Supporting Information

Systematical Investigation of Chain Length Effect on the Melting

Point of a Series of Bifunctional Anthraquinone Derivatives via X-

Ray Diffraction and Scanning Tunneling Microscopy

Tianze Hu, Yujia Wang, Meiqiu Dong, Juntian Wu, Xinrui, Miao, Yi Hu*, Wenli Deng*

College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.

***Tel:** +86 020 22236708

Corresponding authors:

Yi Hu (huyiyangyang@126.com);

Wenli Deng (wldeng@scut.edu.cn)

Contents

1. Crystal structure analysis	2
2. Hirshfeld Surface and fingerplots analysis	5
3. The decomposition of interactions energy	6
4. 2D self-assembly analysis	11

1. Crystal structure analysis

Figure S1. Hydrogen bonds presented in A-OC₁ (a)C(sp³)-H···O(sp²)=C(2.473 Å,138.12°). (b)C(sp³)-H···O(sp²)=C(2.565 Å, 161.78°).

Figure S2. Hydrogen bonds presented in A-OC₃ (a) $C(sp^2)$ -H···O(sp³)(2.438 Å,174.01°). (b) $C(sp^3)$ -H···O(sp²)=C (2.545Å,161.61°).

Figure S3. (a) Calculated the electrostatic potential of A-OC₃ molecule. (b) Molecular electrostatic potential less than 0. The color scales from -5 (red) to 5 kcal mol⁻¹ (blue).

Figure S4. Hydrogen bonds presented in A-OC₅ (a)C(sp³)–H···O(sp²)=C(2.657 Å,147.38°). (b) C(sp³)–H···O(sp²)=C(2.602 Å,124.17° and 2.647 Å,122.96°).

Figure S5. Hydrogen bonds presented in A-OC₅ (a)C(sp³)–H···O(sp²)=C(2.625 Å,146.84°). (b) C(sp³)–H···O(sp²)=C(2.607 Å,125.80°).

Figure S6. Hydrogen bonds presented in A-OC₄ (a) $C(sp^2)$ -H···O(sp²)=C(2.603 Å,124.49°). (b) $C(sp^3)$ -H···O(sp²)=C(2.675 Å,174.60°).

Hirshfeld Full О…Н surface 2.8 2.6 2.4 2.2 1.8 1.6 1.4 1.2 1.0 0.8 0.6 A-OC₁ 6 1.8 2.0 2.2 2.4 2.6 2.8 2.8 2.6 2.4 2.2 2.0 1.8 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 A-OC₃ 1.2 1.0).8).6 4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 A-OC₄ 2.0 2.2 2.4 2.6 28 2.8 2.6 2.4 2.2 1.8 1.6 1.4 1.2 1.0 0.8 0.6 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 A-OC₅ A-OC₆

2. Hirshfeld Surface and fingerplots analysis

Figure S7. Hirshfeld surface and Fingerprint Plots for A-OC_n (n = 1, 3, 4, 5, 6).

3. The decomposition of interactions energy

Figure S8. Colour coding based on the interactions energy with the central molecule for A-OC₁.

N	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot	ratio
2	-	11.59	B3LYP/6-31G(d,p)	-9.7	-2.4	-12.2	8.3	-17.5	<mark>0.795</mark>
2	-	11.27	B3LYP/6-31G(d,p)	-0.6	-0.4	-6.1	2.3	-4.8	0.098
2	-	11.27	B3LYP/6-31G(d,p)	-7.1	-1.4	-5.6	5.4	-10.0	<mark>1.268</mark>
2	-	10.56	B3LYP/6-31G(d,p)	-7.1	-2.5	-15.5	9.6	-16.9	<mark>0.458</mark>
2	-	10.17	B3LYP/6-31G(d,p)	-7.3	-1.7	-17.4	10.6	-17.6	<mark>0.420</mark>
2	x, y, z	3.94	B3LYP/6-31G(d,p)	-4.0	-2.4	-83.5	48.8	-48.6	0.048
4	-x+1/2, y+1/2, -z	8.37	B3LYP/6-31G(d,p)	-6.9	-1.7	-12.9	11.4	-12.7	<mark>0.535</mark>

Table S1. Molecular pairs and the stabilization energies (kJ mol⁻¹) obtained from decomposition of interactions energy calculation for A-OC₁

Figure S9. Colour coding based on the interactions energy with the central molecule for A-OC_{3.}

N	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot	ratio
2	x, y, z	16.42	B3LYP/6-31G(d,p)	0.2	-0.1	-3.4	0.8	-2.3	-0.059
2	x, y, z	4.91	B3LYP/6-31G(d,p)	-13.7	-2.6	-99.3	58.1	-67.1	0.138
2	x, y, z	11.69	B3LYP/6-31G(d,p)	-12.1	-1.5	-24.1	22.0	-21.3	<mark>0.502</mark>
2	x, y, z	13.14	B3LYP/6-31G(d,p)	-3.1	-3.0	-20.3	11.4	-16.1	0.153
2	x, y, z	18.87	B3LYP/6-31G(d,p)	-0.2	-0.2	-7.4	4.2	-4.2	0.027
2	x, y, z	8.80	B3LYP/6-31G(d,p)	-5.8	-1.4	-31.7	17.3	-24.1	0.183
2	x, y, z	11.14	B3LYP/6-31G(d,p)	-8.8	-2.4	-12.3	9.7	-15.8	<mark>0.715</mark>
2	x, y, z	16.51	B3LYP/6-31G(d,p)	0.3	-0.1	-2.5	0.0	-1.9	-0.120

Table S2. Molecular pairs and the stabilization energies (kJ mol⁻¹) obtained from decomposition of interactions energy calculation for $A-OC_3$

Figure S10. Colour coding based on the interactions energy with the central molecule for $A-OC_{4}$.

Table S3.	Molecular	pairs and	the stabilization	ation energie	es (kJ mo	ol ⁻¹) obtained
from decor	mposition	of interact	ions energy o	calculation fo	or A-OC ₄	ļ

N	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot	ratio
2	x, y, z	10.98	B3LYP/6-31G(d,p)	-8.6	-1.1	-52.8	31.1	-36.6	0.163
4	-x+1/2, y+1/2, - z+1/2	10.04	B3LYP/6-31G(d,p)	-4.6	-2.0	-19.6	13.7	-15.0	<mark>0.235</mark>
4	-x+1/2, y+1/2, - z+1/2	13.40	B3LYP/6-31G(d,p)	-0.1	-0.1	-1.9	0.0	-1.8	0.053
2	x, y, z	7.23	B3LYP/6-31G(d,p)	-13.9	-2.2	-83.9	48.3	-59.5	0.166
4	-x+1/2, y+1/2, - z+1/2	8.67	B3LYP/6-31G(d,p)	-5.2	-2.1	-9.7	6.1	-11.7	<mark>0.536</mark>
4	-x+1/2, y+1/2, - z+1/2	14.33	B3LYP/6-31G(d,p)	-1.1	-0.2	-6.4	2.8	-5.1	0.172
2	x, y, z	16.65	B3LYP/6-31G(d,p)	-3.4	-0.6	-24.5	16.5	-15.1	0.139

Figure S11. Colour coding based on the interactions energy with the central molecule for A-OC_{5.}

Table S4. Molecular pairs and the stabilization energies (kJ mol⁻¹) obtained from decomposition of interactions energy calculation for $A-OC_5$

Ν	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot	ratio
2	x, y, z	17.46	B3LYP/6-31G(d,p)	-1.8	-0.3	-25.8	12.8	-16.6	0.070
2	x, y, z	9.91	B3LYP/6-31G(d,p)	-13.2	-4.5	-24.3	17.1	-27.8	<mark>0.543</mark>
2	x, y, z	4.63	B3LYP/6-31G(d,p)	-14.1	-2.0	-116.0	64.7	-77.4	0.122
2	x, y, z	22.26	B3LYP/6-31G(d,p)	-0.2	-0.0	-5.7	1.7	-4.1	0.035
2	x, y, z	15.50	B3LYP/6-31G(d,p)	-2.3	-0.2	-22.8	11.8	-15.1	0.101
2	x, y, z	8.12	B3LYP/6-31G(d,p)	-11.7	-5.6	-44.5	33.7	-34.4	<mark>0.263</mark>
2	x, y, z	20.49	B3LYP/6-31G(d,p)	-0.8	-0.1	-6.8	3.2	-4.9	0.118

Figure S12. Colour coding based on the interactions energy with the central molecule for A-OC₆.

Table S5. Molecular pairs and the stabilization energies (kJ mol⁻¹) obtained from decomposition of interactions energy calculation for $A-OC_6$

Ν	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot	ratio
2	x, y, z	4.63	B3LYP/6-31G(d,p)	-14.5	-2.2	-123.2	68.2	-82.1	0.118
2	x, y, z	9.98	B3LYP/6-31G(d,p)	-12.1	-4.3	-23.5	14.8	-27.3	<mark>0.515</mark>
2	x, y, z	16.83	B3LYP/6-31G(d,p)	-3.4	-0.2	-23.3	15.3	-14.6	0.146
2	x, y, z	8.24	B3LYP/6-31G(d,p)	-12.4	-5.4	-43.5	31.2	-35.8	<mark>0.285</mark>
2	x, y, z	21.89	B3LYP/6-31G(d,p)	-0.6	-0.1	-8.5	2.7	-6.4	0.071
2	x, y, z	18.67	B3LYP/6-31G(d,p)	-4.0	-0.4	-32.2	17.5	-21.7	0.124
2	x, y, z	23.56	B3LYP/6-31G(d,p)	-2.1	-0.1	-10.7	9.0	-6.0	0.196

4. 2D self-assembly analysis

Figure S13. The image of the highest occupied molecular orbital (HOMO).

Figure S14. STM images and modes of the A-OC_n (n = 9, 12–18) at the 1-octanoic acid/HOPG interface.