Supplementary Materials

Strain and Doping in Two-Dimensional SnTe Nanosheets: Implications for Thermoelectric Conversion

Fen Xiong^{1,2}, Hong Bin Tan¹, Chengliang Xia¹, and Yue Chen^{1,2,*}

¹Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
²HKU Zhejiang Institute of Research and Innovation, 1623 Dayuan Road, Lin An 311305, China
*Corresponding author: yuechen@hku.hk

Computational details

The electronic relaxation time of two-dimensional (2D) SnTe was calculated using Quantum Espresso¹ and EPW². The electrical transport properties of 2D SnTe were calculated using BoltzTraP2³ based on the computed electronic relaxation time. Norm-conserving relativistic pseudopotentials^{4, 5} were applied. The kinetic energy cutoff was set to 100 Ry. The convergence criteria for total energy and atomic force were set to 10^{-6} Ry and 10^{-5} Ry/a.u., respectively. A $20 \times 20 \times 1$ *k*-mesh was used in the self-consistent calculations and a $10 \times 10 \times 1$ *q*-mesh was used in the phonon calculations. For EPW, $20 \times 20 \times 1$ *k*-mesh and $10 \times 10 \times 1$ *q*-mesh, respectively. A broadening parameter of 10 meV was used in the energy-conserving δ functions.

	Sn site		Te site		
	<i>a</i> (Å)	b (Å)		<i>a</i> (Å)	<i>b</i> (Å)
As-doped	18.23	18.29		18.14	18.18
Sb-doped	18.23	18.32		18.16	18.21
Bi-doped	18.26	18.33		18.16	18.23
Br-doped	18.07	18.11		18.26	18.30
I-doped	18.10	18.10		18.31	18.32

Table S1. Optimized lattice parameters of the supercells of doped 2D SnTe.

Figure S1. Scattering rate of 2D SnTe at 300 K (left) and 600 K (right) calculated with different k-mesh and q-mesh densities.

Figure S2. Seebeck coefficients (top), electrical conductivities (middle) and power factors (bottom) of 2D SnTe along a (solid curves) and b (dashed curves) directions at 300 K (left) and 600 K (right) calculated with different k-mesh and q-mesh densities.

Figure S3. Phonon dispersions of 2D SnTe under different equibiaxial compressive stresses: (a) $|\Delta a/a_0| = 1.23\%$ and (b) $|\Delta a/a_0| = 2.35\%$. Negative values represent imaginary phonon frequencies.

Figure S4. Band structures and density of states of 2D SnTe under different equibiaxial compressive stresses (the values of $|Da/a_0|$ are given in the figure). The valence band maximum is shifted to 0 eV.

Figure S5. Effective band structures of (a) Bi-doped (Sn site), (b) Br-doped (Te site), and (c) I-doped (Te site) 2D SnTe. Fermi level is located at 0 eV.

References

1. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. *J. Phys. Condens. Matter* **2009**, *21* (39), 395502.

2. Poncé, S.; Margine, E. R.; Verdi, C.; Giustino, F., EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. *Comput. Phys. Commun.* **2016**, *209*, 116-133.

3. Madsen, G. K.; Carrete, J.; Verstraete, M. J., BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. *Comput. Phys. Commun.* **2018**, *231*, 140-145.

4. Goedecker, S.; Teter, M.; Hutter, J., Separable dual-space Gaussian

pseudopotentials. Phys. Rev. B 1996, 54 (3), 1703.

5. Hartwigsen, C.; Gœdecker, S.; Hutter, J., Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. *Phys. Rev. B* **1998**, *58* (7), 3641.