Enantiospecific Synthesis of Nepetalactones by One-Step Oxidative NHC Catalysis

Wacharee Harnying*, Jörg-M. Neudörfl, ${ }^{\dagger}$ and Albrecht Berkessel*

Department of Chemistry (Organic Chemistry), University of Cologne, Greinstr. 4, 50939 Cologne, Germany; Fax: (+49) 221-4705102
*E-mail: berkessel@uni-koeln.de, wharnyin@uni-koeln.de
${ }^{\dagger}$ X-ray crystallography

Supporting Information

Table of contents

1. General 2
2. Synthesis of the nitrophenylhydrazines $\mathbf{1 0}$ 2
2.1 General procedure 1 (GP-1) for the nitration of anilines to give 9 2
2.2 General procedure 2 (GP-2) for the synthesis of hydrazines $\mathbf{1 0}$ from $\mathbf{9}$ 4
3. Synthesis of the triazolium salts $\mathbf{1 3 - 1 9}$ 6
3.1 Synthesis of the benzamides 11 6
3.2 General procedure 3 (GP-3) for the three-step synthesis of triazolium salts 7
4. Synthesis of 8 -oxocitronellal (5) from citronellol 10
5. One-step synthesis of nepetalactones (1a) from $\mathbf{5}$ 11
5.1 Procedure for the oxidative NHC-catalyzed transformation of $\mathbf{5}$ to 1a 11
5.2 Procedure for the oxidation of recovered $\mathbf{A}-\mathrm{H}_{2}$ to \mathbf{A} 12
6. HPL chromatograms for the determination of the enantiomeric composition of citronellol 13
7. Gas chromatograms for the determination of the enantiomeric composition of 1a 14
8. NMR spectra 16
9. X-ray data 36

1. General

Nuclear magnetic resonance $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ spectra were recorded on a Bruker Avance 300 instrument $\left({ }^{1} \mathrm{H}\right.$: $300.13 \mathrm{MHz},{ }^{13} \mathrm{C}: 75.46 \mathrm{MHz}$) at ambient temperature. Chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane (TMS) or solvent residual signals. The following abbreviations were used for chemical shift multiplicities in ${ }^{1} \mathrm{H}$ NMR spectra: $\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, sept $=$ septet, $\mathrm{m}=$ multiplet. IR spectra were recorded on a Shimadzu IR Affinity-1 FT-IR spectrometer. GC-MS analyses were done on a Hewlett Packard HP 6890 Series Plus gas chromatograph, injector and autosampler, HP 5973 Series mass-selective detector operated in electron-impact (EI) mode with an ionization energy of 75 eV and all other parameters set at autotune values, using H_{2} as carrier gas and a HP-5 MS column (30 mx 0.25 mm ID, $0.25 \mu \mathrm{~m}$ film thickness): temperature program (Std 50): $50^{\circ} \mathrm{C}, 5 \mathrm{~min} ; 20^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}, 280^{\circ} \mathrm{C}, 10 \mathrm{~min}$, unless otherwise stated. ESI-mass spectra were measured on an Agilent 1100 Series LC/MSD instrument with a G1312A binary pump, G1313A autosampler and G1956A mass-selective detector. GC analyses were done on an Agilent 6890N Network gas chromatograph, injector and autosampler, and flame ionization detector, using N_{2} as carrier gas. Elemental analyses were performed using an Elementar Vario EL elemental analyzer. Optical rotations were recorded on an Anton Paar MCP 200 polarimeter. Melting points were determined on a Büchi apparatus and are uncorrected.
$(S)-(-)-\beta$-Citronellol (Merck), (R)-(+)- β-citronellol (Sigma Aldrich), 2,4,6-trimethylaniline (Alfa Aesar), 2,6-diisopropylaniline (Alfa Aesar), 2,6-dimethylaniline (Sigma Aldrich), 2,6-diethylaniline (Sigma Aldrich), fuming nitric acid (90%, Acros), 3-nitrophenylhydrazine hydrochloride (TCI), triethyl orthoformate (Acros), chlorobenzene (Acros), and HCl in dioxane (ca. $4 \mathrm{M}, \mathrm{TCI}$) were purchased from the suppliers indicated and used as received. Diisopropyl ethyl amine (DIPEA) was distilled over CaH_{2} under Ar. Anhydrous THF and MeCN were dried over $\mathrm{Na} /$ benzophenone and CaH_{2}, respectively, and distilled under Ar.

2. Synthesis of the nitrophenylhydrazines 10

2.1 General procedure 1 (GP-1) for the nitration of anilines to give 9: ${ }^{1}$

In a three-necked round-bottom flask, a solution of aniline $\mathbf{8}\left(150 \mathrm{mmol}, 1.0\right.$ equiv) in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(100 \mathrm{~mL})$ was cooled in an ice-salt bath. Fuming nitric acid ($90 \%, d=1.5,1.0$ or 2.0 equiv) was slowly added dropwise, the internal temperature was controlled not to exceed $10{ }^{\circ} \mathrm{C}$. After the addition was complete, stirring of the reaction mixture was continued in the ice bath for 1 h . The mixture was then poured into ice (ca. 500 mL) and cooled down in an ice-water bath. The mixture was made slightly basic by slow addition of $\mathrm{NaOH}(6 \mathrm{~N})$, keeping the temperature below $25^{\circ} \mathrm{C}$. The resulting

[^0]precipitate (except for 9d, see below) was collected by suction filtration, washed with water and dried to give $\mathbf{9}$, which was used in the next step without further purification.

2,4,6-Trimethyl-3,5-dinitroaniline (9a). According to GP-1, this product was obtained from the
 reaction between $2,4,6$-trimethylaniline ($20.3 \mathrm{~g}, 150 \mathrm{mmol}, 1.0$ equiv) and 90% nitric acid ($15.0 \mathrm{~mL}, 300 \mathrm{mmol}$, 2.0 equiv) in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ for 1 h and then at rt for 1 h . After filtration, the product 9 a was obtained as a yellowbrown powder ($19.4 \mathrm{~g}, 86 \mathrm{mmol}, 57 \%$), which was used in the next step without further purification; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=5.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.02$ (s, $6 \mathrm{H}, 2 \mathrm{xCH}_{3}$), $1.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=150.1(\mathrm{ArC}), 145.2(2 \mathrm{xArC})$, $113.2(2 \mathrm{xArC}), 105.0(\mathrm{ArC}), 12.6\left(2 \mathrm{xCH}_{3}\right), 11.3\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3499(\mathrm{w}), 3410(\mathrm{~m})$, 2988 (w), 2884 (w), 1632 (m), 1510 (s), 1475 (m), 1362 (s), 1076 (m), 862 (m), 804 (m), 669 (m); GC-MS: $t_{\mathrm{R}}(\operatorname{Std} 50)=14.1 \mathrm{~min}, m / z=225\left(\mathrm{M}^{+}, 100 \%\right), 208,191,178,162,148,132,120,106,91$, 77, 65, 54.

2,4,6-Trimethyl-3-nitroaniline (9b). According to GP-1, this product was obtained from the reaction

9b between 2,4,6-trimethylaniline ($20.3 \mathrm{~g}, 150 \mathrm{mmol}, 1.0$ equiv) and 90% nitric acid ($7.0 \mathrm{~mL}, 150 \mathrm{mmol}, 1.0$ equiv) in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ for 1 h . After filtration, the product 9b was obtained as a yellow powder ($26.3 \mathrm{~g}, 146 \mathrm{mmol}$, 97%), which was used in the next step without further purification; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 3.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.16\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right), 2.05$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=141.5$ (ArC), $130.0(\mathrm{ArCH}), 123.8$ (ArC), $117.7(\mathrm{ArC}), 112.7(\mathrm{ArC}), 17.6\left(\mathrm{CH}_{3}\right), 16.6\left(\mathrm{CH}_{3}\right), 12.3\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3414$ (m), 3350 (w), 2928 (w), 2862 (w), 1632 (m), 1508 (s), 1474 (m), 1358 (s), 1306 (m), 1049 (m), 851 $(\mathrm{m}), 800(\mathrm{~m}) ;$ GC-MS: $t_{\mathrm{R}}(\operatorname{Std} 50)=12.5 \mathrm{~min}, m / z=180\left(\mathrm{M}^{+}, 100 \%\right), 163,150,135,118,108,91,77$, 65, 54.

2,6-Dimethyl-3-nitroaniline (9c). According to GP-1, this product was obtained from the reaction between 2,6 -dimethylaniline ($30.0 \mathrm{~g}, 247 \mathrm{mmol}, 1.0$ equiv) and 90% nitric acid

9c $\left(12.5 \mathrm{~mL}, 270 \mathrm{mmol}, 1.1\right.$ equiv) in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(180 \mathrm{~mL})$ at $10-15^{\circ} \mathrm{C}$ for 1 h . After filtration, the product 9 c was obtained as a yellow powder ($36.4 \mathrm{~g}, 219 \mathrm{mmol}$, 89%), which was used in the next step without further purification; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 3.79 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.2$ (ArC), 127.7 ArCH), 126.3 (ArC), 115.2(ArC), $113.4(\mathrm{ArCH}), 18.1\left(\mathrm{CH}_{3}\right), 12.9\left(\mathrm{CH}_{3}\right) ;$ IR (ATR): \tilde{v} $\left[\mathrm{cm}^{-1}\right]=3485(\mathrm{w}), 3421(\mathrm{~m}), 3389(\mathrm{w}), 3350(\mathrm{~m}), 2980(\mathrm{w}), 2951(\mathrm{w}), 2914(\mathrm{w}), 2851(\mathrm{w}), 1638(\mathrm{~m})$, 1593 (m), 1508 (s), 1458 (m), 1350 (s), 1321 (s), 1277 (m), 1219 (m), 1042 (m), 868 (m), 802 (s), 741 $(\mathrm{s}) ; \mathrm{GC}-\mathrm{MS}: t_{\mathrm{R}}(\operatorname{Std} 50)=12.4 \mathrm{~min}, m / z=166\left(\mathrm{M}^{+}, 100 \%\right), 149,136,121,104,94,77,65,51$.

2,6-Diethyl-3-nitroaniline (9d). According to GP-1, this product was obtained from the reaction

9d between 2,6-diethylaniline ($22.4 \mathrm{~g}, 150 \mathrm{mmol}, 1.0$ equiv) and 90% nitric acid (7.0 $\mathrm{mL}, 150 \mathrm{mmol}, 1.0$ equiv) in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ for 1 h . After basicification with NaOH , the mixture was extracted with EtOAc. The combined organic layers were washed with water, brine, dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, and filtered. After
removal of the solvent, the product 9d was obtained as a yellow oil ($29.1 \mathrm{~g}, 150 \mathrm{mmol}, 100 \%$), which was used in the next step without further purification; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.16(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 3.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.66\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.55\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.4(\mathrm{ArC}), 143.2(\mathrm{ArC}), 132.2(\mathrm{ArC}), 125.8(\mathrm{ArCH}), 121.0(\mathrm{ArC}), 113.6$ (ArCH), $24.6\left(\mathrm{CH}_{2}\right), 20.7\left(\mathrm{CH}_{2}\right), 12.5\left(\mathrm{CH}_{3}\right), 12.4\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3497(\mathrm{w}), 3410(\mathrm{~m})$, 2968 (m), 2938 (w), 2876 (m), 1732 (w), 1626 (m), 1512 (s), 1468 (m), 1431 (m), 1344 (s), 1955 (m), $814(\mathrm{~s}), 735(\mathrm{~m}) \mathrm{cm}^{-1} ;$ GC-MS: $t_{\mathrm{R}}(\operatorname{Std} 50)=13.1 \mathrm{~min}, m / z=194\left(\mathrm{M}^{+}, 100 \%\right), 177,162,149,135$, 117, 108, 91, 77, 65, 51.

2.2 General procedure 2 (GP-2) for the synthesis of hydrazines 10 from 9:

In a three-necked round-bottom flask equipped with an overhead stirrer, a suspension of aniline 9 (1.0 equiv) in conc. HCl (ca. $2 \mathrm{~mL} / \mathrm{mmol}$) was cooled in an ice-salt bath. A solution of NaNO_{2} (1.1 equiv) in water (ca. $0.18 \mathrm{~mL} / \mathrm{mmol}$) was added dropwise, keeping the internal reaction temperature below $5{ }^{\circ} \mathrm{C}$. After the addition was complete, stirring of the reaction mixture was continued in the ice bath for 30 min . A solution of $\mathrm{SnCl}_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}$ (2.5 equiv) in conc. HCl (ca. $0.25 \mathrm{~mL} / \mathrm{mmol}$) was added dropwise such that the temperature stayed below $5^{\circ} \mathrm{C}$. After completion of the addition, stirring of the reaction mixture was continued at $0^{\circ} \mathrm{C}$ for 1 h and then at rt for 24 h . The precipitate was collected by suction filtration, and washed with 4 N HCl (Important note: the product is soluble in water!) and then with $\mathrm{Et}_{2} \mathrm{O}$, providing the hydrazine hydrochloride $\mathbf{1 0} \cdot \mathrm{HCl}$, which can be used in the next step without further purification.

To obtain the free hydrazine $\mathbf{1 0}$, a suspension of the hydrochloride salt $\mathbf{1 0} \bullet \mathrm{HCl}$ in water (ca. 1 $\mathrm{mL} / \mathrm{mmol}$) was treated with cold $10 \% \mathrm{NaOH}$ (aq.) at $0^{\circ} \mathrm{C}$ until slightly basic. After stirring at $0^{\circ} \mathrm{C}$ for 1 h , the solid was collected by suction filtration and washed with water and $\mathrm{Et}_{2} \mathrm{O}$ to give the free hydrazine 10, which was used in the next step without further purification. The product should be stored at temperature below $4{ }^{\circ} \mathrm{C}$.
$\mathbf{2 , 4 , 6}$-Trimethyl-3,5-dinitrophenylhydrazine (10a). According to GP-2, the reaction of $\mathbf{9 a}$ (13.5 g , $60.0 \mathrm{mmol}, 1.0$ equiv) in conc. $\mathrm{HCl}(100 \mathrm{~mL})$ with a solution of $\mathrm{NaNO}_{2}(4.5 \mathrm{~g}, 66.0 \mathrm{mmol}, 1.1$ equiv $)$ in water (15 mL), followed by the addition of a solution of $\mathrm{SnCl}_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}(33.8 \mathrm{~g}, 149.8 \mathrm{mmol}, 2.5$ equiv) in conc. $\mathrm{HCl}(50 \mathrm{~mL})$ yielded $\mathbf{1 0 a} \cdot \mathrm{HCl}(12.1 \mathrm{~g}, 43.7 \mathrm{mmol}, 73 \%)$ as a yellow solid: ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=10.21$ (br s, $3 \mathrm{H}, \mathrm{NH}_{3}$), 7.38 (br s, $1 \mathrm{H}, \mathrm{NH}$), $2.38\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right.$), 2.14 (s , $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=149.9$ (2 xArC), 141.1 (ArC), 130.2 (2 xArC), 119.4 (ArC), $13.5\left(2 \mathrm{xCH}_{3}\right), 12.2\left(\mathrm{CH}_{3}\right)$.

10a
$\mathbf{1 0} \mathbf{a} \cdot \mathrm{HCl}(9.8 \mathrm{~g}, 35.4 \mathrm{mmol})$ was treated with NaOH to give $\mathbf{1 0 a}(8.2 \mathrm{~g}, 34.1$ $\mathrm{mmol}, 96 \%$) as a beige solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $4.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.20\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{CH}_{3}\right), 2.02(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=150.5(\mathrm{ArC}), 149.2(2 \mathrm{xArC}), 121.6$ (2 xArC), 111.5 (ArC), 13.8 $\left(2 \mathrm{xCH}_{3}\right), 11.9\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3352(\mathrm{w}), 3327(\mathrm{w}), 2980(\mathrm{w}), 2901$ (w), 1520 (s), 1389 (m), 1360 (m), 1294 (w), 1142 (w), 1070 (w), 1016 (w), 866 $(\mathrm{m}), 779(\mathrm{~m}), 679(\mathrm{~m}) ;$ GC-MS: $t_{\mathrm{R}}(\operatorname{Std} 50)=14.6 \mathrm{~min}, \quad m / z=240\left(\mathrm{M}^{+}, 100 \%\right), 224,206,189,178$, $160,149,131,117,105,91,77,65,51$.

2,4,6-Trimethyl-3-nitrophenylhydrazine (10b). According to GP-2, the reaction of $\mathbf{9 b}$ ($13.5 \mathrm{~g}, 74.9$ mmol, 1.0 equiv) in conc. $\mathrm{HCl}(120 \mathrm{~mL})$ with a solution of $\mathrm{NaNO}_{2}(5.7 \mathrm{~g}, 82.6 \mathrm{mmol}, 1.1$ equiv) in water (15 mL), followed by the addition of a solution of $\mathrm{SnCl}_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}(42.4 \mathrm{~g}, 187.5 \mathrm{mmol}, 2.5$ equiv) in conc. $\mathrm{HCl}(50 \mathrm{~mL})$ yielded $\mathbf{1 0 b} \cdot \mathrm{HCl}(17.0 \mathrm{~g}, 73.4 \mathrm{mmol}, 98 \%)$ as a yellow solid: ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=9.97$ (br s, $3 \mathrm{H}, \mathrm{NH}_{3}$), $7.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=150.3$ (ArC), 139.2 (ArC), $138.4(\mathrm{ArC}), 130.7(\mathrm{ArCH}), 127.3(\mathrm{ArC}), 126.9(\mathrm{ArC}), 18.0\left(\mathrm{CH}_{3}\right), 16.4\left(\mathrm{CH}_{3}\right), 12.9\left(\mathrm{CH}_{3}\right)$.

$\mathbf{1 0 b} \cdot \mathrm{HCl}(16.0 \mathrm{~g}, 69.1 \mathrm{mmol})$ was treated with NaOH to give $\mathbf{1 0 b}(10.5 \mathrm{~g}, 53.8$ $\mathrm{mmol}, 78 \%$) as a pale yellow solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.03(\mathrm{~s}, 1 \mathrm{H}$, ArH), 6.17 (br s, $3 \mathrm{H}, \mathrm{NHNH}_{2}$), 2.33 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.19 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.13 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.5$ (ArC), 142.9 (ArC), $135.0(\mathrm{ArC})$, $130.4(\mathrm{ArCH}), 124.1(\mathrm{ArC}), 123.8(\mathrm{ArC}), 18.1\left(\mathrm{CH}_{3}\right), 16.2\left(\mathrm{CH}_{3}\right), 13.1\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3358(\mathrm{w}), 3291(\mathrm{~m}), 3181(\mathrm{w}), 2972(\mathrm{w}), 2934(\mathrm{w}), 1607$ (w), 1512 (s, br), 1460 (m), 1375 (m), 1360 (s), 1277 (m), 1123 (s), 887 (s), 837 (m), 779 (s), 743 (s).; GCMS: $t_{\mathrm{R}}(\mathrm{Std} 50)=13.1 \mathrm{~min}, m / z=195\left(\mathrm{M}^{+}, 100 \%\right), 179,161,149,132,117,106,91,77,65,53$.

2,6-Dimethyl-3-nitrophenylhydrazine (10c). According to GP-2, the reaction of $\mathbf{9 c}(17.0 \mathrm{~g}, 102.3$ mmol, 1.0 equiv) in conc. $\mathrm{HCl}(150 \mathrm{~mL})$ with a solution of $\mathrm{NaNO}_{2}(7.7 \mathrm{~g}, 111.6 \mathrm{mmol}, 1.1$ equiv) in water (15 mL), followed by the addition of a solution of $\mathrm{SnCl}_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}(59.1 \mathrm{~g}, 261.9 \mathrm{mmol}, 2.5$ equiv) in conc. $\mathrm{HCl}(75 \mathrm{~mL})$ yielded $\mathbf{1 0 c} \cdot \mathrm{HCl}(14.7 \mathrm{~g}, 67.5 \mathrm{mmol}, 66 \%)$ as a beige solid; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=10.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH}_{3}\right), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 7.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=$ 149.4 (ArC), $142.4(\mathrm{ArC}), 141.5(\mathrm{ArC}), 130.3(\mathrm{ArC}), 129.3 \mathrm{ArCH}), 122.9(\mathrm{ArCH}), 19.1\left(\mathrm{CH}_{3}\right), 14.5$ $\left(\mathrm{CH}_{3}\right)$.

10c
$\mathbf{1 0} \mathbf{c} \cdot \mathrm{HCl}(10.0 \mathrm{~g}, 46.0 \mathrm{mmol})$ was treated with NaOH to give $\mathbf{1 0 c}(6.5 \mathrm{~g}, 35.9 \mathrm{mmol}$, 78%) as a beige solid; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta=7.37$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.10\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.37$ (s, $6 \mathrm{H}, 2 \mathrm{xCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=149.6(\mathrm{ArC}), 148.7(\mathrm{ArC})$, 134.7 (ArC), $128.1(\mathrm{ArCH}), 124.0(\mathrm{ArC}), 117.2(\mathrm{ArCH}), 18.6\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3350(\mathrm{w}), 3300(\mathrm{~m}), 3181(\mathrm{w}), 2976(\mathrm{w}), 1591(\mathrm{w}), 1516(\mathrm{~s}), 1354(\mathrm{~s}), 1283(\mathrm{~m})$, $1258(\mathrm{~m}), 1126(\mathrm{~m}), 1047(\mathrm{~m}), 912(\mathrm{~m}), 835(\mathrm{~m}), 812(\mathrm{~m}), 793(\mathrm{~m}), 743(\mathrm{~m})$; GC-MS: $t_{\mathrm{R}}(\operatorname{Std} 50)=$ $13.0 \mathrm{~min}, \mathrm{~m} / \mathrm{z}=181\left(\mathrm{M}^{+}, 100 \%\right), 165,147,134,119,106,91,77,65,51$.

2,6-Diethyl-3-nitrophenylhydrazine hydrochloride ($\mathbf{1 0 d} \cdot \mathbf{H C l}$). According to GP-2, the reaction of

$10 \mathrm{~d} \cdot \mathrm{HCl}$

9d ($13.6 \mathrm{~g}, 70.0 \mathrm{mmol}, 1.0$ equiv) in conc. $\mathrm{HCl}(100 \mathrm{~mL})$ with a solution of $\mathrm{NaNO}_{2}(5.3 \mathrm{~g}, 76.8 \mathrm{mmol}, 1.1$ equiv) in water $(15 \mathrm{~mL})$, followed by the addition of a solution of $\mathrm{SnCl}_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}$ ($39.6 \mathrm{~g}, 175.5 \mathrm{mmol}$, 2.5 equiv) in conc. $\mathrm{HCl}(50$ $\mathrm{mL})$ yielded $\mathbf{1 0 d} \bullet \mathrm{HCl}(14.9 \mathrm{~g}, 60.6 \mathrm{mmol}, 87 \%)$ as a cream coloured solid: ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta=10.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH}_{3}\right), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.88\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 1.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $1.13\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=148.6$ (ArC), 146.9 (ArC), $140.9(\mathrm{ArC}), 135.0(\mathrm{ArC}), 127.2(\mathrm{ArCH}), 122.9(\mathrm{ArCH}), 23.9\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{2}\right), 15.1\left(\mathrm{CH}_{3}\right), 14.1$
$\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3277(\mathrm{w}), 2974(\mathrm{~m}), 2876(\mathrm{~m}), 2662(\mathrm{w}), 1601(\mathrm{~m}), 1522(\mathrm{~s}), 1462(\mathrm{~m})$, 1356 (m), 1119 (w), 883 (w), 839 (m), 797 (m), 741 (m); ESI-MS (positive): m/z = $210\left(\mathrm{M}^{+}-\mathrm{Cl}\right.$, 100\%).

3. Synthesis of the triazolium salts 13-19

3.1 Synthesis of the benzamides 11

\mathbf{N}-(2,4,6-Trimethylphenyl)benzamide (11a): 2,4,6-Trimethylaniline ($32.0 \mathrm{~mL}, 228 \mathrm{mmol}, 1.0$ equiv) was dissolved in toluene (200 mL , HPLC grade). Benzoyl chloride ($30.0 \mathrm{~mL}, 260 \mathrm{mmol}, 1.1$ equiv) was added dropwise at room temperature. The resulting suspension was refluxed for 16 h under a drying tube containing CaCl_{2}. The reaction mixture was cooled down in an ice-bath and water (20 mL) was added. The resulting suspension was stirred for 30 min . The solid was collected by suction filtration and washed with EtOAc, affording the benzamide 11a as a colorless solid ($52.44 \mathrm{~g}, 219$ mmol, 96%); mp 207-208 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{2} 205-206{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta=9.68(\mathrm{~s}, 1 \mathrm{H}$, NH), 7.99-8.01 (m, 2H, PhH), 7.52-7.57 (m, 3H, PhH), $6.93(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.15(\mathrm{~s}$, $6 \mathrm{H}, 2 \mathrm{xCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=165.0$ (C=O), 135.6 (ArC), 135.3 (2 xArC), 134.5 (ArC), 132.7 (ArC), $131.4(\mathrm{ArCH}), 128.4(2 x \mathrm{ArCH}), 128.3(2 \mathrm{xArCH}), 127.5(2 \mathrm{xArCH}), 20.5\left(\mathrm{CH}_{3}\right)$, $18.0\left(2 \mathrm{xCH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3269(\mathrm{~m}), 2949(\mathrm{w}), 2916(\mathrm{w}), 1638(\mathrm{~s}), 1601(\mathrm{~m}), 1578(\mathrm{~m})$, 1514 (s), 1485 (s , 1308 (m), 1292 (s$), 1223$ (m), 1074 (m), 1028 (m), 851 (s$), 802$ (m), 710 (s$), 687$ $(\mathrm{s}), 665(\mathrm{~s}) ;$ GC-MS: $t_{\mathrm{R}}(\operatorname{Std} 50)=15.1 \mathrm{~min}, m / z=239\left(\mathrm{M}^{+}, 100 \%\right), 134,105,91,77,51$.
\mathbf{N}-(2,6-Diisopropylphenyl)benzamide (11b): 2,6-Diisopropylaniline ($37.6 \mathrm{~g}, 212 \mathrm{mmol}, 1.0$ equiv) was dissolved in toluene (200 ml , HPLC grade). Benzoyl chloride ($26.0 \mathrm{~mL}, 226 \mathrm{mmol}, 1.1$ equiv) was added dropwise at room temperature. The resulting suspension was refluxed for 18 h under a drying tube containing CaCl_{2}. The reaction mixture was cooled down in an ice-bath and water (20 mL) was added. The resulting suspension was stirred for 30 min . The solid was collected by suction filtration and washed with hexane, affording the benzamide 11b as a colorless solid ($53.2 \mathrm{~g}, 189$ $\mathrm{mmol}, 89 \%$); mp 264-265 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{3} 265.4 .-265.6^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.92(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.61-7.46$ (m, 3H, ArH), $7.38-7.31$ (m, 2H, ArH+NH), 7.23 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 3.14 (hept, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH}$), 1.22 (d, $J=6.9 \mathrm{~Hz}, 12 \mathrm{H}, 4 \mathrm{xCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta=166.1(\mathrm{C}=\mathrm{O}), 146.2(2 \mathrm{xArC}), 134.4(\mathrm{ArC}), 132.8(\mathrm{ArC}), 131.4(\mathrm{ArCH}), 128.4$ (2 xArCH), $127.6(2 \mathrm{xArCH}), 127.5(\mathrm{ArCH}), 122.9(2 \mathrm{xArCH}), 28.2(2 \mathrm{xCH}), 23.5\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3262(\mathrm{w}), 2963(\mathrm{~m}), 1639(\mathrm{~s}), 1518$ (s$), 1487$ (s$), 1458(\mathrm{~m}), 1285(\mathrm{~s}), 1256(\mathrm{~m})$, $797(\mathrm{~m}), 745(\mathrm{~m}), 692(\mathrm{~s}), 658(\mathrm{~m})$; GC-MS: $t_{\mathrm{R}}(\operatorname{Std} 50)=14.6 \mathrm{~min}, \mathrm{~m} / \mathrm{z}=281\left(\mathrm{M}^{+}\right), 264,238$ (100\%), 223, 208, 176, 160, 146, 130, 117, 105, 91, 77, 51.

[^1]
3.2 General procedure 3 (GP-3) for the three-step synthesis of triazolium salts

The benzamide 11 (1.0 equiv) was refluxed in SOCl_{2} (excess) for 2 h . The excess of SOCl_{2} was distilled off in vacuo and colleccted in a trap cooled with liquid nitrogen. The residue was further dried in high vacuum to give the corresponding benzimidoyl chloride, which was used in the next step without further purification. The imidoyl chlorides $\mathbf{1 1 a} \mathbf{- C l}$ and $\mathbf{1 1 b} \mathbf{- C l}$ were also prepared on large scale and stored below $4^{\circ} \mathrm{C}$ for use in the next step.

The hydrazine $\mathbf{1 0}$ (1.0 equiv) or $\mathbf{1 0} \bullet \mathrm{HCl}$ (1.2 equiv) and dry THF were added to the benzimidoyl chloride (1.0 eqiuv) under Ar atmosphere. The mixture was cooled in an ice bath, followed by the addition of N-methylmorpholine (NMM, 1.1-1.8 equiv). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and then at rt for 24 h . The volatiles were removed on a rotary evaporator. The residue was diluted with water and extracted with DCM. The combined organic layers were washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. After removal of the solvent, the crude product $\mathbf{1 2}$ was directly subjected to the final ring closing step.

To the crude 12, in a round-bottom flask, was successively added chlorobenzene, triethyl orthoformate, and anhydrous HCl (4 M in dioxane, 1-2 equiv). The reaction flask was immersed in an oil bath at $110^{\circ} \mathrm{C}$, and the mixture was stirred open to air for $1-16 \mathrm{~h}$. The reaction mixture was then concentrated on a rotary evaporator at $60^{\circ} \mathrm{C}$. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ by vigorously stirring for 1 h and the $\mathrm{Et}_{2} \mathrm{O}$ phase was removed. The residue was further triturated with EtOAc with vigorous stirring for at least 2 h . The resulting solid was collected by suction filtration and washed with EtOAc (trituration with EtOAc can be repeated several times), furnishing the desired triazolium salt (13-19).

1-(2,4,6-Trimethyl-3,5-dinitrophenyl)-4-(2,4,6-trimethylphenyl)-3-phenyl-1H-1,2,4-triazol-4-ium

 chloride (13). According to GP-3, the pre-formed 11a-Cl ($5.1 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv) was

13 condensed with $\mathbf{1 0 a}$ ($4.8 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv) in the presence of NMM ($2.9 \mathrm{~mL}, 26.0 \mathrm{mmol}, 1.3$ equiv) in THF (50 mL), followed by the reaction with $\mathrm{CH}(\mathrm{OEt})_{3}(10.0 \mathrm{~mL}, 60.0 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{HCl} /$ dioxane $(4 \mathrm{M}, 7.5 \mathrm{~mL}$, $30.0 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{PhCl}(8.0 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$ for 16 h . After several triturations with EtOAc, $\mathbf{1 3}$ was obtained as a brown solid ($1.0 \mathrm{~g}, 2.0 \mathrm{mmol}$, 10%): mp 266-267 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.57$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHN}$), $7.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.48(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 7.12(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.33\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{xCH}_{3}\right), 2.15\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=154.7$ (ArC), 150.6 (ArC), 149.7 (NCHN), 142.9 (ArC), 133.9 (ArC), 133.7 (ArCH), 133.0 (ArC), 130.8 (2 xArCH), 130.7 (ArC), $129.8(2 \mathrm{xArCH}), 127.7(2 \mathrm{xArCH}), 127.4(\mathrm{ArC}), 126.5(\mathrm{ArC}), 121.5(\mathrm{ArC}), 21.3\left(\mathrm{CH}_{3}\right), 18.0\left(2 \mathrm{xCH}_{3}\right)$, $14.2\left(2 \mathrm{xCH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right) ;$ IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2974(\mathrm{w}), 2901(\mathrm{~m}), 1605(\mathrm{w}), 1535(\mathrm{~s}), 1485(\mathrm{~m})$, 1449 (m), 1358 (m), 1233 (m), 1038 (m), 868 (m), 723 (m), $691(\mathrm{~s})$; ESI-MS (positive): $\mathrm{m} / \mathrm{z}=472$ $\left(\mathrm{M}^{+}-\mathrm{Cl}, 100 \%\right)$; elemental analysis calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Cl} \bullet 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.41 ; \mathrm{H}, 5.26 ; \mathrm{N}, 13.55$; found: C, 60.58; H, 5.27; N, 13.80.

14 mL), condensed with $\mathbf{1 0 b}$ ($4.8 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv) in the presence of NMM ($2.4 \mathrm{~mL}, 22.0 \mathrm{mmol}, 1.1$ equiv) in THF (50 mL), followed by the reaction with $\mathrm{CH}(\mathrm{OEt})_{3}(10.0 \mathrm{~mL}, 60.0 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{HCl} /$ dioxane (4 M, $7.5 \mathrm{~mL}, 30.0 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{PhCl}(8.0 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$ for 1 h . After several triturations with $\mathrm{EtOAc}, \mathbf{1 4}$ was obtained as a cream colored solid (3.2 g, $7.0 \mathrm{mmol}, 35 \%$): mp $274-275{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 7.59(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.54-7.37(\mathrm{~m}, 4 \mathrm{H}$, ArH), 7.28 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 7.09 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArH}$), $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 2.39 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}$), $2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.16 (br s, $6 \mathrm{H}, 2 \mathrm{xCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.1$ (ArC), 150.4 (ArC), 149.1 (NCHN), 142.6 (ArC), 137.9 (ArC), $134.0(\mathrm{ArC}), 133.8(\mathrm{ArC}), 133.3(\mathrm{ArCH}), 132.0(\mathrm{ArCH}), 130.7(2 \mathrm{xArCH})$, $129.7(2 \mathrm{xArCH}), 127.6(2 \mathrm{xArCH}), 127.5(\mathrm{ArC}), 121.9(\mathrm{ArC}), 21.3\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right), 18.0\left(2 \mathrm{xCH}_{3}\right)$, $17.7\left(\mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2996(\mathrm{w}), 2913(\mathrm{w}), 2685(\mathrm{w}), 2641(\mathrm{w}), 1601(\mathrm{w})$, 1551 (m), 1530 (s), 1478 (m), 1448 (m), 1366 (m), 1329 (w), 1252 (m), 1219 (m), 1157 (w), 1038 (m), $843(\mathrm{~m}), 781(\mathrm{~m}), 723(\mathrm{~s}), 691(\mathrm{~s}) ;$ ESI-MS (positive): $\mathrm{m} / \mathrm{z}=427\left(\mathrm{M}^{+}-\mathrm{Cl}, 100 \%\right)$; elemental analysis calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}: \mathrm{C}, 67.45 ; \mathrm{H}, 5.88 ; \mathrm{N}, 12.10$; found: C, 67.31; H, 6.12; N, 11.94.

1-(2,6-Dimethyl-3-nitrophenyl)-4-(2,4,6-trimethylphenyl)-3-phenyl-1H-1,2,4-triazol-4-ium
chloride (15). According to GP-3, the pre-formed 11a-Cl ($2.6 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) was condensed with $\mathbf{1 0 c}(1.8 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) in the presence of NMM (1.3

15 $\mathrm{mL}, 12.0 \mathrm{mmol}, 1.2$ equiv) in THF (30 mL), followed by the reaction with $\mathrm{CH}(\mathrm{OEt})_{3}(5.0 \mathrm{~mL}, 30.0 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{HCl} /$ dioxane $(4 \mathrm{M}, 3.8 \mathrm{~mL}, 15.0$ mmol, 1.5 equiv) in $\mathrm{PhCl}(5.0 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$ for 1 h . After several triturations with EtOAc, 15 was obtained as a beige solid ($0.45 \mathrm{~g}, 1.0 \mathrm{mmol}, 10 \%$): mp $198-199{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.58$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHN}$), 8.14 (d, J $=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.60(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.11(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{ArH}$), 2.51, 2.46, and 2.40 (each s, $3 \mathrm{x} 3 \mathrm{H}, 3 \mathrm{xCH}_{3}$), 2.23 and 2.12 (each br s, $2 \mathrm{x} 3 \mathrm{H}, 2 \mathrm{xCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.3$ (ArC), 149.1 (NCHN), 148.5 (ArC), 142.7 (ArC), 141.7 (ArC), 134.9 (ArC), 134.1 (ArC), 133.4 (ArCH), 131.4 (ArC), 130.8 (2 xArCH), 129.7 (3 xArCH), 127.8 $(\mathrm{ArCH}), 127.7(2 \mathrm{xArCH}), 127.5(\mathrm{ArC}), 121.8(\mathrm{ArC}), 21.3,18.7,17.99,14.94 . ; \mathrm{IR}(\mathrm{ATR}): \tilde{v}\left[\mathrm{~cm}^{-1}\right]=$ 3292 (w), 2968 (w), 2735 (w), 1605 (w), 1551 (m), 1518 (s), 1487 (m), 1445 (m), 1350 (s), 1225 (w), 1036 (w), $980(\mathrm{~m}), 853(\mathrm{~m}), 833(\mathrm{~m}), 768(\mathrm{~m}), 723(\mathrm{~s})$; ESI-MS (positive): $m / z=413\left(\mathrm{M}^{+}-\mathrm{Cl}, 100 \%\right)$; elemental analysis calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl} \bullet 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.57$; H, 5.72; N, 12.23; found: C, 65.18; H, 5.82; N, 11.88 .

According to GP-3, the pre-formed 11a-Cl ($5.3 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.0$ equiv) was condensed with 3nitrophenylhydrazine hydrochloride ($4.8 \mathrm{~g}, 25.0 \mathrm{mmol}, 1.2$ equiv) in the

16 presence of NMM ($4.1 \mathrm{~mL}, 37.0 \mathrm{mmol}, 1.8$ equiv) in THF (50 mL), followed by the reaction with $\mathrm{CH}(\mathrm{OEt})_{3}(8.0 \mathrm{~mL}, 48.0 \mathrm{mmol}, 2.3$ equiv) and HCl in dioxane ($4 \mathrm{M}, 6.2 \mathrm{~mL}, 24.8 \mathrm{mmol}$, 1.2 equiv) in $\mathrm{PhCl}(6.0 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$ for 1 h. After several triturations with EtOAc, $\mathbf{1 3}$ was obtained as a cream colored solid ($4.2 \mathrm{~g}, 10.0 \mathrm{mmol}, 48 \%$): mp $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 13.85 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHN}$), 9.60 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 9.16 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 8.40 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88 (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.70-7.42 (m, 5H, ArH), 7.10 (s, 2H, ArH), 2.40 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.17\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.9(\mathrm{ArC}), 148.8(\mathrm{ArC}), 145.4$ (NCHN), 142.6 (ArC), 135.7 (ArC), 134.3 (2 xArC), 133.3 (ArCH), 132.0 (ArCH), 130.7 (2 xArCH), 129.67 (2 xArCH), 127.9 (2 xArCH), 127.4 (ArCH), 125.2 (ArCH$), 121.9$ (ArC), 115.7 (ArCH$), 21.3$ $\left(\mathrm{CH}_{3}\right), 18.2\left(2 \mathrm{xCH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2996(\mathrm{w}), 2909(\mathrm{w}, \mathrm{br}), 2866(\mathrm{w}), 2370(\mathrm{w}), 1605(\mathrm{w})$, 1551 (m), 1524 (s), 1491 (m), 1460 (m), 1449 (m), 1344 (s), 1254 (m), 1183 (w), 1057 (w), 986 (m), $897(\mathrm{~m}), 858(\mathrm{~m}), 752(\mathrm{~m}), 735(\mathrm{~m}), 720(\mathrm{~s}) ;$ ESI-MS (positive): $\mathrm{m} / \mathrm{z}=385\left(\mathrm{M}^{+}-\mathrm{Cl}, 100 \%\right)$; elemental analysis calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}$: C, 65.63; H, 5.03; N, 13.31; found: C, 65.20; H, 5.07; N, 13.12.

4-(2,6-Diisopropyl)phenyl)-1-(2,4,6-trimethyl-3-nitrophenyl)-3-phenyl-1H-1,2,4-triazol-4-ium

 chloride (17). According to GP-3, 11b ($5.6 \mathrm{~g}, 20 \mathrm{mmol}, 1.0$ equiv) was condensed with $\mathbf{1 0 b}(4.8 \mathrm{~g}, 20$

17 mmol, 1.0 equiv) in the presence of NMM ($2.4 \mathrm{~mL}, 22.0 \mathrm{mmol}, 1.1$ equiv) in THF (50 mL), followed by the reaction with $\mathrm{CH}(\mathrm{OEt})_{3}(10.0 \mathrm{~mL}, 60 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{HCl} /$ dioxane ($4 \mathrm{M}, 7.5 \mathrm{~mL}, 30 \mathrm{mmol}$, 1.5 equiv) in $\mathrm{PhCl}(8.0 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$ for 1 h . After several triturations with EtOAc, $\mathbf{1 7}$ was obtained as a cream colored solid ($3.2 \mathrm{~g}, 6.4 \mathrm{mmol}, 32 \%$): mp $235-236{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 7.66(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.62-$ 7.53 (m, 1H, ArH), $7.50-7.36$ (m, 6H, ArH), 7.30 (s, 1H, ArH), 2.43 (s, 3H, CH_{3}), $2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.38(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{xCH}), 1.35(\mathrm{br} \mathrm{d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$, $2 \mathrm{xCH}_{3}$), $1.00\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.6$ (ArC), $150.5(\mathrm{ArC})$, 149.5 (NCHN), 144.7 (ArC), 137.8 (ArC), 133.8 (ArC), 133.3 (ArCH), 133.0 (ArCH), $132.0(\mathrm{ArCH})$, $129.5(2 \mathrm{xArCH}), 128.0(2 \mathrm{xArCH}), 127.6(\mathrm{ArC}), 127.3(\mathrm{ArC}), 125.6(2 \mathrm{xArCH}), 121.9(\mathrm{ArC}), 29.5$ $(2 \mathrm{xCH}), 24.7\left(2 \mathrm{xCH}_{3}\right), 22.6\left(2 \mathrm{xCH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2968$ (m), 2602 (m), 1605 (w), 1585 (w), 1526 (s), 1445 (m), 1368 (m), 1221 (w), 1059 (m), 945 (w), 845 $(\mathrm{m}), 783(\mathrm{~m}), 752(\mathrm{~m}), 694(\mathrm{~m})$; ESI-MS (positive): $m / z=469\left(\mathrm{M}^{+}-\mathrm{Cl}, 100 \%\right)$; elemental analysis calcd (\%) for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl} \bullet \mathrm{H}_{2} \mathrm{O}$: C, 66.59; H, 6.74; N, 10.71; found: C, 66.51; H, 6.53; N, 10.69.

4-(2,6-Diisopropyl)phenyl)-1-(2,6-dimethyl-3-nitrophenyl)-3-phenyl-1H-1,2,4-triazol-4-ium

 chloride (18). According to GP-3, the pre-formed 11b-Cl ($2.6 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) was

18 condensed with $\mathbf{1 0 c}(1.8 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) in the presence of NMM (1.3 $\mathrm{mL}, 12.0 \mathrm{mmol}, 1.2$ equiv in THF (30 mL), followed by the reaction with $\mathrm{CH}(\mathrm{OEt})_{3}(5.0 \mathrm{~mL}, 30.0 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{HCl} /$ dioxane $(4 \mathrm{M}, 3.8 \mathrm{~mL}, 15.0$ mmol, 1.5 equiv) in $\mathrm{PhCl}(5.0 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$ for 1 h . After several triturations
with EtOAc, $\mathbf{1 8}$ was obtained as a beige solid ($1.5 \mathrm{~g}, 3.0 \mathrm{mmol}, 30 \%$): mp 242-243 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 8.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.67(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $7.57(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.54-7.34(\mathrm{~m}, 7 \mathrm{H}), 2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.43(\mathrm{~m}, 2 \mathrm{H}$, 2 xCHMe), 1.39 and 1.34 ($2 \mathrm{x} \mathrm{br} \mathrm{d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}$), 1.03 (br s, $6 \mathrm{H}, 2 \mathrm{xCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=154.8(\mathrm{ArC}), 149.5(\mathrm{NCHN}), 148.4(\mathrm{ArC}), 144.7(\mathrm{ArC}), 141.6(\mathrm{ArC}), 134.9(\mathrm{ArC})$, 133.4 (ArCH), 133.1 (ArCH), 131.4 (ArC), 129.7 (ArCH), 129.6 (2 xArCH), 128.0 (2 xArCH), 127.8 (ArCH), 127.3 (ArC), $125.6(2 \mathrm{xArCH}), 121.6(\mathrm{ArC}), 29.5(2 \mathrm{xCH}), 24.7\left(2 \mathrm{xCH}_{3}\right), 22.5\left(2 \mathrm{xCH}_{3}\right), 18.6$ $\left(\mathrm{CH}_{3}\right), 14.9\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2965(\mathrm{~m}), 2872(\mathrm{w}), 2581(\mathrm{~m}), 1601(\mathrm{w}), 1587(\mathrm{w}), 1549$ (m), 1522 (s$), 1447$ (m), 1342 (s$), 1211$ (m), 936 (m), 851 (m), 814 (m), 775 (m), 721 (s$), 687$ (s$)$; ESIMS (positive): $m / z=455\left(\mathrm{M}^{+}-\mathrm{Cl}, 100 \%\right)$; elemental analysis calcd (\%) for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}: \mathrm{C}, 68.49 ; \mathrm{H}$, 6.36; N, 11.41; found: C, 68.29; H, 6.08; N, 11.13.

1-(2,6-Diethyl-3-nitrophenyl)-4-(2,6-diisopropyl)phenyl)-3-phenyl-1H-1,2,4-triazol-4-ium

chloride (19). According to GP-3, the pre-formed $\mathbf{1 1 b}-\mathbf{C l}(2.6 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) was

19 condensed with $\mathbf{1 0 d} \bullet \mathrm{HCl}(2.9 \mathrm{~g}, 11.8 \mathrm{mmol}, 1.2$ equiv) in the presence of NMM ($1.3 \mathrm{~mL}, 12.0 \mathrm{mmol}, 1.2$ equiv) in THF (50 mL), followed by the reaction with $\mathrm{CH}(\mathrm{OEt})_{3}(5.0 \mathrm{~mL}, 30.0 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{HCl} /$ dioxane (4 M, $2.5 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhCl}(5.0 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$ for 1 h . After several triturations with EtOAc, $\mathbf{1 9}$ was obtained as a cream colored solid (1.3 g, $2.5 \mathrm{mmol}, 25 \%$): $\mathrm{mp} 235-236{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.27$ (s, 1H, NCHN), $8.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.33(\mathrm{~m}, 6 \mathrm{H}), 2.86-2.32\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{xCH}_{2}\right.$ and 2 xCH$), 1.42-1.24(\mathrm{~m}, 12 \mathrm{H}$, $4 \mathrm{xCH}_{3}$), $1.01\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.4(\mathrm{ArC}), 150.3$ (NCHN), 148.2 (ArC), 147.2 (ArC), 144.7 (ArC), 136.7 (ArC), 134.2 (ArC), 133.4 (ArCH), 133.1 $(\mathrm{ArCH}), 129.6(2 \mathrm{xArCH}), 128.4(\mathrm{ArCH}), 128.1(3 \mathrm{xArCH}), 127.3(\mathrm{ArC}), 125.6(2 \mathrm{xArCH}), 121.8$ (ArC), $29.6(2 x C H), 25.1\left(\mathrm{CH}_{2}\right), 24.8\left(2 \mathrm{xCH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{2}\right), 14.8\left(\mathrm{CH}_{3}\right), 13.9$ $\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2970(\mathrm{~m}), 2872(\mathrm{w}), 2554(\mathrm{~m}), 2467(\mathrm{w}), 1587(\mathrm{w}), 1547(\mathrm{~m}), 1522(\mathrm{~s})$, 1466 (m), 1354 (m), 1059 (m), 818 (m), 777 (m), 723 (s), 691 (s); ESI-MS (positive): $m / z=483\left(\mathrm{M}^{+}-\right.$ $\mathrm{Cl}, 100 \%$); elemental analysis calcd (\%) for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}: \mathrm{C}, 69.42 ; \mathrm{H}, 6.80 ; \mathrm{N}, 10.79$; found: C , 69.20; H, 6.61; N, 10.57.

4. Synthesis of 8-oxocitronellal (5) from citronellol

For the synthesis of 5, a modification of a procedure described by Hofferberth and co-workers was employed. ${ }^{4}(S)$-Citronellol ($10 \mathrm{~g}, 64.0 \mathrm{mmol}, 1.0$ equiv) was added to a mixture of $\mathrm{SeO}_{2}(0.36 \mathrm{~g}$,

[^2]$3.3 \mathrm{mmol}, 5 \mathrm{~mol} \%$), salicylic acid ($0.92 \mathrm{~g}, 6.7 \mathrm{mmol}, 10 \mathrm{~mol} \%$), t - $\mathrm{BuOOH}\left(70 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, d=0.94,30$ $\mathrm{mL}, 219 \mathrm{mmol}, 3.4$ equiv), and $\mathrm{DCM}(20 \mathrm{~mL})$. The reaction mixture was stirred at rt for 3 d , diluted with toluene $(50 \mathrm{~mL})$ and evaporated on a rotary evaporator. The residue was diluted with $\mathrm{Et}_{2} \mathrm{O}(200$ mL), washed with $10 \% \mathrm{NaOH}(6 \times 25 \mathrm{~mL})$ and brine, dried over anhyd MgSO_{4}, and filtered. After removal of the solvent, the resulting pale yellow oil (10.8 g), containing a mixture of (S) $\mathbf{- 6}$ and (S)-7, was purified by passing it though a short pad of silica gel. First, by eluting with $\mathrm{EtOAc} / \mathrm{cHex}, 1: 4$, less polar impurities of $R_{\mathrm{f}} \mathrm{ca}$. 0.6 ($\mathrm{EtOAc} / \mathrm{Hex}, 1: 1$) were removed. Then, using EtOAc/cHex, 3:1 as eluent, a mixture of $(S)-6$ and $(S)-7$ was obtained $\left[R_{\mathrm{f}}=0.32\right.$ and $0.13(E t O A c / H e x, 1: 1), 7.7 \mathrm{~g}, 45.0 \mathrm{mmol}$, 70\%].

To this mixture of (S)-6 and (S)-7 ($45.0 \mathrm{mmol}, 1.0$ equiv) in dry $\mathrm{MeCN}(100 \mathrm{~mL}$) was added IBX $\left(22.0 \mathrm{~g}, 78.6 \mathrm{mmol}, 1.8\right.$ equiv). The suspension was stirred at $60^{\circ} \mathrm{C}$ for 3 h , cooled down to rt , and

(S)-5 diluted with EtOAc (100 mL). The solid was filtered off with a glass frit and washed with EtOAc, affording IBA which can be oxidized to IBX in 86% yield with Oxone, following the procedure described by Santagostino and co-workers. ${ }^{5}$ The filtrate was concentrated on a rotary evaporator and purified by column chromatography on silica (EtOAc/cHex, 1:9) to give (S) - $\mathbf{5}(6.2 \mathrm{~g}$, $36.9 \mathrm{mmol}, 58 \%)$ as a pale yellow oil: $R_{\mathrm{f}}=0.63(\mathrm{EtOAc} / \mathrm{Hex}, 1: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $9.78(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 9.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 6.48(\mathrm{td}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 2.40(\mathrm{~m}, 4 \mathrm{H}$, $2 \mathrm{xCH}_{2}$), $2.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.03\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.1(\mathrm{CHO}), 195.1(\mathrm{CHO}), 153.8(\mathrm{CH}), 50.8\left(\mathrm{CH}_{2}\right), 35.2\left(\mathrm{CH}_{2}\right), 27.7$ $(\mathrm{CH}), 26.4\left(\mathrm{CH}_{2}\right), 19.6\left(\mathrm{CH}_{3}\right), 9.2\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2959(\mathrm{~m}), 2922(\mathrm{~m}), 2716(\mathrm{w}), 1721$ (m), 1682 (s), 1643 (m), 1406 (m), 1381 (m), 1242 (m), 1067 (m), 1005 (m), 868 (w), 816 (w); GCMS: $t_{\mathrm{R}}(\operatorname{Std} 50)=11.0 \mathrm{~min}, m / z=168\left(\mathrm{M}^{+}, \operatorname{trace}\right), 139(100 \%), 124,109,97,79,69,55$.

(R)-5
$(R)-5$ was prepared in the same manner as described for (S)-5 starting from (R)-citronellol ($0.97 \mathrm{~g}, 5.8 \mathrm{mmol}$), providing $(R)-5$ in 55% yield $(0.54 \mathrm{~g}, 3.2 \mathrm{mmol})$ as a pale yellow oil.

5. One-step synthesis of nepetalactones (1a) from 5

5.1 Procedure for the oxidative NHC-catalyzed transformation of 5 to $\mathbf{1 a}$

(S)-5

NHC 14 ($5 \mathrm{~mol} \%$)
$\xrightarrow{\text { DIPEA (} 20 \mathrm{~mol} \% \text {) }}$
A (1.1 equiv) MS 4 Å, THF rt, 16 h

(+)-1a

A- H_{2}
(S) $\mathbf{- 5}(1.7 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) was added, under an Ar atmosphere, to a mixture of the triazolium salt $14(0.24 \mathrm{~g}, 0.5 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, the oxidant $\mathbf{A}(4.4 \mathrm{~g}, 10.8 \mathrm{mmol}, 1.1$ equiv), DIPEA ($34.0 \mu \mathrm{l}, 2.0 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and powdered MS $4 \AA(1.0 \mathrm{~g})$ in dry THF (25 mL). After stirring at rt for 16 h (to ensure full conversion), the reaction mixture was concentrated on a rotary evaporator. The

[^3]residue was diluted with $\mathrm{EtOAc} / \mathrm{cHex}(1: 3)$ and filtered through a short pad of silica. The filtrate was evaporated under reduced pressure to dryness. $\mathrm{MeOH}(30 \mathrm{~mL})$ was added to the residue and the resulting suspension was stirred for 30 min , followed by the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ to precipitate more of $\mathbf{A}-\mathrm{H}_{2} / \mathbf{A}$. The solid was collected by suction filtration and washed with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (3:1), affording $\mathbf{A}-\mathrm{H}_{2} / \mathbf{A}(4.3 \mathrm{~g}$, quant) as a light brown solid.

The filtrate was evaporated under reduced pressure and extracted with DCM (addition of brine to aid good phase separation). The combined organic phases were dried over anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporation. The resulting pale yellow oil was purified by the

(+)-1a Kugelrohr distillation (0.2 mbar/oven temperature $100^{\circ} \mathrm{C}$) to give (+)-1a ($1.4 \mathrm{~g}, 8.4$ $\mathrm{mmol}, 84 \%$) as a colorless oil: ds $>99 \%$ (GC on HP-5), ee $=97 \%$ (chiral GC on Lipodex E), $[\alpha]^{20}{ }_{\mathrm{D}}+21.9$ (c 0.25, $\mathrm{Et}_{2} \mathrm{O}$) $\left[\right.$ lit. ${ }^{6}+20.6$ (c $0.24, \mathrm{Et}_{2} \mathrm{O} ;>95 \%$ ee $] ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3), 2.76(\mathrm{q}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4 \mathrm{a}), 2.55$ - 2.26 (m, 2H, H7a+H7), 2.04 (m, 1H, H5), 1.90 (m, 1H, H6), 1.63 (m, 3H, H8), 1.56 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 5$), $1.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6), 1.20(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.9$ $(\mathrm{C}=\mathrm{O}), 133.5(\mathrm{CH}), 115.3\left(\mathrm{C}_{q}\right), 49.3(\mathrm{CH}), 40.7(\mathrm{CH}), 39.7(\mathrm{CH}), 33.0\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{3}\right)$, $15.5\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2957(\mathrm{~m}), 2870(\mathrm{w}), 1746(\mathrm{~s}), 1686(\mathrm{~m}), 1454(\mathrm{w}), 1337(\mathrm{~m}), 1198$ $(\mathrm{m}), 1125(\mathrm{~s}), 1028(\mathrm{~m}), 878(\mathrm{~m}), 826(\mathrm{w})$; GC-MS: $t_{\mathrm{R}}(\operatorname{Std} 50)=10.7 \mathrm{~min}, m / z=166\left(\mathrm{M}^{+}, 100 \%\right)$, 151, 138, 123, 109, 95, 81, 67, 53.
$(-1 \mathbf{l a}$ was prepared in the same manner as described for $(+)$ - $\mathbf{1 a}$ starting from $(R)-5$
$(-)-\mathbf{1 a}$

5.2 Procedure for the oxidation of recovered $\mathrm{A}-\mathrm{H}_{2}$ to A

$\xrightarrow[\begin{array}{l}\text { rt } 24 \text { h } \\ \text { open to air }\end{array}]{\substack{\mathrm{KOH} / \mathrm{H}_{2} \mathrm{O}}}$

For the recycling of $\mathbf{A}-\mathrm{H}_{2}$ to \mathbf{A}, a modification of the literature known synthesis of \mathbf{A} from 2,6-di-tert-butylphenol was applied. ${ }^{7}$ A 250 mL Erlenmeyer flask was charged with $\mathbf{A}-\mathrm{H}_{2} / \mathbf{A}(13.5 \mathrm{~g}, 32.9$ mmol, 1.0 equiv, recovered from the oxidative NHC-catalyzed transformation of $\mathbf{5}$ to $\mathbf{1}$), t - BuOH (120 mL) and an aqueous solution of $\mathrm{KOH}\left(6.5 \mathrm{~g}, 115.9 \mathrm{mmol}, 3.5\right.$ equiv) in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The brownyellow suspension was stirred vigorously open to air at rt for 24 h , resulting in a red-brown suspension. $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added and stirring of the mixture was continued for 10 min . The solid was collected by suction filtration and washed with water to give the product as a red-brown powder $(12.9 \mathrm{~g}, 96 \%)$. Further purification by recrystallization from toluene/EtOH (1:2) furnished $\mathbf{A}(12.1 \mathrm{~g}$, $29.6 \mathrm{mmol}, 90 \%$) as red-brown crystals with a purple reflex; 97% purity, contaminated with $3 \% \mathbf{A}-\mathrm{H}_{2}$

[^4](by NMR); mp 241-242 ${ }^{\circ} \mathrm{C}\left[\right.$ lit. ${ }^{3} 243.1-244{ }^{\circ} \mathrm{C}$ (corrected) ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71$ (s, $4 \mathrm{H}, \mathrm{ArH}), 1.37\left(\mathrm{~s}, 36 \mathrm{H}, 12 \mathrm{xCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=186.4(\mathrm{C}=\mathrm{O})$, $150.4\left(\mathrm{C}_{\mathrm{q}}\right), 136.1$ $\left.\left(\mathrm{C}_{\mathrm{q}}\right)\right)$, $126.0(\mathrm{ArCH}), 36.0\left(\mathrm{CMe}_{3}\right), 29.6\left(\mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3208(\mathrm{w}), 2957(\mathrm{~m}), 2907(\mathrm{~m})$, 2864 (m), 1638 (w), 1601 (s , 1566 (m), 1481 (m), 1456 (m), 1360 (s), 1260 (s), 1088 (s$), 1040$ (s$)$, 934 (m), 897 (s), 881 (s), 843 (m), 818 (m), 797 (m), 747 (w).

6. HPL chromatograms for the determination of the enantiomeric composition of citronellol

The enantiomeric composition of citronellol was determined from the corresponding benzoyl ester. A small vial was charged with citronellol ($23.4 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) and pyridine ($20.0 \mu \mathrm{~L}, 0.25$ mmol, 1.7 equiv). Benzoyl chloride ($20.0 \mu \mathrm{~L}, 0.17 \mathrm{mmol}, 1.1$ equiv) was added and the resulting white suspension was stirred at rt for 30 min . The reaction was quenched by adding 1 N HCl and diluted with hexanes. Aliquots of the organic phase were withdrawn, filtered through a plug of silica gel and washed with hexanes for HPLC analysis. The NMR data of the analyzed 3,7-dimethyloct-6-en-1-yl benzoate were identical to the literature. ${ }^{8}$

HPL chromatograms were acquired on a VWR Hitachi Chromaster HPLC equipped with Chiracel OD-H column. Conditions: solvent, 0.5% 2-propanol in hexanes; flow rate, $0.5 \mathrm{~mL} / \mathrm{min}$; oven temp, $18.0^{\circ} \mathrm{C}$; detector, UV @ 230 nm ; t_{R} of (R)-enantiomer $=11.6 \mathrm{~min}$ and t_{R} of (S)-enantiomer $=12.4$ min.
(S)-3,7-dimethyloct-6-en-1-yl benzoate derived from (S)-citronellol was 97% ee.
(R)-3,7-dimethyloct-6-en-1-yl benzoate derived from (R)-citronellol was $>99 \%$ ee.

Figure S1. HPL chromatogram of rac-3,7-dimethyloct-6-en-1-yl benzoate.

[^5]

Figure S2. HPL chromatograms of (S) - and (R)-3,7-dimethyloct-6-en-1-yl benzoate derived from commercial (S) - and (R)-citronellol, respectively.

7. Gas chromatograms for the determination of the enantiomeric composition of $1 \mathbf{1 a}$

Column: Lipodex-E; conditions: $80^{\circ} \mathrm{C}, 2 \mathrm{~min} ; 5^{\circ} \mathrm{C} / \mathrm{min}$ to $120^{\circ} \mathrm{C}, 5 \mathrm{~min} ; 1^{\circ} \mathrm{C} / \mathrm{min}$ to $135{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$; $10^{\circ} \mathrm{C} / \mathrm{min}$ to $190^{\circ} \mathrm{C}, 10 \mathrm{~min}$; flow $\left(\mathrm{N}_{2}\right), 1.0 \mathrm{~mL} / \mathrm{min} ; t_{\mathrm{R}}$ of $(+)-\mathbf{1 a}=21.9 \mathrm{~min}$ and t_{R} of $(+)-\mathbf{1 a}=25.5$ min.

Figure S3. Gas chromatogram of rac-1a.

Figure S4. Gas chromatograms of (+)-1a (a) and (-)-1a (b).
8. NMR spectra

Figure S5. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) of $\mathbf{9 a}$

	N $\stackrel{y}{1}$ \cdots

$\stackrel{+}{0}$
$\stackrel{y}{m}$
$\underset{\sim}{-}$
\vdots

Figure S6. ${ }^{13} \mathrm{C}$ NMR (75 MHz , APT, DMSO- d_{6}) of $\mathbf{9 a}$
(10)

Figure S7. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{9 b}$

Figure S8. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}$) of $\mathbf{9 b}$

Figure S9. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{9 c}$

9c

$\begin{array}{ll}\infty & 0 \\ \infty & 0 \\ \underset{\sim}{\infty} \\ \underset{1}{1} & 1\end{array}$

9d

Figure S11. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{9 d}$

Figure S12. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{9 d}$

Figure S13. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) of $\mathbf{1 0 a} \cdot \mathrm{HCl}$

$10 \mathrm{a} \cdot \mathrm{HCl}$

Figure S14. ${ }^{13} \mathrm{C}$ NMR (75 MHz , APT, DMSO- d_{6}) of $\mathbf{1 0 a} \cdot \mathrm{HCl}$

¢0.	$\stackrel{\sim}{\sim}$	No
。	$\stackrel{+}{1}$	

													"'m		
15	14	13	12	11	10	9		7	6	5	4	3	2	1	0

Figure S15. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) of $\mathbf{1 0 a}$

$\stackrel{\circ}{\circ}$
10a

Figure S16. ${ }^{13} \mathrm{C}$ NMR (75 MHz , APT, DMSO- d_{6}) of 10a

$\underbrace{\sim}_{i}$

Figure S17. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) of $\mathbf{1 0 b} \cdot \mathrm{HCl}$

Figure S18. ${ }^{13} \mathrm{C}$ NMR (75 MHz , APT, DMSO- d_{6}) of $\mathbf{1 0 b} \cdot \mathrm{HCl}$

Figure S19. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) of 10b

Figure S20. ${ }^{13} \mathrm{C}$ NMR (75 MHz , APT, DMSO- d_{6}) of 10b

- *

$\underbrace{\sim}_{i}$

Figure S21. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) of $\mathbf{1 0 c} \cdot \mathrm{HCl}$

Figure S22. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{DMSO}-d_{6}$) of $\mathbf{1 0 c} \cdot \mathrm{HCl}$

Figure S23. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) of 10c

Figure S24. ${ }^{13} \mathrm{C}$ NMR (75 MHz , APT, DMSO- d_{6}) of 10c

Figure S25. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) of $\mathbf{1 0 d} \cdot \mathrm{HCl}$

Figure S26. ${ }^{13} \mathrm{C}$ NMR (75 MHz , APT, DMSO- d_{6}) of $\mathbf{1 0 d} \cdot \mathrm{HCl}$

Figure S27. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 3}$

Figure S28. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 3}$

Figure S29. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 4}$

Figure S30. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 4}$

Figure S31. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 5}$

Figure S32. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}$) of $\mathbf{1 5}$

Figure S33. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 6}$

$\begin{array}{llllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & - \\ f 1 & (\mathrm{ppm})\end{array}$
Figure S34. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}$) of $\mathbf{1 6}$

Figure S35. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 7}$

Figure S36. ${ }^{13} \mathrm{C}$ NMR (75 MHz , APT, CDCl_{3}) of $\mathbf{1 7}$

Figure S37. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8}$

Figure S38. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8}$

Figure S39. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 9}$

Figure S40. ${ }^{13} \mathrm{C}$ NMR (75 MHz , APT, CDCl_{3}) of 19

(S)-5

Figure S41. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(S)-5$

N

(S)-5

Figure S42. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}$) of $(S)-5$

Figure S43. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (+)-1a

$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{0}{\lambda}$
\vdots
1

亥

(+)-1a

Figure S44. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}$) of (+)-1a

9. X-ray data

9.1 X-ray data of 14

Table S1. Crystal data and structure refinement for $\mathbf{1 4}$ (CCDC 1961414)

Identification code
Empirical formula
Moiety formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.679^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
nok423_1
C26 H27 Cl N4 O2
C26 H27 N4 O2; Cl
462.96

100(2) K
1.54178 A

Orthorhombic
Pna2 1
$\mathrm{a}=22.5200(9) \AA \quad \alpha=90^{\circ}$.
$b=7.8346(3) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=13.7697(5) \AA \quad \gamma=90^{\circ}$.
2429.46(16) \AA^{3}

4
$1.266 \mathrm{Mg} / \mathrm{m}^{3}$
$1.629 \mathrm{~mm}^{-1}$
976
$0.250 \times 0.250 \times 0.050 \mathrm{~mm}^{3}$
3.926 to 72.115°.
$-27<=\mathrm{h}<=27,-9<=\mathrm{k}<=8,-17<=\mathrm{l}<=16$
48295
$4673[\mathrm{R}(\mathrm{int})=0.0508]$
100.0 \%

Semi-empirical from equivalents
0.7536 and 0.4957

Full-matrix least-squares on F^{2}
4673 / 1 / 308
1.042
$\mathrm{R} 1=0.0245, \mathrm{wR} 2=0.0634$
$\mathrm{R} 1=0.0260, \mathrm{wR} 2=0.0638$
0.052(4)
n/a
0.184 and -0.217 e. \AA^{-3}

Figure S45. ORTEP of the X-ray crystal structure of 14. Thermal ellipsoids are drawn at 50% probability level.

9.2 X-ray data of 16

Table S2. Crystal data and structure refinement for $\mathbf{1 6}$ (CCDC 1961413)

Identification code	nok_ask18n
Empirical formula	C23 H21 Cl N4 O2
Moiety formula	C23 H21 N4 O2; Cl
Formula weight	420.89
Temperature	100(2) K
Wavelength	1.54178 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=9.0476(3) \AA \quad \alpha=99.0720(10)^{\circ}$.
	$\mathrm{b}=11.0348(4) \AA \quad \beta=111.3790(10)^{\circ}$.
	$\mathrm{c}=12.0848(4) \AA \quad \gamma=103.8250(10)^{\circ}$.
Volume	1050.22(6) \AA^{3}
Z	2
Density (calculated)	$1.331 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.832 \mathrm{~mm}^{-1}$
F(000)	440
Crystal size	$0.200 \times 0.100 \times 0.100 \mathrm{~mm}^{3}$
Theta range for data collection	4.081 to 72.263°.
Index ranges	$-11<=\mathrm{h}<=11,-13<=\mathrm{k}<=13,-14<=1<=14$
Reflections collected	23402
Independent reflections	$4116[\mathrm{R}(\mathrm{int})=0.0372]$
Completeness to theta $=67.679^{\circ}$	99.7 \%

Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

Semi-empirical from equivalents
0.7536 and 0.5916

Full-matrix least-squares on F^{2}
4116 / 0/278
1.068
$R 1=0.0337, w R 2=0.0895$
$\mathrm{R} 1=0.0366, \mathrm{wR} 2=0.0921$
n/a
0.224 and -0.323 e. \AA^{-3}

Figure S46. ORTEP of the X-ray crystal structure of 16. Thermal ellipsoids are drawn at 50% probability level.

9.3 X-ray data of $\mathbf{1 7}$

Table S3. Crystal data and structure refinement for $\mathbf{1 7}$ (CCDC 1961415)

Identification code
Empirical formula
Moiety formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
nok427ggn1_CHCl3
C30 H34 C14 N4 O2
C29 H33 N4 O2; Cl; C H Cl3
624.41

100(2) K
1.54178 Å

Triclinic
P-1
$\mathrm{a}=11.3217(7) \AA \quad \alpha=112.3446(18)^{\circ}$.
$\mathrm{b}=11.5130(7) \AA \quad \beta=97.9298(18)^{\circ}$.

$$
\mathrm{c}=13.6237(8) \AA \quad \gamma=103.7307(19)^{\circ} .
$$

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.679^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$1543.21(16) \AA^{3}$
2
$1.344 \mathrm{Mg} / \mathrm{m}^{3}$
$3.756 \mathrm{~mm}^{-1}$
652
$0.400 \times 0.400 \times 0.200 \mathrm{~mm}^{3}$
3.627 to 72.173°.
$-13<=\mathrm{h}<=13,-13<=\mathrm{k}<=14,-16<=1<=16$
28124
$6005[\mathrm{R}(\mathrm{int})=0.0671]$
99.7 \%

Semi-empirical from equivalents
0.7536 and 0.4808

Full-matrix least-squares on F^{2}
6005 / 0 / 369
1.054
$R 1=0.0401, w R 2=0.1040$
$R 1=0.0539, w R 2=0.1080$
0.0069(4)
0.424 and -0.492 e. \AA^{-3}

Figure S47. ORTEP of the X-ray crystal structure of $\mathbf{1 7} \bullet \mathrm{CHCl}_{3}$. Thermal ellipsoids are drawn at 50% probability level.

9.4 X-ray data of 18

Table S4. Crystal data and structure refinement for $\mathbf{1 8}$ (CCDC 1961416)

Identification code
Empirical formula
Moiety formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.679^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
nok380nn
C30 H33 C17 N4 O2
C28 H31 Cl N4 O2; "(C H Cl3)
729.75

100(2) K
1.54178 A

Triclinic
P-1
$a=9.6459(8) \AA \quad \alpha=83.456(3)^{\circ}$.
$\mathrm{b}=12.5634(8) \AA \quad \beta=76.905(3)^{\circ}$.
$\mathrm{c}=14.9967(14) \AA \quad \gamma=83.434(2)^{\circ}$. 1751.2(2) \AA^{3}

2
$1.384 \mathrm{Mg} / \mathrm{m}^{3}$
$5.447 \mathrm{~mm}^{-1}$
752
$0.300 \times 0.200 \times 0.050 \mathrm{~mm}^{3}$
3.038 to 72.338°.
$-10<=\mathrm{h}<=11,-15<=\mathrm{k}<=15,-18<=\mathrm{l}<=18$
78799
$6917[\mathrm{R}(\mathrm{int})=0.0506]$
99.9 \%

Semi-empirical from equivalents
0.7536 and 0.4551

Full-matrix least-squares on F^{2}
6917 / 0 / 398
1.053
$\mathrm{R} 1=0.0417, \mathrm{wR} 2=0.1022$
$R 1=0.0451, w R 2=0.1048$
n/a
0.729 and -0.880 e. \AA^{-3}

Figure S48. ORTEP of the X-ray crystal structure of $\mathbf{1 8} \bullet \mathbf{2} \mathrm{CHCl}_{3}$. Thermal ellipsoids are drawn at 50 \% probability level.

[^0]: ${ }^{1}$ (a) Noelting, E.; Stoecklin, L. Ber. Dtsch. Chem. Ges. 1891, 24, 564-572. (b) Bergman, J.; Sand, P. Tetrahedron 1990, 46, 6085-6112.

[^1]: ${ }^{2}$ Fan, W.; Yang, Y.; Lei, J.; Jiang, Q.; Zhou, W. J. Org. Chem. 2015, 80, 8782-8789.
 ${ }^{3}$ Gong, C.; Ding, H.; Lu, C.; Zhao, B.; Yao, Y. Dalton Trans. 2017, 46, 6031-6038.

[^2]: ${ }^{4}$ Fischman, C. J.; Adler, S.; Hofferberth, J. E. J. Org. Chem. 2013, 78, 7318-7323.

[^3]: ${ }^{5}$ Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537-4538.

[^4]: ${ }^{6}$ Sakurai, K.; Ikeda, K.; Mori, K. Agric. Biol. Chem. 1988, 52, 2369-2371.
 ${ }^{7}$ Carrera, M.; de la Viuda, M.; Guijarro, A. Synlett 2016, 27, 2783-2787.

[^5]: ${ }^{8}$ Ye, D.; Liu, Z.; Chen, H.; Sessler, J. L.; Lei, C. Org. Lett. 2019, 21, 6888-6892.

