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Computational details

The electronic relaxation time of two-dimensional (2D) SnTe was calculated using
Quantum Espresso! and EPW?. The electrical transport properties of 2D SnTe were
calculated using BoltzTraP22 based on the computed electronic relaxation time. Norm-
conserving relativistic pseudopotentials* > were applied. The kinetic energy cutoff was
set to 100 Ry. The convergence criteria for total energy and atomic force were set to
10® Ry and 10° Ry/a.u., respectively. A 20x20x1 k-mesh was used in the self-
consistent calculations and a 10x10x1 g-mesh was used in the phonon calculations. For
EPW, 20x20x1 k-mesh and 10x10x1 g-mesh were interpolated to 200x200x1 fine k-
mesh and 100x100x1 fine g-mesh, respectively. A broadening parameter of 10 meV
was used in the energy-conserving 6 functions.

Table S1. Optimized lattice parameters of the supercells of doped 2D SnTe.

Sn site Te site
a(Ad) bA) a(Ad) bA)
As-doped 18.23 18.29 18.14 18.18
Sb-doped 18.23 18.32 18.16 18.21
Bi-doped 18.26 18.33 18.16 18.23
Br-doped 18.07 18.11 18.26 18.30
I-doped 18.10 18.10 18.31 18.32
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Figure S1. Scattering rate of 2D SnTe at 300 K (left) and 600 K (right) calculated with
different k-mesh and g-mesh densities.
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Figure S2. Seebeck coefficients (top), electrical conductivities (middle) and power
factors (bottom) of 2D SnTe along a (solid curves) and b (dashed curves) directions at
300 K (left) and 600 K (right) calculated with different k-mesh and g-mesh densities.
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Figure S3. Phonon dispersions of 2D SnTe under different equibiaxial compressive
stresses: (a) |Aa/ao] = 1.23% and (b) |Aa/ao] = 2.35%. Negative values represent
imaginary phonon frequencies.
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Figure S4. Band structures and density of states of 2D SnTe under different equibiaxial
compressive stresses (the values of |Da/ao| are given in the figure). The valence band
maximum is shifted to 0 eV.
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Figure S5. Effective band structures of (a) Bi-doped (Sn site), (b) Br-doped (Te site),
and (c) I-doped (Te site) 2D SnTe. Fermi level is located at 0 eV.
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