 -2.800668 1.729717 0.133507
1 -5.112262 2.532655 0.147151
1 -7.034578 0.936844 -0.028384
1-6.557752 -1.516432 -0.220040
1-4.241987-2.348441-0.235351
1 -0.153033 2.111391 1.136173
1 1.442910 2.736391 0.665228
1 0.168466 2.493204 -0.552016
```


Structure: $\boldsymbol{E}-\mathbf{3 d}\left(\boldsymbol{T}_{1}\right)$
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: -883.435774 hartree
SCF Energy + ZPVE: -883.200541 hartree
Enthalpy: $\quad-883.182924$ hartree
Free Energy: -883.248728 hartree
Free Energy with quasiharmonic correction: -883.244417 hartree

```
6 3.174802 -1.290526 1.111466
6 4.261882 -1.300473 0.246190
64.406961 -0.388115 -0.789904
6 3.423073 0.574297-0.967081
6 2.292616 0.628831-0.113704
6 2.193529-0.328211 0.929463
6 1.286122 1.622865 -0.309658
7 0.196916 1.674249 0.578404
8-0.804369 0.883564 0.045978
9 5.221034 -2.242249 0.421065
6-1.968783 0.874742 0.791696
6-2.982730-0.022502 0.183236
8-2.106563 1.522461 1.793572
6-2.718503 -0.782577 -0.962360
6 -3.711686 -1.610031 -1.480174
6 -4.960452 -1.678343-0.861431
6 -5.222163 -0.918590 0.280587
6-4.234779 -0.091300 0.804674
6 1.313364 2.653404 -1.393863
1 3.108228-2.025374 1.907165
1 5.274617 -0.438398-1.439632
1 3.525450 1.290459-1.775796
1 1.340974 -0.309095 1.601774
1 -1.748531 -0.731741 -1.444605
1 -3.509558-2.201875 -2.367166
1 -5.731533 -2.324913 -1.269509
1 -6.193858 -0.972092 0.760993
1 -4.423653 0.504525 1.692030
1 0.486909 3.356520-1.268295
1 2.252549 3.218163-1.384167
1 1.218610 2.185286-2.382431
```


Structure: $\boldsymbol{E - 3 e}$
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -823.615733 hartree
SCF Energy + ZPVE: -823.341478 hartree
Enthalpy: $\quad-823.323202$ hartree
Free Energy: -823.390032 hartree
Free Energy with quasiharmonic correction: -823.384736 hartree

```
6 4.314425 -1.203012 0.457287
6 5.243983-0.279522-0.042645
6 4.771275 0.960170-0.481415
6 3.414660 1.277210 -0.418491
6 2.492609 0.347806 0.073199
6 2.960204 -0.899593 0.514310
6 1.043246 0.670320 0.104509
7 0.257503-0.336087-0.035635
8-1.078566 0.091436 0.024092
6-1.986909 -0.905603-0.121660
6-3.376106-0.366293-0.057485
8-1.704446-2.067237-0.280484
6 -3.639980 0.998346 0.107428
6 -4.958803 1.443505 0.157918
6 -6.010670 0.533353 0.045246
6 -5.746042 -0.827457-0.118855
6-4.430325 -1.278034-0.170608
60.568655 2.084266 0.279099
6 6.709656-0.619721 -0.083954
1 4.662245 -2.170237 0.812503
1 5.472416 1.690119 -0.877655
1 3.078470 2.246737 -0.774526
1 2.256738-1.623224 0.914398
1 -2.823333 1.707325 0.194996
1 -5.165185 2.501562 0.285102
1 -7.037339 0.884758 0.085477
1 -6.563944 -1.535738-0.206283
1 -4.209390-2.333027-0.298109
1 0.095844 2.441426 -0.641715
1 -0.183405 2.125470 1.071223
1 1.391835 2.747787 0.539081
1 7.280314 0.154205 -0.602712
1 7.112237 -0.718884 0.929835
1 6.874822 -1.573703 -0.594328
```


Structure: $\boldsymbol{E}-\mathbf{3} \mathbf{e}^{-}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -823.692363 hartree
SCF Energy + ZPVE: -823.421632 hartree
Enthalpy: $\quad-823.403121$ hartree
Free Energy: -823.470164 hartree
Free Energy with quasiharmonic correction: -823.465776 hartree

```
6-5.250416-0.286697 0.076402
6 -4.784180 0.978888 0.440202
6 -3.428742 1.300536 0.358942
6-2.494834 0.355331-0.080907
6 -2.960546-0.918001 -0.448557
6-4.312225 -1.229223-0.369412
6-1.048448 0.685276-0.137185
6-0.582521 2.099443-0.339386
7-0.239870-0.306346 0.006706
8 1.067921 0.108464 -0.061216
6 2.024727 -0.924496 0.069098
8 1.679464 -2.111532 0.170059
6 3.343259-0.393685 0.052924
6 4.459887 -1.293938 0.149313
6 5.759026-0.824595 0.135493
6 6.042286 0.554569 0.025940
64.956171 1.451284 -0.070115
6 3.646509 1.008670-0.058774
1 -3.101690 2.291238 0.661447
6-6.714512 -0.633432 0.138131
1 -5.489317 1.726521 0.795114
1 -2.253090 -1.659397-0.807069
1 -4.651539 -2.219211 -0.666266
1 -0.121964 2.488108 0.575962
1 -1.403553 2.754944 -0.628774
1 0.184643 2.124578 -1.118619
1 4.259881 -2.358302 0.233744
1 6.579034 -1.536192 0.210440
1 7.065735 0.915107 0.015684
1 5.149437 2.518900-0.155016
1 2.834384 1.725557-0.133665
1 -6.872572 -1.576009 0.671441
1 -7.284364 0.149737 0.644292
1 -7.127673 -0.756177 -0.869053
```


Structure: $\boldsymbol{E} \mathbf{- 3}\left(\boldsymbol{T}_{1}\right)$
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: $\quad-823.523970$ hartree
SCF Energy + ZPVE: -823.253063 hartree
Enthalpy: $\quad-823.234397$ hartree
Free Energy: $\quad-823.302932$ hartree
Free Energy with quasiharmonic correction: -823.297904 hartree

```
6 3.175950 -1.243582 1.065355
6 4.299932 -1.274144 0.221189
6 4.386379 -0.308897 -0.790470
6 3.398131 0.652300-0.962903
6 2.264736 0.684869 -0.115433
6 2.179830-0.295007 0.908988
6 1.246579 1.668368-0.295056
70.157696 1.694096 0.594909
8 -0.834784 0.895736 0.053963
6-1.996148 0.859686 0.801428
6-2.997071 -0.047773 0.185532
8-2.143766 1.493786 1.810954
6-2.722326-0.792887-0.967369
6 -3.703065 -1.630709 -1.492241
6-4.949990 -1.724342 -0.873117
6-5.222202 -0.979694 0.276356
6-4.247232 -0.142070 0.807343
6 1.258883 2.717532 -1.362280
6 5.368582 -2.316339 0.408857
1 3.088226 -1.982683 1.858731
1 5.246107-0.313050-1.456224
1 3.497345 1.383083-1.759883
1 1.325667 -0.298179 1.580713
1 -1.753702 -0.722396 -1.449849
1 -3.492669 -2.210903-2.385002
1 -5.711333 -2.378916-1.286685
1 -6.192383 -1.053049 0.757238
1 -4.444394 0.442351 1.700471
1 1.168152 2.265642 -2.358770
1 0.424437 3.408928-1.224082
1 2.191141 3.293511 -1.345005
1 6.175230-2.189431 -0.317328
1 5.799636 -2.258892 1.414126
1 4.957260 -3.324722 0.290772
```


Structure: \boldsymbol{E}-3f
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -898.801821 hartree
SCF Energy + ZPVE: -898.521756 hartree
Enthalpy: $\quad-898.502892$ hartree
Free Energy: -898.570307 hartree
Free Energy with quasiharmonic correction: -898.565703 hartree

```
6 3.977506-0.945961 0.398136
6 4.844295 0.038214 -0.091849
6 4.329767 1.273985 -0.508548
6 2.968344 1.522754 -0.433883
6 2.084009 0.542340 0.043681
6 2.610528-0.685371 0.458046
60.624335 0.797843 0.083403
7 -0.118955 -0.239689-0.068297
8-1.472515 0.129304 0.014809
6-2.338484 -0.900818-0.148376
6-3.749141 -0.424574 -0.055780
8-2.009366-2.045074 -0.341813
6 -4.070517 0.920990 0.156389
6 -5.406997 1.306153 0.231734
6 -6.419363 0.355052 0.096979
6-6.097303 -0.986756-0.114232
6 -4.763734 -1.377349-0.190748
60.087732 2.186440 0.283049
8 6.185006 -0.111584 -0.192184
6 6.745511 -1.355331 0.213100
1 4.350595 -1.904024 0.740185
1 5.014096 2.026136-0.888333
1 2.591005 2.483437-0.771395
1 1.943687 -1.447850 0.848546
1 -3.284166 1.661297 0.261100
1 -5.657942 2.349401 0.395698
1 -7.459960 0.659709 0.156589
1 -6.884456-1.726827-0.219131
1 -4.498079 -2.416862 -0.354768
1 -0.429212 2.527028-0.619968
1 -0.641667 2.184982 1.097395
1 0.884254 2.887813 0.526173
1 6.344903 -2.180168 -0.385646
1 7.818317 -1.269372 0.043093
1 6.557375 -1.543704 1.275436
```


Structure: $\boldsymbol{E}-\mathbf{3 f}^{-}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -898.877977 hartree
SCF Energy + ZPVE: -898.601541 hartree
Enthalpy: $\quad-898.582437$ hartree
Free Energy: -898.650079 hartree
Free Energy with quasiharmonic correction: -898.646341 hartree

```
6 3.983930-0.956342 0.346870
6 4.850564 0.040072 -0.116065
6 4.335146 1.290570-0.480885
6 2.973886 1.540094 -0.384068
6 2.086362 0.550297 0.069318
6 2.618101 -0.691585 0.434220
6 0.627540 0.810206 0.136683
7 -0.136584 -0.214873-0.015161
8-1.462415 0.141564 0.075835
6-2.375141 -0.925982 -0.080153
6-3.714984 -0.452102 -0.051823
8-1.982130 -2.095322 -0.210602
6 -4.078377 0.933279 0.090837
6 -5.405871 1.318866 0.109921
6-6.452693 0.378749-0.007673
6-6.110242 -0.984588-0.146498
6-4.792296-1.397051-0.168952
60.098184 2.198746 0.361749
8 6.192640-0.111741 -0.237660
6 6.748839-1.370912 0.118458
1 4.355872 -1.928407 0.649038
1 5.017294 2.054538-0.841162
1 2.598141 2.513626-0.685168
1 1.953419 -1.465784 0.804989
1 -3.297631 1.682415 0.182419
1 -5.644845 2.375106 0.217938
1 -7.490678 0.694726 0.008890
1-6.898887-1.728988-0.238116
1-4.546637-2.449631-0.276910
1 -0.411988 2.566407 -0.535612
1-0.643220 2.181990 1.166001
1 0.893732 2.894076 0.628551
1 6.336980-2.173592 -0.502800
1 7.820594 -1.286821 -0.059999
1 6.571494 -1.595457 1.175851
```


E-3f($\left.T_{1}\right)$
Structure: $\boldsymbol{E} \mathbf{- 3 f}\left(\boldsymbol{T}_{\mathbf{1}}\right)$
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: -898.709600 hartree
SCF Energy + ZPVE: -898.433106 hartree
Enthalpy: $\quad-898.413720$ hartree
Free Energy: $\quad-898.483978$ hartree
Free Energy with quasiharmonic correction: -898.478632 hartree

```
6 3.018587 -0.962467 0.731800
6 4.091310 -0.728063 -0.139709
6 4.065701 0.394693-0.985110
6 2.994322 1.265323-0.963708
6 1.892911 1.051970 -0.091362
6 1.941326-0.085706 0.750486
6 0.787448 1.951275 -0.074780
7-0.260995 1.724262 0.835297
8-1.202510 0.936993 0.190433
6-2.307884 0.639401 0.961500
6-3.274384 -0.198704 0.206846
8-2.439453 1.022240 2.092854
6 -3.043497 -0.602677 -1.113449
6 -3.990488 -1.387964 -1.766042
6 -5.159902 -1.768924 -1.106970
6 -5.387974 -1.365498 0.210253
6-4.446849 -0.581006 0.868287
6 0.656603 3.156562 -0.953327
8 5.185274 -1.520632 -0.236482
6 5.245682 -2.670375 0.598700
1 3.013332 -1.819889 1.394843
1 4.903553 0.561727-1.655426
1 2.998218 2.123249 -1.629166
1 1.120907 -0.283032 1.434891
1 -2.135150 -0.308138-1.627496
1 -3.814839 -1.702511 -2.789822
1 -5.895154 -2.381260-1.620378
1 -6.297697 -1.662263 0.722496
1 -4.610228 -0.259749 1.892054
1 0.544561 2.867741 -2.006882
1 -0.221231 3.740077-0.665937
1 1.538781 3.802723 -0.880984
1 4.415891 -3.353715 0.387824
1 6.189866 -3.161697 0.364871
1 5.232209 -2.388953 1.657122
```


E-3g
Structure: $\boldsymbol{E - 3 g}$
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -823.613519 hartree
SCF Energy + ZPVE: -823.338914 hartree
Enthalpy: $\quad-823.321006$ hartree
Free Energy: -823.385867 hartree
Free Energy with quasiharmonic correction: -823.381690 hartree

```
6 -4.468487 -1.615178 0.809986
6 -5.409241 -0.837868 0.136933
6 -5.012677 0.336434 -0.501867
6 -3.683771 0.771603 -0.475836
6-2.742534 -0.017854 0.212430
6-3.137986 -1.204512 0.840816
6-1.310405 0.388490 0.287310
7-0.478820 -0.511538-0.090196
8 0.835862 -0.038421 0.072330
6 1.792873-0.912675 -0.329539
6 3.153388-0.337643-0.122795
8 1.568064-2.003966-0.790555
6 3.349157 0.943287 0.406159
6 4.644007 1.427431 0.576560
6 5.739384 0.638978 0.221817
6 5.542629 -0.638511 -0.305691
6 4.251194 -1.127405 -0.478579
6 -0.915679 1.736129 0.820599
6-3.296541 2.036397 -1.200624
1 -4.765099 -2.533580 1.307098
1 -6.449844 -1.146581 0.101572
1 -5.745872 0.928520-1.043949
1 -2.393697 -1.796609 1.365357
1 2.498020 1.556962 0.681915
14.797587 2.420783 0.986316
1 6.747262 1.020145 0.356402
1 6.394618-1.251910 -0.581514
1 4.083192 -2.118664 -0.887581
1 -0.399411 2.320023 0.051880
1-0.222692 1.605998 1.657331
1 -1.789571 2.286905 1.166853
1 -3.249310 2.890297-0.516210
1 -2.319867 1.944907 -1.684854
1 -4.036841 2.270032 -1.969516
```


Structure: $\boldsymbol{E}-\mathbf{3 g}^{-}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -823.689560 hartree
SCF Energy + ZPVE: -823.418403 hartree
Enthalpy: $\quad-823.400243$ hartree
Free Energy: -823.465797 hartree
Free Energy with quasiharmonic correction: -823.461975 hartree

```
6 4.950752 -1.207134 -0.736419
6 5.528355 0.018576-0.408939
64.737348 1.027683 0.135901
6 3.364102 0.859466 0.355654
6 2.782741 -0.381522 0.013897
6 3.590847-1.400215 -0.514938
6 1.334129 -0.676514 0.186298
7 0.512503 0.257891-0.138079
8-0.789185 -0.152710 0.030712
6-1.760693 0.836911 -0.245358
6-3.072156 0.299914 -0.136996
8-1.431252 1.999786 -0.524416
6 -3.356470 -1.073112 0.187498
6-4.660310 -1.523866 0.278160
6 -5.758615 -0.664134 0.058957
6-5.493931 0.686063-0.259657
6-4.201043 1.162779 -0.356476
6 0.887400 -2.026443 0.678358
6 2.587271 1.997670 0.969263
1 5.551886 -2.007108 -1.157833
1 6.589748 0.186577 -0.566476
1 5.193998 1.975821 0.409505
1 3.139030-2.355042 -0.770823
1 -2.534414 -1.760783 0.362009
1 -4.839424 -2.568662 0.524548
1 -6.777250 -1.030863 0.132872
1 -6.323600 1.368722 -0.433039
1 -4.015059 2..204496-0.601969
1 1.729624 -2.615105 1.042461
1 0.161568 -1.900327 1.487278
1 0.381998 -2.581142 -0.120361
1 2.021088 2.548965 0.212691
1 1.864753 1.640573 1.707789
1 3.273667 2.695308 1.456320
```


$E-3 g\left(T_{1}\right)$
Structure: $\boldsymbol{E} \mathbf{- 3 g}\left(\boldsymbol{T}_{1}\right)$
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: -823.517432 hartree
SCF Energy + ZPVE: -823.245648 hartree
Enthalpy: $\quad-823.227426$ hartree
Free Energy: -823.295414 hartree
Free Energy with quasiharmonic correction: -823.289394 hartree

```
6 -2.817413 -2.180901 1.012903
6-3.978358-2.270585 0.242432
6-4.354260-1.182690-0.546917
6-3.617629 0.001200-0.601769
6 -2.423714 0.100173 0.182659
6-2.059481 -1.022570 0.980827
6 -1.565312 1.248235 0.219761
7 -0.442597 1.186228 1.076123
80.611723 0.690832 0.328933
6 1.794134 0.576621 1.033090
6 2.880391 0.051759 0.167127
8 1.894602 0.868459 2.194183
6 2.677054-0.257268-1.183039
6 3.737597-0.745028-1.942428
6 4.992634-0.924779-1.359846
6 5.193199-0.616698-0.012720
6 4.138847 -0.128859 0.751963
6-1.657850 2.548967 -0.522958
6 -4.133627 1.107228-1.488164
1 -2.503075 -3.012123 1.636906
1 -4.583699 -3.171596 0.253203
1 -5.256811 -1.251763-1.148797
1 -1.162365 -0.968855 1.590045
1 1.702380 -0.118741 -1.637734
1 3.583361 -0.985019-2.989579
1 5.816252 -1.305616-1.956336
1 6.169622 -0.757194 0.439886
14.280140 0.114731 1.800148
1 -1.465712 2.414625 -1.594407
1 -0.900146 3.234323-0.133675
1 -2.633090 3.027481 -0.411278
1 -4.436887 1.983956-0.907638
1 -3.389521 1.434080-2.219019
1 -5.010143 0.754959-2.037033
```


Z-3a
Structure: \boldsymbol{Z}-3a
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -784.313665 hartree
SCF Energy + ZPVE: -784.066908 hartree
Enthalpy: $\quad-784.050533$ hartree
Free Energy: -784.112326 hartree
Free Energy with quasiharmonic correction: -784.108060 hartree

```
6-3.154865 2.530655 0.050003
6-2.031313 1.537659 0.038426
6-2.367219 0.085919 0.048924
6-1.803594 -0.775114 0.999971
6 -2.165082 -2.119472 1.026830
6-3.079304 -2.619309 0.097635
6 -3.642114 -1.766012 -0.850441
6 -3.298413 -0.414494-0.867878
7-0.849156 2.034784 0.031574
8 0.122583 1.019571-0.029565
6 1.399766 1.469070 0.021588
6 2.357655 0.327890-0.053807
6 1.926829 -1.001695 -0.132162
6 2.867460-2.027154 -0.195077
6 4.230858-1.729738-0.180955
6 4.658738-0.403179 -0.102727
6 3.723737 0.625624-0.038068
8 1.713605 2.629700 0.119430
1 -2.765957 3.549588 0.086477
1 -3.798781 2.349791 0.915911
1 -3.768412 2.414608-0.848728
1 -1.091452 -0.389742 1.723233
1 -1.730148 -2.777842 1.772760
1 -3.354147 -3.669626 0.116046
1 -4.354192 -2.148766 -1.575143
1 -3.744076 0.245037 -1.606894
1 0.866339 -1.233119 -0.143168
1 2.535425-3.058850-0.255421
1 4.960529-2.532478-0.231180
1 5.719199 -0.171778-0.091671
14.041430 1.661618 0.024256
```


Structure: $\boldsymbol{Z} \mathbf{- 3} \mathbf{a}^{-}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -784.389331 hartree
SCF Energy + ZPVE: -784.145927 hartree
Enthalpy: $\quad-784.129353$ hartree
Free Energy: -784.191302 hartree
Free Energy with quasiharmonic correction: -784.187945 hartree

```
6 -3.087075 2.567880 0.208567
6 -2.003463 1.527814 0.135997
6 -2.408282 0.095476 0.059503
6-1.794268-0.883046 0.854943
6-2.224245 -2.206722 0.802700
6 -3.264168 -2.576222 -0.052466
6-3.882118-1.609561-0.844639
6-3.465230-0.280194-0.780255
7-0.797713 1.973711 0.147666
80.144915 0.977673 0.037866
6 1.481248 1.440621-0.031240
6 2.390453 0.348991-0.052845
6 1.993771 -1.033247 0.018902
6 2.936574 -2.043514 -0.009789
6 4.317906-1.766247-0.109598
6 4.720974 -0.414456-0.185088
6 3.800195 0.614733-0.159166
8 1.740580 2.652591-0.076622
1 -2.648046 3.557786 0.347408
1-3.768696 2.354227 1.038048
1 -3.680771 2.577138 -0.711333
1 -0.983955 -0.602895 1.519474
1 -1.743835 -2.951850 1.430194
1 -3.592424 -3.610375-0.097457
1 -4.693321 -1.886759 -1.511227
1 -3.958223 0.464607-1.398158
1 0.939276 -1.281968 0.093886
1 2.600637 -3.077213 0.046344
1 5.048085-2.568743-0.129352
1 5.779526-0.174491-0.265428
1 4.128146 1.648619 -0.219177
```


Structure: $\boldsymbol{Z - 3 a}\left(\boldsymbol{T}_{1}\right)$
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: -784.224593 hartree
SCF Energy + ZPVE: -783.981171 hartree
Enthalpy: $\quad-783.964320$ hartree
Free Energy: -784.028637 hartree
Free Energy with quasiharmonic correction: -784.024079 hartree

```
6 -1.880166 2.179925 -1.599787
6 -1.752600 1.289135 -0.404792
6-2.659645 0.235423-0.075982
6 -2.462746 -0.576589 1.070913
6-3.350449 -1.598639 1.374158
6 -4.455676 -1.848474 0.552729
6 -4.663310 -1.056898-0.581337
6 -3.784597 -0.028945 -0.896577
7-0.661502 1.538649 0.447117
8 0.401278 0.787175 -0.018408
6 1.564053 0.945189 0.712397
6 2.654028 0.098518 0.165654
6 2.463220-0.749829-0.931526
6 3.525901 -1.521575 -1.394505
6 4.770744 -1.447885 -0.768567
6 4.959020-0.600814 0.325497
6 3.902202 0.172289 0.794196
8 1.644815 1.678967 1.659698
1 -1.140612 2.982538-1.553909
1 -2.877573 2.629552 -1.656668
1 -1.717633 1.616497 -2.528203
1 -1.611615 -0.392569 1.720582
1 -3.182483 -2.207692 2.257561
1 -5.146174 -2.650448 0.794024
1 -5.517815 -1.245385 -1.224728
1 -3.959100 0.574029-1.782444
1 1.496385-0.808939-1.418985
1 3.381215 -2.181183 -2.244099
1 5.596100 -2.051825 -1.133569
1 5.927654 -0.544059 0.811707
14.033544 0.834840 1.643763
```


Structure: Z-3b
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -1121.267979 hartree
SCF Energy + ZPVE: -1121.016619 hartree
Enthalpy: -1120.996597 hartree
Free Energy: -1121.068824 hartree
Free Energy with quasiharmonic correction: -1121.061604 hartree

```
6 1.884413 -0.293337 1.009880
6 2.889624-0.256850 0.042322
6 2.922508 0.749656-0.918972
6 1.942052 1.738802 -0.905485
60.920198 1.704584 0.047371
6 0.897818 0.684998 1.007436
6-0.104945 2.787670 0.062941
7-1.373647 2.608687 0.062259
8-1.688193 1.241071 -0.007914
6-3.019467 0.977864 0.015163
6-3.262452 -0.491755-0.052743
8-3.879376 1.820162 0.084130
6 -2.214341 -1.418766 -0.095205
6 -2.502101 -2.780408-0.152118
6-3.827461 -3.216823-0.167479
6-4.871482 -2.290963-0.124960
6-4.590500 -0.929228-0.066827
60.363351 4.210784 0.091139
6 3.919775 -1.347656 0.018988
9 5.055449-0.974493-0.596944
94.261210 -1.756801 1.255696
9 3.478052 -2.447616-0.631520
1 1.869636 -1.078512 1.759656
1 3.706901 0.772722 -1.668367
1 1.970731 2.529427-1.648954
1 0.115448 0.662373 1.759127
1 -1.183060-1.080424 -0.082885
1 -1.690574 -3.500639-0.184779
1 -4.047209-4.279333-0.212595
1 -5.902401 -2.630319 -0.136837
1 -5.392370 -0.198446-0.032330
1 1.014078 4.368642 0.956480
1 0.947887 4.430216 -0.807816
1 -0.487323 4.892368 0.139966
```


Structure: $\boldsymbol{Z} \mathbf{- 3 b}^{\boldsymbol{-}}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -1121.355564 hartree
SCF Energy + ZPVE: -1121.106654 hartree
Enthalpy: $\quad-1121.086605$ hartree
Free Energy: -1121.158741 hartree
Free Energy with quasiharmonic correction: -1121.152297 hartree

```
6 1.785467 -0.685094 0.459615
6 3.110680-0.332911 0.109858
6 3.363001 0.992275-0.307959
6 2.345953 1.918323-0.363619
6 0.979107 1.594203 -0.029050
6 0.760444 0.230380 0.394750
6-0.011076 2.622125 -0.086049
7-1.343921 2.568225 -0.019723
8-1.792185 1.217472 -0.064344
6 -3.096954 1.049261 0.164298
6 -3.493220 -0.383977 -0.009104
8-3.873474 1.926371 0.481504
6 -2.626806 -1.337831 -0.555977
6 -3.050499 -2.657441 -0.699405
6-4.333727 -3.030264-0.296476
6-5.198584 -2.079052 0.247390
6-4.780608 -0.758322 0.388326
6 0.437003 4.059590-0.244066
6 4.168435-1.355275 0.109540
9 5.417056-0.834925 0.109430
94.104590-2.197409 1.175532
9 4.138650-2.195741 -0.975516
1 1.569498 -1.695823 0.798877
1 4.370134 1.290542 -0.586603
1 2.593745 2.922930-0.688611
1 -0.224565 -0.087027 0.705729
1 -1.630244 -1.048464 -0.873830
1 -2.378324 -3.394691-1.127660
1 -4.659865 -4.060104 -0.407892
1 -6.197432 -2.366546 0.561149
1 -5.443514 -0.008040 0.807752
1 1.209687 4.326191 0.484045
1 0.847023 4.244322 -1.244054
1 -0.417771 4.725105 -0.105560
```


Z-3b $\left(T_{1}\right)$
Structure: $\boldsymbol{Z} \mathbf{- 3 b}\left(\boldsymbol{T}_{\mathbf{1}}\right)$
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: -1121.180600 hartree
SCF Energy + ZPVE: -1120.932215 hartree
Enthalpy: -1120.911792 hartree
Free Energy: -1120.985562 hartree
Free Energy with quasiharmonic correction: -1120.978943 hartree

6	2.457037	-0.528712	0.889338
6	3.520538	-0.286097	0.009631
6	3.439675	0.737580	-0.936114
6	2.298327	1.522270	-1.006422
6	1.208600	1.296599	-0.129948
6	1.316496	0.248685	0.823297
6	0.035474	2.102955	-0.211559
7	-1.010699	1.874686	0.700479
8	-1.881475	0.984395	0.111912
6	-2.993227	0.694063	0.886242
6	-3.872173	-0.287302	0.204283
8	-3.183017	1.192712	1.961367
6	-3.555597	-0.835694	-1.044424
6	-4.423295	-1.754715	-1.628879
6	-5.598493	-2.124447	-0.973702
6	-5.912181	-1.576109	0.271621
6	-5.050477	-0.658208	0.862183
6	-0.159553	3.223471	-1.181784
6	4.739108	-1.146391	0.114549
9	5.684757	-0.830263	-0.786816
9	5.322826	-1.062176	1.331741
9	4.457633	-2.457102	-0.063535
1	2.527981	-1.326368	1.623684
1	4.264466	0.922275	-1.616321
1	2.243281	2.313562	-1.746687
1	0.499682	0.057580	1.512384
1	-2.642492	-0.551011	-1.555570
1	-4.180936	-2.182578	-2.596379
1	-6.271584	-2.841363	-1.434246
1	-6.826481	-1.864216	0.780548
1	-5.280897	-0.223940	1.829795
1	0.669167	3.938522	-1.133927
1	-0.210415	2.842558	-2.209968
1	-1.089446	3.753493	-0.965283

Structure: Z-3c
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: $\quad-1243.883202$ hartree
SCF Energy + ZPVE: -1243.645809 hartree
Enthalpy: -1243.628343 hartree
Free Energy: -1243.692615 hartree
Free Energy with quasiharmonic correction: -1243.688536 hartree

```
6 3.235980 -1.101729 -0.034727
6 3.491390-0.103005 0.897861
6 2.710517 1.050483 0.877615
6 1.670750 1.191141 -0.046801
6 1.435369 0.170186-0.975855
6 2.220885 -0.977934 -0.979500
6 0.869679 2.447229-0.065123
6 1.598910 3.756970-0.087589
7-0.410301 2.519913-0.072307
8-0.989298 1.240934-0.003703
6-2.345810 1.247417 -0.017320
8-3.022769 2.243332-0.080631
6-2.876360-0.144550 0.052677
6-4.264882 -0.308860 0.068923
6-4.811268 -1.587379 0.128803
6-3.972394 -2.702574 0.170777
6-2.586662 -2.538722 0.153557
6-2.033891 -1.261589 0.095164
17 4.219879-2.547841 -0.026344
1 4.288270 -0.217667 1.625020
1 2.910608 1.834477 1.601516
1 0.643102 0.273321-1.710354
1 2.044219 -1.764619 -1.705487
1 2.207063 3.864213 0.815932
1 2.274686 3.789174 -0.947508
1 0.892844 4.587068 -0.142327
1 -4.904367 0.567514 0.034612
1 -5.889124 -1.714926 0.142209
1-4.398965-3.700135 0.216851
1 -1.934876 -3.406176 0.185484
1-0.956034 -1.134968 0.081937
```


Structure: \boldsymbol{Z} - $\mathbf{3 c}^{\boldsymbol{-}}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: $\quad-1243.959502$ hartree
SCF Energy + ZPVE: -1243.725598 hartree
Enthalpy: -1243.707868 hartree
Free Energy: -1243.772724 hartree
Free Energy with quasiharmonic correction: -1243.769202 hartree

```
6-3.655500 -0.003742 -0.788937
6-3.332379 -1.091711 0.013245
6-2.217568 -1.075886 0.846754
6 -1.403138 0.052146 0.861500
6 -1.699764 1.165233 0.062023
6-2.840045 1.125421 -0.749996
6 -0.871177 2.402669 0.105870
7 0.413672 2.451175 0.107518
8 0.998223 1.210589 0.016413
17-4.355019 -2.512369-0.020109
6 2.414614 1.229853-0.021295
6 2.933833-0.092080-0.057399
8 3.042460 2.299029-0.025367
6 2.120595-1.279875 -0.042773
6 2.699013-2.534766-0.075769
6 4.100063-2.704577 -0.125793
6 4.909966-1.547534 -0.146002
6 4.358322 -0.281607 -0.115447
6 -1.579276 3.728104 0.155154
1 -4.529710 -0.031831-1.430903
1 -1.986116 -1.930608 1.474151
1 -0.533376 0.067307 1.508751
1 -3.097288 1.975412 -1.374434
1 1.039271 -1.185873 -0.006729
1 2.053633-3.411033-0.063482
1 4.541395 -3.695644 -0.149311
1 5.992541 -1.651469 -0.187574
1 4.996245 0.597469-0.133211
1 -2.142954 3.904760 -0.766681
1 -2.290923 3.751935 0.986556
1-0.853900 4.534789 0.276908
```


Z-3c $\left(T_{1}\right)$
Structure: $\boldsymbol{Z - 3} \mathbf{c}\left(\boldsymbol{T}_{\mathbf{1}}\right)$
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: $\quad-1243.794686$ hartree
SCF Energy + ZPVE: -1243.560851 hartree
Enthalpy: -1243.542786 hartree
Free Energy: - 1243.610674 hartree
Free Energy with quasiharmonic correction: -1243.605375 hartree

```
6-4.019776-0.825490 0.106728
6-4.058229 0.163384 -0.876024
6-3.001129 1.054276-0.984814
6-1.884944 0.972238-0.115412
6-1.883536-0.046274 0.872445
6-2.939806-0.935671 0.984000
6-0.796459 1.885578-0.240592
6-0.714031 2.975598-1.261405
70.277060 1.787975 0.663452
8 1.213683 0.947782 0.095805
6 2.346755 0.763330 0.868455
8 2.502788 1.295467 1.933431
6 3.298158-0.159599 0.200640
6 4.504325-0.426192 0.858308
6 5.432530-1.284592 0.278848
6 5.157461 -1.877720-0.955080
6 3.954441 -1.612182 -1.610003
6 3.020437-0.753203-1.036618
17 -5.350580-1.951794 0.240661
1 -4.906087 0.233102 -1.549737
1-3.035625 1.819220-1.753927
1 -1.046986 -0.133465 1.559338
1 -2.927975 -1.709664 1.744661
1 -0.637678 2.557908 -2.273806
1 -1.603041 3.615608-1.233985
1 0.165513 3.597363-1.080525
14.704428 0.041898 1.816886
1 6.368556-1.491854 0.787628
1 5.882410-2.548345-1.406567
1 3.741973-2.074829-2.568504
1 2.085989 -0.549159-1.547594
```


Structure: \boldsymbol{Z} - $\mathbf{3 d}$
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -883.517194 hartree
SCF Energy + ZPVE: -883.278816 hartree
Enthalpy: $\quad-883.261609$ hartree
Free Energy: -883.325461 hartree
Free Energy with quasiharmonic correction: -883.320947 hartree

```
6 -3.685544 -1.172264 0.398763
6-4.430616-0.409829-0.487639
6-4.013103 0.822662 -0.960749
6-2.788396 1.314759 -0.514771
6 -1.996660 0.567292 0.364537
6-2.455213 -0.676528 0.818140
6 -0.708725 1.135082 0.850412
70.424907 0.538191 0.851404
8 0.334158-0.763973 0.312956
9 -5.624427 -0.891918-0.906235
6 1.528331 -1.382778 0.105879
6 2.751386-0.563360-0.127962
8 1.521226 -2.590183 0.064526
6 2.722172 0.603304 -0.899610
6 3.910689 1.272278 -1.179181
6 5.120794 0.793064 -0.673515
6 5.147496-0.369479 0.097242
6 3.964820-1.057664 0.357845
6 -0.706168 2.527791 1.407983
1 -4.062520-2.128420 0.745765
1 -4.633689 1.380546-1.653788
1 -2.447086 2.281254 -0.872316
1 -1.854529 -1.257576 1.509387
1 1.782012 0.977992 -1.291498
1 3.892315 2.169625-1.789639
1 6.043794 1.324763-0.884685
1 6.088053-0.743880 0.488856
1 3.975061 -1.972230 0.942939
1 -1.407986 2.590962 2.245124
1 0.294130 2.803239 1.746118
1 -1.034718 3.240913 0.645930
```


Structure: $\boldsymbol{Z} \mathbf{- 3 d}^{-}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: $\quad-883.601181$ hartree
SCF Energy + ZPVE: -883.366041 hartree
Enthalpy: $\quad-883.348651$ hartree
Free Energy: -883.412579 hartree
Free Energy with quasiharmonic correction: -883.409054 hartree

```
6-2.256579 1.653986 -0.814823
6 -3.358971 1.817795 0.009421
6-3.873762 0.796360 0.789139
6-3.248835 -0.448210 0.735263
6-2.117619-0.654930-0.065794
6 -1.634954 0.409163 -0.842642
6 -1.495385 -2.007361 -0.122638
7 -0.235167 -2.262253-0.122580
8 0.543644 -1.133456-0.017845
9-3.962603 3.030947 0.049148
6 1.936409-1.387552 0.034001
6 2.669791 -0.171065 0.058674
8 2.376795 -2.546394 0.060280
6 2.068713 1.136546 0.017673
6 2.850182 2.276501 0.042276
64.259135 2.209061 0.110395
64.862088 0.932422 0.156487
6 4.105340-0.222736 0.134460
6-2.403519 -3.204232 -0.186828
1 -1.897323 2.482885 -1.415980
1 -4.741370 0.972295 1.416256
1 -3.646138 -1.258692 1.338392
1 -0.771134 0.262460-1.481012
1 0.987568 1.226136-0.031293
1 2.361794 3.248602 0.009779
1 4.860833 3.111931 0.127862
1 5.946118 0.853014 0.211963
1 4.585923 -1.196235 0.171485
1 -3.112236 -3.104814 -1.015056
1 -1.814632 -4.113492 -0.321867
1-2.985535-3.302534 0.735336
```


Z-3d $\left(T_{1}\right)$
Structure: $\boldsymbol{Z} \mathbf{- 3 d}\left(\boldsymbol{T}_{\mathbf{1}}\right)$
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: -883.428977 hartree
SCF Energy + ZPVE: -883.194126 hartree
Enthalpy: $\quad-883.176410$ hartree
Free Energy: -883.242397 hartree
Free Energy with quasiharmonic correction: - 883.238052 hartree

```
6-3.041283 1.550857 -0.550134
6-4.306844 1.055922 -0.262156
6-4.513061 -0.183670 0.327752
6-3.406638-0.959076 0.643754
6-2.092226-0.502062 0.372477
6 -1.939426 0.771382 -0.233511
6 -0.963782 -1.314505 0.699902
7 0.335384 -0.821118 0.486398
8 0.725951 -1.214888-0.786376
9-5.385955 1.814741 -0.572365
6 2.053997-0.995161-1.109127
6 2.848502 0.005032 -0.347065
8 2.482744 -1.643619 -2.027238
6 2.332530 1.244136 0.048630
6 3.167921 2.166944 0.671851
64.504768 1.850267 0.919054
6 5.017214 0.614268 0.524425
6 4.194277 -0.303435 -0.122628
6 -1.055967 -2.685899 1.292123
1 -2.932300 2.525558-1.014275
1 -5.522500 -0.526268 0.530555
1 -3.558488 -1.929663 1.104458
1 -0.947068 1.148623-0.458496
1 1.295568 1.498929-0.140765
1 2.773014 3.133739 0.967293
1 5.148177 2.570005 1.416118
1 6.056928 0.367258 0.713939
1 4.585440 -1.262977 -0.446567
1 -1.545615 -3.380010 0.596910
1 -0.057876 -3.070029 1.513757
1 -1.638811 -2.681962 2.220386
```


Z-3e
Structure: $\boldsymbol{Z} \mathbf{- 3 e}$
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -823.613371 hartree
SCF Energy + ZPVE: -823.338985 hartree
Enthalpy: $\quad-823.320846$ hartree
Free Energy: -823.386694 hartree
Free Energy with quasiharmonic correction: -823.381973 hartree

```
6 2.260092 -1.497114 0.960509
6 3.283833-1.807387 0.054192
6 3.691196-0.818229-0.844784
6 3.098483 0.444347-0.842769
6 2.060125 0.736969 0.046449
6 1.648816 -0.248918 0.955358
6 1.455601 2.097233 0.054138
7 0.200985 2.366938 0.058284
8-0.567670 1.190391-0.010101
6-1.905663 1.399035 0.020483
6-2.638352 0.101570-0.054699
8-2.428032 2.483380 0.102039
6 -1.970724 -1.126476 -0.129932
6-2.706722 -2.307422 -0.191826
6-4.101534 -2.265634 -0.179045
6 -4.765864 -1.040016 -0.104126
6 -4.035914 0.143273 -0.041558
6 2.369976 3.286273 0.068102
6 3.913260 -3.174823 0.052577
1 1.937275 -2.247262 1.678630
1 4.487379 -1.033246-1.552789
1 3.439649 1.194917 -1.549846
1 0.858691 -0.033050 1.667850
1 -0.885791 -1.159425 -0.139381
1 -2.190578 -3.260541 -0.250377
1 -4.671573 -3.188621 -0.227510
1 -5.850826 -1.007344 -0.094048
1 -4.538844 1.103286 0.018039
1 3.046445 3.224142 0.925706
1 2.984154 3.299537-0.837536
1 1.794196 4.211803 0.119584
1 4.808000 -3.197523-0.574132
1 4.190413 -3.479628 1.066194
1 3.210470 -3.921866-0.332285
```


Z-3e-
Structure: $\boldsymbol{Z} \mathbf{- 3} \mathbf{e}^{\bullet}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: $\quad-823.688813$ hartree
SCF Energy + ZPVE: - 823.418020 hartree
Enthalpy: $\quad-823.399567$ hartree
Free Energy: -823.466507 hartree
Free Energy with quasiharmonic correction: - 823.461941 hartree

```
6 2.302524 -1.577921 0.794770
6 3.431296-1.765313 -0.015044
6 3.884030-0.680209 -0.769852
6 3.232612 0.552362 -0.721489
6 2.090317 0.728424 0.068379
6 1.637122 -0.357753 0.833668
6 1.432466 2.062945 0.130189
70.166257 2.288689 0.130635
8-0.585917 1.141189 0.020740
6-1.982124 1.363544 -0.044318
6-2.688765 0.130901 -0.059883
8-2.448608 2.511739-0.089508
6-2.058282 -1.162045 0.003381
6-2.813028-2.319861 -0.014069
6-4.222567 -2.285830-0.096718
6-4.854109 -1.023871 -0.164801
6-4.124323 0.148611 -0.150106
6 2.309065 3.283453 0.199526
6 4.121569 -3.102289-0.070650
1 1.939849 -2.403366 1.403500
1 4.761635-0.796211-1.400977
1 3.615585 1.376668-1.316267
1 0.765883-0.240670 1.469021
1 -0.975855 -1.225141 0.064144
1 -2.302825 -3.279964 0.035830
1 -4.803341 -3.202392 -0.108336
1 -5.939094 -0.970271 -0.231704
1 -4.626642 1.110295 -0.204139
1 3.016725 3.201638 1.030626
1 2.892705 3.396495 -0.719919
1 1.697106 4.177725 0.332466
1 5.084366-3.028880-0.582448
1 4.292063 -3.498459 0.934999
1 3.507432-3.832609 -0.608989
```


Z-3e $\left(T_{1}\right)$
Structure: $\boldsymbol{Z} \mathbf{- 3 e}\left(\boldsymbol{T}_{\mathbf{1}}\right)$
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: -823.516414 hartree
SCF Energy + ZPVE: -823.245601 hartree
Enthalpy: $\quad-823.227129$ hartree
Free Energy: -823.294729 hartree
Free Energy with quasiharmonic correction: -823.289914 hartree

```
6 3.661487 0.646269 0.880098
6 3.316913 1.777852 0.128082
6 2.272442 1.654523-0.803115
6 1.593932 0.458966-0.976123
6 1.940293-0.688963-0.214925
6 2.996586 -0.562247 0.719593
6 1.235330-1.923588-0.354510
7 0.292439 -2.039760-1.390029
8 -0.944592 -1.447544 -1.165829
6 -1.395115 -1.177037 0.110133
6 -2.438770 -0.123205 0.101498
8-0.994176 -1.768888 1.078505
6-2.722084 0.631943-1.042592
6-3.699621 1.622019 -0.985390
6-4.392292 1.854290 0.203449
6 -4.108876 1.098447 1.343148
6 -3.131665 0.110314 1.294938
6 1.542119 -3.161324 0.426540
64.032619 3.089097 0.306698
14.468512 0.716809 1.605451
1 1.989528 2.518327 -1.400702
1 0.793320 0.402744 -1.708594
1 3.291279 -1.418084 1.319307
1 -2.181657 0.451978-1.965677
1 -3.920073 2.212235 -1.869073
1 -5.154776 2.626501 0.242861
1 -4.649018 1.280529 2.266745
1 -2.899494 -0.484285 2.172790
1 2.558253-3.518295 0.217907
1 1.465084 -2.970107 1.502490
1 0.838115 -3.955386 0.169243
1 3.348332 3.860917 0.675957
14.855510 2.995056 1.019599
14.440371 3.446707-0.644645
```


Structure: $\boldsymbol{Z}-\mathbf{- 3 f}$
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -898.799554 hartree
SCF Energy + ZPVE: -898.519495 hartree
Enthalpy: $\quad-898.500735$ hartree
Free Energy: -898.567379 hartree
Free Energy with quasiharmonic correction: -898.563224 hartree

```
6 3.552120 -0.094413 -0.667714
6 3.234931 -1.120508 0.227018
6 2.117612 -0.992170 1.066672
6 1.319061 0.136423 0.997004
6 1.620867 1.175556 0.099322
6 2.750883 1.047327 -0.711203
60.808742 2.418298 0.040843
7-0.473097 2.491511 0.011606
8-1.053466 1.209996-0.028978
6-2.407781 1.215889 -0.027854
6 -2.937788 -0.177990 -0.079146
8-3.088262 2.211297 0.014434
6-2.094542 -1.294783-0.111570
6-2.646011 -2.573253-0.152122
6-4.031584 -2.738985 -0.161243
6-4.871388-1.624146-0.129577
6-4.326102 -0.344309 -0.087889
6 1.521202 3.739316 0.022932
8 3.945436-2.264065 0.357506
6 5.090426-2.431521-0.470904
1 4.410689-0.164552 -1.324942
1 1.892559-1.790992 1.766522
1 0.461506 0.220069 1.656664
1 3.012947 1.837144 -1.408976
1 -1.016841 -1.166729 -0.104931
1 -1.993226 -3.440241 -0.176451
1 -4.457224 -3.737522 -0.193009
1 -5.949167 -1.753013 -0.136702
1 -4.966374 0.531786-0.061663
1 2.175170 3.820351 0.896224
1 2.149652 3.817239 -0.869433
1 0.803706 4.561456 0.022609
1 5.508396-3.403510-0.210653
1 4.813392 -2.424102 -1.530436
1 5.832937-1.650173 -0.277181
```


Structure: $\boldsymbol{Z} \mathbf{- 3} \mathbf{f}^{-}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -898.874815 hartree
SCF Energy + ZPVE: -898.598222 hartree
Enthalpy: $\quad-898.579176$ hartree
Free Energy: -898.646594 hartree
Free Energy with quasiharmonic correction: -898.642856 hartree

6	3.682913	-0.022653	-0.590403
6	3.324307	-1.128902	0.184215
6	2.136804	-1.096357	0.930154
6	1.312360	0.015816	0.885333
6	1.650136	1.137803	0.105752
6	2.850712	1.098423	-0.609685
6	0.814302	2.367603	0.076497
7	-0.471568	2.421828	0.058863
8	-1.062218	1.178651	0.015212
6	-2.475714	1.200786	-0.038228
6	-2.998658	-0.120173	-0.073524
8	-3.103962	2.270054	-0.050144
6	-2.188200	-1.310342	-0.060122
6	-2.769473	-2.563843	-0.091805
6	-4.171265	-2.730822	-0.139163
6	-4.978521	-1.571466	-0.158615
6	-4.423926	-0.306922	-0.129642
6	1.511141	3.701644	0.059233
8	4.057221	-2.264316	0.281194
6	5.271638	-2.331435	-0.455900
1	4.596132	-0.014990	-1.173694
1	1.876582	-1.956695	1.539514
1	0.399760	0.020853	1.470280
1	3.151989	1.949861	-1.212598
1	-1.106600	-1.218759	-0.027254
1	-2.125897	-3.441514	-0.081021
1	-4.614912	-3.720887	-0.161600
1	-6.061454	-1.672856	-0.198298
1	-5.059967	0.573560	-0.146676
1	2.235731	3.769967	0.876626
1	2.056919	3.845181	-0.879117
1	0.779560	4.506129	0.156249
1	5.699068	-3.310672	-0.241441
1	5.084666	-2.241819	-1.531467
1	5.969749	-1.550239	-0.136224

Z-3f($\left.T_{1}\right)$
Structure: $\boldsymbol{Z} \mathbf{- 3 f}\left(\boldsymbol{T}_{\mathbf{1}}\right)$
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: $\quad-898.702943$ hartree
SCF Energy + ZPVE: -898.426423 hartree
Enthalpy: $\quad-898.407123$ hartree
Free Energy: $\quad-898.475758$ hartree
Free Energy with quasiharmonic correction: -898.472077 hartree

```
6-4.107039 -0.483990 0.015188
6-2.879981 -1.112595 0.268157
6-1.694480 -0.420397 0.056137
6-1.684956 0.914643-0.413950
6 -2.943696 1.527160 -0.660087
6-4.123763 0.842671-0.449400
6 -0.473122 1.632440 -0.632682
6-0.407864 3.061454 -1.077272
7 0.763848 0.991190 -0.443686
8 1.144526 1.200240 0.879854
6 2.429614 0.814225 1.209933
8 2.890487 1.315121 2.202804
6 3.147338-0.179705 0.367352
6 4.527390-0.002602 0.224053
6 5.274725-0.932443-0.493656
6 4.649921 -2.053320-1.041016
6 3.276698-2.241937-0.875867
6 2.519057-1.302880-0.181557
8-5.315893-1.068467 0.188890
6-5.341250-2.411313 0.657470
1 -2.838127 -2.133578 0.629674
1 -0.755799 -0.925696 0.262390
1 -2.984597 2.551325 -1.017726
1 -5.082237 1.316918-0.638282
1 0.629847 3.358040-1.246277
1 -0.965939 3.217519 -2.007743
1 -0.836147 3.730433-0.319441
1 5.005055 0.866117 0.666573
1 6.342645-0.785127-0.619701
1 5.233426-2.783444 -1.593780
1 2.793222 -3.120525-1.290947
1 1.452798-1.454978-0.056379
1 -4.879943 -2.491243 1.647640
1 -4.831937-3.081856-0.042991
1 -6.393705 -2.685860 0.723581
```


Structure: $\boldsymbol{Z} \mathbf{- 3 g}$
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: $\quad-823.614467$ hartree
SCF Energy + ZPVE: -823.339645 hartree
Enthalpy: $\quad-823.321903$ hartree
Free Energy: -823.385823 hartree
Free Energy with quasiharmonic correction: -823.381965 hartree

```
6 3.375940 -1.915190 -0.983483
6 2.867744 -2.659332 0.081246
6 2.079433 -2.039697 1.047607
6 1.761092 -0.677894 0.974365
6 2.273344 0.060974 -0.108042
6 3.088062 -0.556271 -1.066211
6 2.009776 1.521908 -0.254824
7 0.850549 2.055057-0.373703
8-0.141063 1.055525 -0.426251
6-1.372627 1.470772 -0.051530
6-2.356560 0.354649 -0.160560
8-1.630887 2.587187 0.328147
6-1.961716 -0.954763-0.460171
6-2.920546-1.962363-0.534519
6-4.266437-1.666551 -0.313372
6-4.657927 -0.360740-0.012695
6 -3.703870 0.649523 0.067612
6 3.176116 2.462046-0.263618
6 0.899791 -0.068551 2.050670
1 3.996242 -2.386154 -1.739630
1 3.091709 -3.718790 0.163887
1 1.698065 -2.619157 1.885102
1 3.483596 0.031901-1.890078
1 -0.913959 -1.184614 -0.628613
1 -2.616764 -2.978831 -0.764207
1 -5.010897 -2.454830-0.374400
1 -5.704677 -0.131199 0.160107
1 -3.992580 1.668848 0.303801
1 3.852535 2.210947-1.086680
1 2.841206 3.494853-0.373908
1 3.738098 2.353323 0.669414
1 -0.157470 -0.300242 1.874885
1 1.166468 -0.482956 3.026747
1 1.000503 1.018687 2.099479
```


Structure: $\boldsymbol{Z} \mathbf{- 3} \mathbf{g}^{-}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -823.689881 hartree
SCF Energy + ZPVE: -823.418668 hartree
Enthalpy: $\quad-823.400588$ hartree
Free Energy: -823.465541 hartree
Free Energy with quasiharmonic correction: -823.462018 hartree

```
6 3.494501 -1.857945 -0.971678
6 3.035339 -2.609529 0.109073
6 2.226526 -2.011723 1.073563
6 1.841782 -0.668620 0.982419
6 2.305503 0.082513-0.115725
6 3.137758-0.515319-1.071190
6 1.980243 1.531483-0.270640
7 0.793410 2.013245-0.350070
8-0.158895 1.014706 -0.358817
6-1.464836 1.441669-0.036988
6-2.387910 0.367100-0.149260
8-1.691016 2.611730 0.310020
6-2.022204 -0.969267-0.543973
6 -2.974718 -1.966957-0.632362
6-4.334555 -1.722889-0.337754
6-4.705655-0.418219 0.058469
6-3.774953 0.597507 0.155133
6 3.116473 2.510329-0.336607
6 0.956526-0.085459 2.052663
1 4.129585-2.309339-1.727832
1 3.311534 -3.655467 0.206263
1 1.881227 -2.595957 1.923490
1 3.497214 0.076443 -1.909109
1 -0.984531 -1.191242 -0.775982
1 -2.663591 -2.964898-0.935435
1 -5.072226 -2.515344 -0.411194
1 -5.746719 -0.205290 0.293901
1 -4.078120 1.594833 0.461036
1 3.761322 2.294984 -1.195138
1 2.737391 3.530458 -0.426420
1 3.734085 2.430083 0.564252
1 -0.097351 -0.279591 1.822463
1 1.181231 -0.539953 3.021500
1 1.075449 0.998022 2.138211
```


$Z-3 g\left(T_{1}\right)$
Structure: $\boldsymbol{Z} \mathbf{- 3 g}\left(\boldsymbol{T}_{\mathbf{1}}\right)$
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: -823.487101 hartree
SCF Energy + ZPVE: -823.217451 hartree
Enthalpy: $\quad-823.199139$ hartree
Free Energy: -823.264414 hartree
Free Energy with quasiharmonic correction: -823.261251 hartree

```
6-0.968646 2.686947 -0.267545
6 -0.368388 1.881730 0.704306
6 -0.999765 0.726049 1.137335
6 -2.134229 0.225031 0.302557
6-2.964368 1.263850 -0.313701
6-2.340602 2.413022 -0.670380
6 -2.344310 -1.133198-0.018126
6 -3.686091 -1.593978-0.528797
7 -1.456299 -2.123105 0.085970
8-0.137633-1.655486 0.267604
6 0.443994 -1.011979 -0.776511
8-0.095604 -0.830155-1.841952
6 1.824896-0.569715 -0.430565
6 2.387412 -0.804716 0.829012
6 3.670313 -0.339173 1.107282
64.388839 0.358958 0.135106
6 3.825422 0.592868-1.120499
6 2.543403 0.130394 -1.404164
1 -0.493421 3.604411 -0.595473
6 -0.742336 0.114316 2.476621
1 0.530117 2.222607 1.215332
1 -3.985253 1.055417 -0.616279
1 -2.869852 3.160325 -1.255071
1 -3.747385 -2.681888-0.458003
1 -4.509249 -1.151224 0.036070
1 -3.800877 -1.315223-1.582070
1 1.825968 -1.343478 1.585151
1 4.108855 -0.520209 2.083657
1 5.388363 0.721170 0.356522
1 4.383460 1.136850-1.876183
1 2.089545 0.310164 -2.373718
1 -1.534108 0.424666 3.173171
1 -0.752970 -0.978860 2.447866
10.213526 0.459692 2.880436
```


Structure: acetone \boldsymbol{O}-benzoyl oxime
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -592.643006 hartree
SCF Energy + ZPVE: -592.449797 hartree
Enthalpy: $\quad-592.436514$ hartree
Free Energy: -592.489651 hartree
Free Energy with quasiharmonic correction: -592.487633 hartree

```
6 3.134898 0.266235-0.000000
7 2.255580-0.665154 -0.000003
8 0.963613-0.091663-0.000002
6-0.043761 -0.994455 0.000001
6-1.370290 -0.309614 0.000000
8 0.109104 -2.191667 0.000002
6-1.490915 1.084723-0.000000
6 -2.756498 1.666774 -0.000001
6-3.897716 0.863475 -0.000001
6 -3.776011 -0.527171 -0.000000
6 -2.514035 -1.114041 0.000000
6 2.822925 1.733468 0.000003
6 4.564597 -0.173423-0.000001
1-0.604195 1.710070-0.000000
1-2.851728 2.748082 -0.000001
1 -4.882412 1.321332 -0.000001
1 -4.663279 -1.152528-0.000000
1 -2.404044 -2.193852 0.000001
1 2.231350 1.996016 -0.882313
1 2.231345 1.996011 0.882317
1 3.744517 2.316605 0.000008
1 5.070137 0.233319 0.882070
1 4.648214 -1.261482 -0.000004
1 5.070136 0.233322 -0.882072
```


Structure: acetone \boldsymbol{O}-benzoyl oxime ${ }^{-}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -592.717432 hartree
SCF Energy + ZPVE: -592.527922 hartree
Enthalpy: -592.514296 hartree
Free Energy: -592.568669 hartree
Free Energy with quasiharmonic correction: -592.566650 hartree

```
6 3.145231 0.268784 0.000000
7 2.244415 -0.643854 0.000001
8 0.979008-0.077789 -0.000001
6-0.083488-1.005517-0.000000
6-1.339174 -0.339532-0.000000
8 0.126579 -2.228467 -0.000001
6-1.492836 1.092785-0.000000
6-2.748364 1.670726 0.000000
6-3.925377 0.889248 0.000001
6-3.789196-0.517730 0.000000
6-2.547385 -1.121191 0.000000
6 2.844572 1.739838-0.000001
6 4.574267 -0.181431 0.000001
1 -0.608311 1.722804 -0.000000
1 -2.827316 2.756315 0.000000
1 -4.905184 1.355689 0.000001
1 -4.680429 -1.142566 0.000001
1 -2.461772 -2.204204 0.000000
1 2.250851 2.008103-0.880133
1 2.250852 2.008104 0.880131
1 3.768030 2.321714 -0.000002
1 5.091513 0.213173 0.881627
1 4.645143-1.271155 0.000002
1 5.091513 0.213172 -0.881625
```


Structure: acetone \boldsymbol{O}-benzoyl oxime ($\boldsymbol{T}_{\mathbf{1}}$)
Charge $=0$, Multiplicity $=3$
Number of imaginary frequencies: 0
SCF Energy: -592.510127 hartree
SCF Energy + ZPVE: -592.321912 hartree
Enthalpy: $\quad-592.307628$ hartree
Free Energy: -592.364485 hartree
Free Energy with quasiharmonic correction: -592.361554 hartree

```
6 3.138673 0.254642 0.000005
7 2.243507-0.662453-0.000001
8 0.966528-0.078637-0.000014
6-0.063703 -0.984716-0.000024
6-1.338694 -0.319672 -0.000011
8 0.089969 -2.199813 -0.000003
6-1.481161 1.152759 -0.000014
6-2.710199 1.705988-0.000002
6 -3.911169 0.881923 0.000014
6-3.776949 -0.565704 0.000017
6-2.563116 -1.150656 0.000005
6 2.843538 1.725397 0.000000
6 4.563233-0.202681 0.000018
1-0.586745 1.764853-0.000025
1-2.822158 2.785965 -0.000004
1 -4.890248 1.342617 0.000023
1 -4.677109 -1.172757 0.000029
1 -2.444988-2.228107 0.000007
1 2.253641 1.994636-0.881783
1 2.253627 1.994640 0.881774
1 3.770809 2.299785 0.000006
1 5.075932 0.195706 0.881960
1 4.632038-1.291951 0.000020
1 5.075947 0.195703-0.881917
```


VII

Structure: VII
Charge $=0$, Multiplicity $=1$ Number of imaginary frequencies: 0
SCF Energy: -364.226956 hartree
SCF Energy + ZPVE: -364.088768 hartree
Free Energy: -364.122983 hartree
Free Energy with quasiharmonic correction: -364.121473 hartree

```
6 0.585379 1.241645 0.000002
6 1.969686 1.111680 0.000004
6 2.555109 -0.157227 0.000002
6 1.748237-1.293036-0.000003
6 0.358510 -1.166823-0.000004
1 2.594116 1.999902 0.000008
1 2.196808 -2.281714 -0.000006
1 -0.256865 -2.060752 -0.000007
1 3.636332 -0.257397 0.000004
6-0.231001 0.101150-0.000002
7-2.267590 1.382556-0.000007
6-1.722202 0.247425 -0.000002
6 -2.597779 -0.988744 0.000007
1 -2.387106 -1.590696 0.888384
1 -2.387112 -1.590704 -0.888365
1-3.649932 -0.701377 0.000009
10.131261 2.228431 0.000004
```


Structure: DIPA
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -292.293965 hartree
SCF Energy + ZPVE: -292.087399 hartree
Free Energy: -292.120483 hartree
Free Energy with quasiharmonic correction: -292.120121 hartree

```
6 -1.036557 -0.025665 -0.219511
1 -0.553051 -0.132901 -1.201427
6 1.379268 -0.073536 0.455640
1 1.951242 -0.164283 1.387666
6 -1.698140 1.350783-0.160609
1 -0.956100 2.152298 -0.216644
1 -2.405120 1.479636 -0.987926
1 -2.245738 1.460357 0.783026
6 -2.083914 -1.127461 -0.090061
```

```
1 -2.871739 -1.009398-0.840241
1 -1.631179 -2.116844 -0.218599
1 -2.551447 -1.088837 0.901724
6 1.694252 1.289639-0.152509
1 2.768107 1.372668 -0.347165
1 1.172340 1.430598-1.105924
1 1.402819 2.099364 0.523942
6 1.827623 -1.206959 -0.474231
1 1.611350-2.182865 -0.025583
1 1.321780 -1.155472 -1.444795
1 2.906014 -1.149441 -0.658040
7-0.035934 -0.166283 0.856326
1 -0.162934 -1.071705 1.303389
```

Structure: VII
Charge $=0$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -291.647225 hartree
SCF Energy + ZPVE: -291.454572 hartree
Free Energy: -291.488651 hartree
Free Energy with quasiharmonic correction: -291.488589 hartree

```
61.207181 0.136252 0.234945
1 1.071087 0.804982 1.092836
6-1.252814 0.015976-0.132048
6 1.524579 0.976935-1.003147
1 0.709526 1.672485-1.227507
1 2.441424 1.556557-0.853387
1 1.667225 0.324348-1.873124
6 2.343644 -0.829197 0.549299
1 3.280691 -0.284526 0.696386
1 2.129945 -1.405229 1.454684
1 2.487039-1.531469-0.281162
6-1.543214 1.207628 0.728100
1 -2.506558 1.644066 0.449304
1 -1.604028 0.929618 1.796483
1 -0.783605 1.992170 0.642956
6-2.393218-0.904086-0.442648
1 -2.109834 -1.661367-1.182728
1 -2.737317 -1.442248 0.459160
1 -3.249898-0.348078-0.834904
7-0.030693-0.635262 0.085255
1 0.102201 -1.425520-0.542790
```


E-IX
Structure: \boldsymbol{E}-IX
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -364.881258 hartree
SCF Energy + ZPVE: -364.729494 hartree
Free Energy: -364.762756 hartree
Free Energy with quasiharmonic correction: -364.761480 hartree

```
6-0.586895-1.231667-0.000001
6 -1.975183 -1.148384 -0.000001
6-2.603806 0.099703-0.000000
6 -1.832784 1.259959 0.000001
6-0.439651 1.176160 0.000001
1 -2.570210 -2.056843-0.000002
1 -2.312163 2.234235 0.000002
1 0.142200 2.092051 0.000004
1 -3.687868 0.164563 0.000000
6 0.199338-0.069850-0.000000
72.224080-1.338784 0.000002
6 1.693286-0.175127 0.000001
6 2.488134 1.105254 -0.000002
1 2.250247 1.707141 0.882803
1 2.250245 1.707130-0.882815
1 3.557850 0.886558 0.000000
1 3.243091 -1.260033 0.000002
1 -0.096589 -2.199612 -0.000001
```


Z-IX
Structure: \boldsymbol{Z}-IX
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -364.879818 hartree
SCF Energy + ZPVE: -364.727918 hartree
Free Energy: -364.760470 hartree
Free Energy with quasiharmonic correction: -364.760068 hartree

```
6 0.573945 1.212247 -0.178404
6 1.963360 1.123662 -0.190972
6 2.588743-0.110481 -0.006269
6 1.815641 -1.255780 0.179066
6 0.424030 -1.169427 0.179257
1 2.557958 2.017659 -0.352753
1 2.294424 -2.220009 0.320590
1 -0.163335 -2.071059 0.321431
```

```
1 3.672421 -0.179119 -0.014674
6 -0.212427 0.067774 0.014802
7-2.344680 1.226627 0.362711
6-1.708036 0.165808 0.038340
6 -2.492339 -1.061150 -0.339028
1 -2.384380 -1.834747 0.428754
1 -2.134195 -1.483094 -1.282877
1 -3.549240-0.805388-0.427170
1 -1.701666 1.975577 0.630779
1 0.103275 2.177873 -0.343810
```


XII
Structure: XII
Charge $=0$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -365.457969 hartree
SCF Energy + ZPVE: -365.296556 hartree
Free Energy: -365.330292 hartree
Free Energy with quasiharmonic correction: -365.330194 hartree

```
6 0.592860 1.226386-0.042749
6 1.979068 1.170347 -0.034586
6 2.654689-0.055898 0.008158
6 1.901219 -1.238414 0.037306
6 0.515905 -1.203183 0.029252
1 2.545407 2.097574 -0.067611
1 2.406246-2.200404 0.068334
1 -0.036763-2.137152 0.058472
1 3.739390-0.090116 0.014503
6-0.194053 0.035152 -0.004688
7 -2.306689 1.244078 0.000155
6-1.612495 0.055952 0.003235
6 -2.427696 -1.199136 -0.055130
1 -2.296004 -1.807040 0.849047
1 -2.145809 -1.826146 -0.908792
1 -3.490667 -0.963000 -0.147207
1 -3.292195 1.194597 0.224531
1 0.115243 2.200234 -0.096504
1 -1.855012 2.075677 0.359357
```


conformer 1
Structure: conformer 1
Charge $=0$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: $\quad-404.749598$ hartree
SCF Energy + ZPVE: -404.559996 hartree
Enthalpy: $\quad-404.549084$ hartree
Free Energy: -404.595247 hartree
Free Energy with quasiharmonic correction: -404.594976 hartree

```
6 0.599998 -1.464713 0.070297
6 1.986123 -1.463176 0.113364
6 2.688654 -0.256373 0.086236
6 1.963613 0.937123-0.007080
6 0.571946 0.975448-0.054261
1 2.519332 -2.407892 0.179148
1 2.503093 1.879759 -0.073079
1 3.773549-0.239706 0.117792
6-0.161900 -0.258280 0.010955
7 -2.179068-1.565891 -0.289054
6-1.589503-0.345345-0.009282
6-2.554404 0.711502 0.439751
1 -3.004000 1.257369 -0.400317
1 -2.094793 1.435115 1.111366
1 -3.375788 0.231930 0.985636
1 -3.181844 -1.546617 -0.428560
1 0.081589 -2.416517 0.133356
1 -1.705378 -2.181132 -0.940279
6-0.088419 2.317797 -0.264426
1 -0.912245 2.253305 -0.981197
1-0.490417 2.742227 0.661398
1 0.643724 3.029501-0.655219
```


conformer 2
Structure: conformer 2
Charge $=0$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: $\quad-404.749874$ hartree
SCF Energy + ZPVE: -404.559818 hartree
Enthalpy: $\quad-404.549060$ hartree
Free Energy: -404.594753 hartree
Free Energy with quasiharmonic correction: -404.594584 hartree

```
6 -0.484738 -1.476702 -0.032480
6 -1.864874 -1.580689-0.064827
6-2.659112 -0.429655-0.059150
```

```
6-2.023505 0.815559-0.000257
6 -0.638833 0.963585 0.033836
1 -2.324038-2.565141-0.099595
1 -2.631838 1.716872 0.038434
1 -3.742192 -0.494957-0.083938
6 0.191654 -0.215183-0.001176
7 2.389995 0.894911 -0.220562
6 1.615541 -0.227548-0.009835
6 2.391518 -1.495193 0.202497
1 2.376331 -2.136807 -0.689456
1 1.995230 -2.084375 1.034845
1 3.437655 -1.264464 0.422667
1 3.362475 0.724070 -0.442564
1 0.101501 -2.388922 -0.057092
1 1.997534 1.672709 -0.731176
6-0.095225 2.366936 0.179862
10.673429 2.429638 0.955643
1 0.336144 2.755554 -0.750863
1 -0.906758 3.044783 0.456215
```


$\mathrm{E}-\mathrm{IX} \cdot \mathrm{HCl}$
Structure: $\boldsymbol{E} \mathbf{- I X} \cdot \mathbf{H C l}$
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: $\quad-825.693063$ hartree
SCF Energy + ZPVE: -825.527686 hartree
Free Energy: -825.565009 hartree
Free Energy with quasiharmonic correction: -825.563459 hartree

```
6 -1.517376 -1.221950 -0.186491
6 -2.895375 -1.402116 -0.162564
6-3.740801 -0.309828 0.040758
6-3.206978 0.967933 0.206546
6 -1.829040 1.157562 0.170147
1 -3.309992 -2.393819 -0.311236
1 -3.862875 1.818487 0.360759
1 -1.422592 2.155231 0.299816
1 -4.816593 -0.454977 0.060908
6-0.974376 0.060579 -0.011237
7 1.296443-0.689309 0.233737
6 0.482320 0.276258-0.030552
6 1.052295 1.615673-0.347111
1 0.827984 2.298444 0.479486
1 0.586253 2.018143-1.249362
1 2.134446 1.555392 -0.470664
1 2.332062 -0.553308 0.183363
1 -0.877388-2.078176 -0.378917
1 0.959948-1.609076 0.510018
17 4.361743 -0.282109 0.047217
```


Z-IX•HCI
Structure: $\boldsymbol{Z} \mathbf{- I X} \cdot \mathbf{H C l}$
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -825.692971 hartree
SCF Energy + ZPVE: -825.527489 hartree
Free Energy: -825.564852 hartree
Free Energy with quasiharmonic correction: -825.563305 hartree

```
6 0.272585 -0.902898 0.381308
6 1.136256-1.991215 0.345015
6 2.473494 -1.813825-0.015336
6 2.950849-0.542282-0.332494
6 2.094712 0.553412 -0.289671
1 0.766773 -2.978132 0.604148
1 3.990385-0.401964 -0.610241
1 2.476201 1.538028-0.538164
1 3.144621 -2.667001 -0.042496
6 0.746267 0.378628 0.056434
7-1.429306 1.395725 0.078792
6-0.146642 1.547382 0.088027
60.409315 2.929263 0.127317
1 0.912797 3.138981 -0.822129
1 1.151833 3.011312 0.924690
1 -0.382664 3.663387 0.276788
1 -1.928492 0.485385 -0.005692
1 -0.761731 -1.057978 0.674862
1 -2.025631 2.219617 0.126552
17 -3.350586-1.039559-0.194321
```


$\mathrm{E}-\mathrm{IX} \cdot \mathrm{HOBz}$
Structure: \boldsymbol{E}-IX•HOBz
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -785.583353 hartree
SCF Energy + ZPVE: -785.314716 hartree
Free Energy: -785.363686 hartree
Free Energy with quasiharmonic correction: -785.357477 hartree

```
6 -3.827251 -1.163774 -0.323316
6-5.125855 -1.663809 -0.305289
6-6.195069 -0.824421 0.012107
6 -5.959804 0.519467 0.299283
6-4.661064 1.024564 0.270501
```

```
1 -5.303989 -2.707281 -0.546128
1 -6.787436 1.178223 0.543485
1-4.493506 2.073340 0.493729
1 -7.207873 -1.215598 0.027564
6-3.580484 0.184095 -0.027071
7 -1.155884 -0.017620 0.140645
6-2.187161 0.720596-0.036070
6-1.992376 2.192205 -0.257727
1 -2.360164 2.753016 0.607903
1 -2.553641 2.530484 -1.133177
1 -0.932969 2.415540 -0.390894
1 0.360045 0.356279 0.089077
1 -3.008507-1.824661-0.594064
6 4.467019 -1.297511 0.081352
6 3.587875 -0.211387 0.041051
6 4.089692 1.089949-0.057948
6 5.466197 1.300924 -0.116044
6 6.342236 0.215287-0.076216
6 5.841829 -1.084542 0.022523
1 4.062726 -2.301966 0.158262
1 3.403158 1.929400 -0.088434
1 5.855027 2.311746 -0.192586
1 7.414462 0.381855 -0.122045
1 6.522874 -1.929587 0.053168
1 -1.375375 -0.998553 0.321022
6 2.114190 -0.476859 0.105085
8 1.657674 -1.606431 0.202218
81.369391 0.609230 0.047192
```


Z-IX•HOBz
Structure: \boldsymbol{Z}-IX•HOBz
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -785.584112 hartree
SCF Energy + ZPVE: -785.315453 hartree
Free Energy: -785.364560 hartree
Free Energy with quasiharmonic correction: -785.358157 hartree

```
6 -2.434677 0.898157 0.742710
6-2.865453 2.217927 0.646141
6-3.973500 2.536807 -0.141428
6-4.654358 1.528170 -0.822121
6-4.229955 0.204238-0.718961
1 -2.341114 2.997342 1.190638
1 -5.518934 1.769720-1.432723
1 -4.769674 -0.570916 -1.254083
1 -4.308937 3.566821 -0.217198
6-3.107798 -0.120540 0.053690
7-1.409207 -1.746550 0.463188
```

```
6 -2.633454 -1.529657 0.154314
6 -3.613592 -2.634537-0.118472
1 -3.886258-2.636878-1.178907
1 -4.531412 -2.488479 0.457905
1 -3.174681 -3.602838 0.128527
1 -0.136185-0.816552 0.426054
1 -1.584821 0.650537 1.371107
6 4.232145-0.870844 -0.272412
6 3.044567-0.181758-0.009716
6 3.060741 1.209096 0.133323
64.262084 1.905492 0.013468
6 5.446611 1.216015 -0.249069
6 5.431203-0.172941-0.391828
1 4.204036-1.950549-0.380903
1 2.136449 1.739068 0.337296
14.273936 2.985415 0.124828
1 6.381724 1.760381 -0.342475
1 6.352541 -0.709747 -0.596272
1 -1.195363 -2.743485 0.521860
6 1.771775 -0.962607 0.111940
8 1.732958-2.177041 -0.014272
8 0.710181 -0.220721 0.365842
```


DMSO
Structure: DMSO
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -553.097263 hartree
SCF Energy + ZPVE: -553.017022 hartree
Free Energy: -553.045180 hartree
Free Energy with quasiharmonic correction: -553.045180 hartree

```
6-1.352098 -0.795160 0.189660
1 -1.326178 -1.776815 -0.290295
1 -2.285956-0.286855-0.058080
1 -1.244702 -0.887067 1.273701
16 -0.000000 0.215521 -0.447472
8-0.000009 1.499366 0.379121
6 1.352106 -0.795146 0.189661
1 1.244722 -0.887047 1.273704
1 1.326176 -1.776807 -0.290283
12.285962-0.286848-0.058098
```


Structure: [DMSO - H*]
Charge $=0$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: $\quad-552.422394$ hartree
SCF Energy + ZPVE: -552.356643 hartree
Free Energy: -552.385654 hartree
Free Energy with quasiharmonic correction: -552.385654 hartree

```
6-1.549713 -0.202832 0.199899
1 -1.897861 -1.144824 -0.230830
1 -2.187164 0.618901 -0.131246
1 -1.517652 -0.255313 1.290302
16 0.119548 0.139090-0.414815
8 0.640146 1.358191 0.333464
6 0.906741 -1.277999 0.224670
1 0.472501 -2.248279 0.006401
1 1.954073 -1.176470 0.487288
```

H^{\bullet}
Structure: \mathbf{H}^{\bullet}
Charge $=0$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: $\quad-0.495776$ hartree
SCF Energy + ZPVE: -0.495776 hartree
Free Energy: $\quad-0.506430$ hartree

Free Energy with quasiharmonic correction: -0.506430 hartree
10.0000000 .0000000 .000000

E-61'
Structure: E-61'
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -903.470003 hartree
SCF Energy + ZPVE: -903.115298 hartree
Enthalpy: -903.093692 hartree
Free Energy: -903.170461 hartree
Free Energy with quasiharmonic correction: -903.162211 hartree

```
6 3.571313 -2.130876 0.170310
6 4.860593-2.627858 0.003574
6 5.933870-1.750561 -0.159245
6 5.712734 -0.374013 -0.140343
64.424495 0.125332 0.041347
1 5.028385 -3.700413 0.007979
1 6.543225 0.314353-0.262588
14.269589 1.199686 0.058517
1 6.939220 -2.138949 -0.291373
6 3.338014 -0.748343 0.183243
7 0.907068-0.879729 0.025610
6 1.953931 -0.214126 0.345585
6 1.757339 1.188230 0.866288
1 2.602437 1.489574 1.491826
1 0.860415 1.192894 1.494555
1 -0.585015 -0.436522 0.166047
1 2.750579 -2.827721 0.316928
6-4.824629-1.565176-0.455296
6-3.851640-0.652362 -0.037830
6-4.234665 0.592721 0.470289
6-5.586429 0.920550 0.559401
6-6.556235 0.007946 0.142019
6-6.174591 -1.235631-0.365443
1 -4.511931 -2.527776 -0.847643
1 -3.475822 1.297596 0.793059
1 -5.883135 1.887584 0.953909
1-7.609033 0.265308 0.212138
1 -6.928630-1.945959-0.690472
1 1.099031-1.795977-0.381922
6-2.407653-1.039223-0.149135
8-2.054150 -2.121916 -0.592417
8-1.569870 -0.112309 0.270389
6 1.566311 2.191608-0.282833
1 2.424042 2.149130-0.966878
1 0.683446 1.896978-0.864559
6 1.392866 3.619633 0.228066
1 0.543615 3.651406 0.922714
1 2.281807 3.906064 0.804442
6 1.169873 4.615947-0.906199
```

```
1 1.048361 5.634512 -0.525003
```

$12.0184004 .615700-1.599329$
$10.2707314 .361653-1.478170$

Structure: 4a
Charge, Spin Multiplicity: 0, 1
Number of imaginary frequencies: 0
SCF Energy: -340.410271 hartree
SCF Energy + ZPVE: - 340.322040 hartree
Free Energy: $\quad-340.352278$ hartree
Free Energy with quasiharmonic correction: - 340.352278 hartree

```
6-0.110915 1.207593-0.000091
6 -1.501701 1.146473 0.000060
7-2.189659 -0.000100 0.000084
6-1.501557 -1.146552 -0.000001
6 -0.110736 -1.207499 -0.000058
6 0.588790 0.000103-0.000101
1 0.406997 2.159805-0.000256
1 -2.084434 2.063171 0.000090
1 -2.084214 -2.063304 0.000098
1 0.407300-2.159636-0.000177
6 2.030810-0.000097-0.000011
7 3.187688 0.000076 0.000125
```


$\stackrel{\stackrel{N H}{(H)}}{n-\mathrm{Bu}}$

61"
Structure: 6l"
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: $\quad-482.767340$ hartree
SCF Energy + ZPVE: -482.529939 hartree
Enthalpy: -482.517093 hartree
Free Energy: -482.568993 hartree
Free Energy with quasiharmonic correction: -482.567357 hartree

```
6 1.644928 -1.116826 -0.376437
6 1.296765 0.211409 -0.097759
6 2.292978 1.092741 0.344846
6 3.608638 0.660737 0.492496
6 3.949547 -0.659468 0.195001
6 2.964781 -1.545518-0.240403
1 0.892263-1.820849-0.716753
1 2.037238 2.118524 0.597896
14.366051 1.353246 0.847157
1 4.975582 -0.996511 0.308074
```

```
1 3.221691 -2.574371 -0.473934
6-0.114708 0.694200 -0.258191
7-0.410336 1.896965-0.575033
6-1.215790 -0.310568-0.013323
1 0.435475 2.450199 -0.732486
6-2.627020 0.262804 -0.028727
1 -1.133561 -1.097481 -0.775548
1 -1.016181 -0.808269 0.945392
6-3.683192 -0.806945 0.243283
1 -2.708626 1.058981 0.722271
1 -2.823300 0.731592 -1.000658
6-5.100242 -0.240298 0.227393
1 -3.595522 -1.601851 -0.508852
1 -3.484083-1.274752 1.216226
1 -5.846030-1.017400 0.421785
1 -5.218740 0.537017 0.990550
1 -5.330015 0.209553-0.744962
```


$4 a \cdot \mathrm{HOBz}$
Structure: $\mathbf{4 a \cdot} \mathbf{H O B z}$
Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -761.111988 hartree
SCF Energy + ZPVE: -760.906352 hartree
Enthalpy: $\quad-760.890660$ hartree
Free Energy: -760.951720 hartree
Free Energy with quasiharmonic correction: -760.947475 hartree

```
6 3.539637-1.099109 -0.000001
6 2.181519 -0.801044 -0.000012
7 1.721236 0.454599-0.000016
6 2.589152 1.472327-0.000010
6 3.965985 1.282612 0.000000
6 4.438220-0.031132 0.000006
1 3.883134 -2.126853 0.000002
1 1.429533-1.584590 -0.000017
1 2.167839 2.473076-0.000016
14.644412 2.127773 0.000004
6 5.858199 -0.284796 0.000013
7 6.996753-0.488068 0.000020
1 0.110882 0.708034 -0.000008
8-0.895622 0.892638-0.000008
6-1.554614 -0.253054-0.000007
8-1.001403-1.342199-0.000013
6-3.042231-0.100735-0.000001
6 -3.643665 1.161729 0.000004
6-3.833560-1.253321 0.000001
6 -5.033150 1.267569 0.000010
```

```
1 -3.025293 2.053002 0.000002
6 -5.221556 -1.144373 0.000007
1 -3.352526-2.226383-0.000003
6 -5.821899 0.116302 0.000012
1 -5.500093 2.247671 0.000014
1 -5.835227 -2.039944 0.000008
1 -6.904604 0.201134 0.000017
```


DIPA•HOBz

Structure: DIPA•HOBz

Charge $=0$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -713.003123 hartree
SCF Energy + ZPVE: -712.680401 hartree
Enthalpy: $\quad-712.661543$ hartree
Free Energy: -712.729307 hartree
Free Energy with quasiharmonic correction: -712.723736 hartree

```
6 -3.216242 0.994656 -0.301426
1-4.122775 0.637401 0.201505
6 -2.461883 -1.258458 0.574630
1 -1.579734 -1.898150 0.449077
6-3.576313 1.379594 -1.731060
1 -4.032651 0.536771 -2.261259
1 -4.283112 2.214334 -1.736943
1 -2.677957 1.689247 -2.278549
6 -2.666387 2.193111 0.467493
1 -3.433311 2.969634 0.551523
1 -2.349998 1.914383 1.476623
1 -1.803530 2.618299 -0.057357
6-3.698439 -2.056583 0.168334
1 -3.789430 -2.950538 0.793268
1 -4.614725 -1.468843 0.289909
1 -3.627952 -2.376877 -0.876653
6-2.527361 -0.810752 2.029854
1 -1.630067 -0.253326 2.316080
1 -3.404350 -0.181643 2.217283
1 -2.603703 -1.689854 2.676430
7 -2.213436-0.105218-0.330131
1 -0.854285 0.304264 -0.078393
1 -2.173125 -0.484276 -1.277435
8 0.196561 0.550516 0.136525
6 0.990690-0.341707 -0.399796
8 0.598826-1.306096-1.049518
6 2.454174 -0.098495 -0.160113
6 3.384958-0.995782 -0.691696
6 2.893892 1.002130 0.581528
```

```
6 4.747439 -0.794629 -0.483964
1 3.029390 -1.845841 -1.265557
6 4.257770 1.202519 0.788765
1 2.166828 1.694842 0.992152
6 5.184897 0.305133 0.256947
1 5.467902 -1.493401 -0.898304
1 4.597143 2.057978 1.365006
1 6.247213 0.462329 0.419477
```


DIPA•H ${ }^{+}$
Structure: DIPA•H ${ }^{+}$
Charge $=1$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -292.767070 hartree
SCF Energy + ZPVE: -292.545052 hartree
Enthalpy: -292.534812 hartree
Free Energy: -292.578317 hartree
Free Energy with quasiharmonic correction: -292.577862 hartree

```
6 -1.068164 -0.027757 -0.265583
1 -0.537098 -0.144499 -1.212104
6 1.433178 -0.063246 0.421973
1 1.970494 -0.134380 1.371230
6-1.696172 1.353825 -0.180787
1 -0.951364 2.148460 -0.271049
1 -2.417718 1.466353 -0.993858
1 -2.228277 1.472331 0.769535
6 -2.088663-1.142841 -0.108653
1 -2.837391 -1.061133-0.900355
1 -1.612815 -2.125650 -0.183908
1 -2.598538-1.066115 0.857654
6 1.706127 1.285664 -0.218838
1 2.780776 1.367535-0.401119
1 1.193077 1.388039 -1.179993
1 1.407132 2.108355 0.437259
6 1.808549 -1.241955 -0.460814
1 1.552170 -2.192476 0.017229
1 1.321763 -1.191213 -1.439032
1 2.889176 -1.222790 -0.623230
7-0.022022 -0.174993 0.826567
1 -0.138619 -1.088220 1.280322
1 -0.207747 0.518211 1.561650
```


Structure: $\left[i-\mathbf{P r N H}_{2} \mathbf{0} \mathbf{4 a}\right]^{+}$
Charge $=1$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -633.188236 hartree
SCF Energy + ZPVE: -632.877512 hartree
Enthalpy: -632.859391 hartree
Free Energy: -632.924526 hartree
Free Energy with quasiharmonic correction: -632.920133 hartree

```
6 2.917961 1.044649 -0.010644
1 3.724450 0.621115 0.591757
6 2.326530-1.467821 0.120892
1 1.576245 -2.109968 -0.351075
6 2.037254 1.936261 0.852524
1 1.593600 1.383211 1.685312
1 2.642681 2.747844 1.264401
1 1.232849 2.376594 0.252698
6 3.510074 1.786130-1.198804
1 4.113414 2.624218-0.841083
1 4.151570 1.127422 -1.792845
1 2.715603 2.182099-1.840845
6 2.058410 -1.399419 1.615396
1 2.125916 -2.410415 2.025524
1 2.796444 -0.777201 2.131120
1 1.056081 -1.012242 1.824058
6 3.716531-1.980072 -0.219467
1 3.879971 -1.990012 -1.301474
1 4.497200 -1.375300 0.251728
1 3.816061 -3.003686 0.150702
7 2.097954 -0.121541 -0.521057
1 2.262983-0.234782 -1.527026
1 1.074044 0.096027-0.417917
7 -0.738643 0.129301 -0.199972
6-1.398226 0.665250 0.832091
6 -1.434062 -0.475533-1.168815
6-2.783821 0.623630 0.945236
1 -0.797175 1.147285 1.598261
6 -2.821247 -0.573795 -1.155744
1 -0.860066-0.898891-1.988588
6-3.498193-0.009343-0.073507
1 -3.287209 1.068768 1.795590
1 -3.353218 -1.070810 -1.958567
6-4.937364 -0.080430-0.007926
7-6.091387 -0.137519 0.044012
```


Structure: $\left[\mathbf{i}-\mathbf{P r N H}_{2} \mathbf{}^{\bullet} \mathbf{4 a}\right]^{\bullet}$
Charge $=0$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -633.289051 hartree
SCF Energy + ZPVE: -632.983122 hartree
Enthalpy: $\quad-632.964847$ hartree
Free Energy: -633.031051 hartree
Free Energy with quasiharmonic correction: -633.026422 hartree

```
6 2.849962 1.025988 0.004607
1 3.691292 0.584051 0.544900
6 2.243108 -1.466904 0.084041
1 1.466133-2.091944 -0.369455
6 2.035850 1.896416 0.953569
1 1.626740 1.315428 1.784905
1 2.678760 2.678632 1.366623
1 1.207301 2..375789 0.420977
6 3.378914 1.816679-1.183150
1 3.996977 2.646292 -0.830057
1 3.989790 1.184023-1.835428
1 2.549702 2.230185 -1.768243
6 2.038413 -1.445615 1.591324
1 2.110104 -2.468804 1.969884
1 2.804966-0.847272 2.094188
1 1.051180 -1.052101 1.853558
6 3.610327 -1.996445 -0.322481
1 3.729888-1.983141 -1.410511
1 4.419897 -1.413264 0.127462
1 3.712006 -3.029958 0.019794
7 1.998885-0.107179 -0.503036
1 2.128164 -0.191232 -1.515519
1 0.908134 0.106982 -0.349294
7-0.621815 0.176173 -0.197237
6 -1.323588 0.585879 0.904146
6 -1.360239 -0.331174 -1.232109
6 -2.686422 0.521316 1.016682
1 -0.728151 0.984053 1.723329
6 -2.724607 -0.442320-1.227269
1 -0.789660-0.657937-2.099870
6 -3.464612 -0.008138-0.071875
1 -3.172599 0.867153 1.923349
1 -3.239398-0.855792 -2.088601
6-4.858461 -0.097501 -0.009814
7-6.030368 -0.173311 0.041985
```


Structure: $\mathbf{4 a}^{\mathbf{-}}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -340.502002 hartree
SCF Energy + ZPVE: -340.416655 hartree
Free Energy: -340.447861 hartree
Free Energy with quasiharmonic correction: -340.447861 hartree

```
6 0.127648-1.217892 -0.000010
6 1.498802 -1.150153 0.000019
72.237013 0.000133 0.000042
6 1.498610 1.150298 0.000033
60.127443 1.217794 0.000007
6-0.642122 -0.000115-0.000014
1 -0.369277-2.183477-0.000029
1 2.071777 -2.076167 0.000021
1 2.071429 2.076409 0.000050
1 -0.369646 2.183293 0.000002
6-2.036739-0.000260-0.000033
7-3.215033 0.000140-0.000050
```


$4 \mathrm{a} \cdot \mathrm{H}^{+}$

Structure: $\mathbf{4 a} \cdot \mathbf{H}^{+}$

Charge $=1$, Multiplicity $=1$
Number of imaginary frequencies: 0
SCF Energy: -340.855358 hartree
SCF Energy + ZPVE: -340.753396 hartree
Free Energy: -340.783778 hartree
Free Energy with quasiharmonic correction: - 340.783778 hartree

```
60.058975 1.216434 0.000010
6 1.440590 1.184402 -0.000027
7 2.070626-0.000003-0.000054
6 1.440586-1.184405 -0.000044
6 0.058970-1.216432-0.000006
6-0.628046 0.000003 0.000018
1 -0.464048 2.164534 0.000030
1 2.062800 2.070229 -0.000037
1 2.062793-2.070235 -0.000065
1 -0.464056-2.164530 0.000001
6-2.070991 0.000006 0.000051
7-3.226357-0.000004 0.000074
1 3.092125-0.000005 -0.000084
```


Structure: $\mathbf{4 a \cdot} \mathbf{H}$
Charge $=0$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: - 340.988685 hartree
SCF Energy + ZPVE: -340.889906 hartree
Free Energy: -340.921302 hartree
Free Energy with quasiharmonic correction: -340.921302 hartree

```
6-0.073509 1.228177 -0.000009
6 -1.433039 1.199967 0.000027
7-2.109009 -0.000000 0.000053
6-1.433038-1.199967 0.000043
6-0.073509 -1.228177 0.000008
6 0.669250 0.000000-0.000018
1 0.439316 2.183111 -0.000029
1 -2.045513 2.092517 0.000036
1 -2.045513 -2.092517 0.000064
1 0.439316 -2.183110 0.000001
6 2.074739 0.000000-0.000050
7 3.244431 0.000000-0.000076
1-3.120924 -0.000000 0.000082
```


Structure: $[\mathbf{4 a - H O B z}]^{\bullet-}$
Charge $=-1$, Multiplicity $=2$
Number of imaginary frequencies: 0
SCF Energy: -761.219615 hartree
SCF Energy + ZPVE: -761.016945 hartree
Enthalpy: $\quad-761.000778$ hartree
Free Energy: -761.064441 hartree
Free Energy with quasiharmonic correction: -761.058957 hartree

```
6 3.505073-1.128019-0.000008
6 2.171414 -0.848969 0.000001
71.712359 0.444286 0.000012
62.598606 1.492491 0.000005
6 3.945101 1.286522 -0.000003
64.461295-0.054378-0.000006
1 3.836846-2.160309-0.000017
```

```
1 1.395022 -1.605538 0.000000
1 2.161021 2.484378 0.000006
1 4.618004 2.136771-0.000009
6 5.841557-0.304915 -0.000005
7 6.994363-0.514831-0.000005
1 0.671426 0.634362 0.000015
8-0.914328 0.996751 0.000022
6-1.517093 -0.119849 0.000009
8-0.969892 -1.243250-0.000001
6-3.039629 -0.067027 0.000003
6-3.710462 1.159602 -0.000008
6-3.782458 -1.251263 0.000007
6-5.104669 1.202897-0.000015
1 -3.125450 2.073923-0.000011
6-5.176426 -1.211984 0.000001
1 -3.252007 -2.198494 0.000015
6-5.840312 0.016372 -0.000010
1 -5.618067 2.160268-0.000025
1 -5.745927 -2.137068 0.000006
1 -6.926145 0.048634-0.000015
```


[DIPA...4a•H ${ }^{+}$]

(optimized with constraint $d=1.02 \AA$)
The complex [DIPA...4a•H \mathbf{H}^{+}] was obtained by a constrained optimization with the $\mathrm{N}^{b}-\mathrm{H}$ distance fixed at $1.02 \AA$, the bond length found in the optimized structure of 4 -cyanopyridinium ion $\left(\mathbf{4 a} \cdot \mathbf{H}^{+}\right)$. Submitting the resultant geometry of $\left[\right.$ DIPA...4a•H \mathbf{H}^{+}] to another optimization without any distance constraint led back to $\left[i-\mathrm{PrNH}_{2}{ }^{\mathbf{4}} \mathbf{4}\right]^{+}$.

```
Structure: [DIPA...4a•H
Charge = 1, Multiplicity = 1
SCF Energy: -633.168238 hartree
```

```
6 2.844214 1.029460-0.044055
```

6 2.844214 1.029460-0.044055
1 3.729095 0.635986 0.472549
1 3.729095 0.635986 0.472549
6 2.281226 -1.426083 0.100561
6 2.281226 -1.426083 0.100561
1 1.517071 -2.096079 -0.315391
1 1.517071 -2.096079 -0.315391
6 2.072641 1.922347 0.925032
6 2.072641 1.922347 0.925032
1 1.696622 1.352598 1.780447
1 1.696622 1.352598 1.780447
1 2.715380 2.723153 1.305166
1 2.715380 2.723153 1.305166
1 1.217989 2.383528 0.414162
1 1.217989 2.383528 0.414162
6 3.313520 1.824072 -1.257313
6 3.313520 1.824072 -1.257313
1 3.906135 2.689450-0.946623
1 3.906135 2.689450-0.946623
1 3.928686 1.204027-1.918337
1 3.928686 1.204027-1.918337
1 2.451091 2.189514 -1.828124
1 2.451091 2.189514 -1.828124
6 2.108638 -1.399827 1.615517

```
6 2.108638 -1.399827 1.615517
```

```
1 2.228279 -2.411026 2.015571
1 2.860540-0.761510 2.092176
1 1.115159 -1.036602 1.900583
6 3.653353-1.970297-0.298190
1 3.761752 -1.987732 -1.387944
1 4.462916 -1.362545 0.120078
1 3.777582 -2.992575 0.073243
7 1.992402 -0.099484 -0.494929
1 2.103890 -0.201269 -1.503710
7 -0.707474 0.090625 -0.171437
6 -1.323588 0.590489 0.908046
6 -1.364992 -0.461794 -1.199576
6 -2.703984 0.553644 0.994202
1-0.690322 1.010397 1.681044
6 -2.746198 -0.534667 -1.180502
1 -0.758699-0.834137-2.017659
6-3.412060-0.015361-0.067391
1 -3.210418 0.956791 1.862475
1 -3.284716 -0.979949 -2.007827
6-4.853197 -0.069550-0.012979
7 -6.007174 -0.112842 0.029661
1 0.310242 0.115283-0.235037
```


Structure: Z-61'
Charge $=0$, Multiplicity $=1$
SCF Energy: -903.471306 hartree
SCF Energy + ZPVE: -903.116823 hartree
Enthalpy: -903.095176 hartree
Free Energy: -903.171887 hartree
Free Energy with quasiharmonic correction: -903.163717 hartree

```
6 1.190243 1.641796 0.674165
6 1.284471 3.025288 0.797981
6 2.207373 3.735069 0.028086
6 3.042859 3.053550-0.856718
6 2.957728 1.667397 -0.973521
1 0.642027 3.548567 1.499663
1 3.765319 3.599976 -1.455183
1 3.616592 1.150443 -1.664778
1 2.280385 4.814290 0.123641
6 2.019956 0.950511 -0.219045
7 0.756911 -1.068969 -0.122197
6 1.895987-0.529298-0.353357
6 3.118616 -1.329620 -0.721539
1 3.500611 -0.979785 -1.688306
1 2.819689 -2.375156 -0.849633
1 -0.689778 -0.461492 0.026145
1 0.483847 1.088960 1.285859
```

```
6 -4.989692 -1.488594 -0.162887
6-3.962511 -0.555039 0.003450
6-4.270768 0.787178 0.245583
6-5.602685 1.191049 0.320173
6 -6.626773 0.257618 0.154151
6-6.319585 -1.082869-0.087543
1 -4.734726 -2.527011 -0.349943
1 -3.470102 1.507883 0.373952
1 -5.841325 2.233432 0.507961
1 -7.663940 0.574302 0.213054
1 -7.115941 -1.809495 -0.216523
1 0.784233-2.085503 -0.220497
6 -2.542830 -1.026372 -0.082839
8-2.252500-2.192997-0.300558
8-1.649297 -0.072798 0.098111
6 4.229737 -1.230702 0.332520
1 4.544813 -0.186108 0.446118
1 3.833772 -1.552165 1.304905
6 5.439864-2.086964 -0.034460
1 5.121933-3.130798 -0.150756
1 5.823986 -1.764442 -1.010815
6 6.547814 -1.998922 1.011137
1 7.407158 -2.618038 0.735810
1 6.899106-0.967206 1.122832
1 6.189517 -2.337962 1.989437
```


[Z-6I']-
Structure: $\left[\mathbf{Z - 6 1} \mathbf{l}^{\mathbf{}}\right]^{-}$
Charge $=-1$, Multiplicity $=2$
SCF Energy: -903.570946 hartree
SCF Energy + ZPVE: -903.219410 hartree
Enthalpy: -903.197009 hartree
Free Energy: -903.276338 hartree
Free Energy with quasiharmonic correction: -903.267578 hartree

```
61.172807 2.055873 0.002198
6 1.401574 3.396694 0.274135
6 2.694949 3.937387 0.249093
6 3.769008 3.086214 -0.057169
6 3.564643 1.743869 -0.331354
1 0.555204 4.037360 0.511081
1 4.781953 3.480839-0.077947
1 4.423866 1.118825 -0.555441
1 2.862845 4.987783 0.464398
6 2.253268 1.172238-0.318813
7 0.794903-0.751729-0.531043
6 2.036738-0.201069-0.606901
6 3.160265 -1.149320-0.918634
```

$13.905966-0.664286-1.559214$
$12.758203-1.994406-1.492066$
$1-0.071126-0.243468-0.316675$
10.1531701 .6805490 .032060
$6-4.850898-1.509990-0.219871$
$6-3.984426-0.4365510 .007279$
$6-4.5165790 .7941060 .403584$
$6-5.8926060 .9507890 .571403$
$6-6.751454-0.1258460 .341881$
$6-6.227621-1.357908-0.054750$
$1-4.428287-2.461747-0.527055$
$1-3.8363691 .6220650 .577571$
$1-6.2960941 .9109890 .880648$
$1-7.823272-0.0053610 .471682$
$1-6.892532-2.198098-0.234734$
$10.661451-1.714679-0.804675$
$6-2.476485-0.609499-0.176630$
$8-2.064491-1.742341-0.513605$
$8-1.7655490 .416000 \quad 0.028768$
$63.854212-1.6923530 .341097$
$14.252160-0.853789 \quad 0.928280$
$13.107137-2.1936280 .971304$
$64.984802-2.6653010 .015293$
$14.584846-3.496213-0.580466$
$15.725636-2.156593-0.615538$
$65.664292-3.2113711 .268224$
$16.472869-3.9050261 .017058$
$16.092793-2.3990271 .865796$
$14.946637-3.7470471 .899535$

9. References

(1) (a) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997, 62, 7512-7515. (b) Fulmer, G. R.; Miller, A. J. M. Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M. Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176-2179.
(2) DiRocco, D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D. V.; Tudge, M. Late-Stage Functionalization of Biologically Active Heterocycles Through Photoredox Catalysis. Angew. Chem. int. Ed. 2014, 53, 4802-4806.
(3) The Photoreactor TAK120. http://wppr.photoreactor.de/tak120 (accessed August 28, 2019).
(4) Le, C.; Wismer, M. K.; Shi, Z.-C.; Zhang, R.; Conway, D. V.; Li, G.; Vachal, P.; Davies, I. W.; MacMillan, D. W. C. A General Small Scale Reactor To Enable Standardization and Acceleration of Photocatalytic Reactions. ACS Cent. Sci. 2017, 3, 647-653.
(5) Lehnherr, D.; Nicastri, M. C.; Lam, Y.-h.; Liu, J.; Newman, J. A.; Regalado, E. L.; DiRocco, D. A.; Rovis, T. Electrochemical Synthesis of Hindered Primary- and Secondary-Amines via Proton-Coupled Electron Transfer. J. Am. Chem. Soc., accepted.
(6) Sebhat, I. K.; Franklin, C.; Lo, M. M. C.; Chen, D.; Jewell, J. P.; Miller, R.; Pang, J.; Palyha, O.; Kan, Y.; Kelly, T. M.; Guan, X.M; Marsh, D.J.; Kosinski, J.A.; Metzger, J.M.; Lyons, K.; Dragovic, J.; Guzzo, P.R.; Henderson, A.J.; Reitman, M.L; Nargund, R.P.; Wyvratt, M.J.; Lin, L.S. Discovery of MK-5046, a Potent, Selective Bombesin Receptor Subtype-3 Agonist for the Treatment of Obesity. ACS Med. Chem. Lett. 2011, 2, 43-47.
(7) G. Hou, F. Gosselin, W. Li, J. C. McWilliams, Y. Sun, M. Weisel, P. D. O’Shea, C.-y. Chen, I. W. Davies, X. Zhang, Enantioselective Hydrogenation of N-H Imines. J. Am. Chem. Soc. 2009, 131, 9882-9883.
(8) Arias-Rotondo D. M.; McCusker, J. K. The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 2016, 45, 5803-5820.
(9) Ochola, J. R.; Wolf, M. O. The effect of photocatalyst excited state lifetime on the rate of photoredox catalysis. Org. Biomol. Chem. 2016, 14, 9088-9092.
(10) Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
(11) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215-241.
(12) Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L.A. J. Comp. Chem. 2001, 22, 976-984.
(13) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions J. Phys. Chem. B, 2009, 113, 6378-6396.
(14) Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Use of Solution-Phase Vibrational Frequencies in Continuum Models. J. Phys. Chem. B 2011, 115, 14556-14562.
(15) CYLview, 1.0.561 BETA; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org).
(16) Persistence of Vision Pty. Ltd. (2004), Persistence of Vision Raytracer (Version 3.6), [Computer software]. Retrieved from http://www.povray.org/download/
(17) Marenich, A. V.; Ho, J.; Coote, M. L.; Cramer, C. J.; Truhlar, D. G. Computational electrochemistry: prediction of liquid-phase reduction potentials. Phys. Chem. Chem. Phys. 2014, 16, 15068-15106.
(18) Pavlishchuk, V. V.; Addison, A. W. Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at $25^{\circ} \mathrm{C}$. Inorg. Chim. Acta 2000, 298, 97-101.

