Pd-Catalyzed Asymmetric Hydroalkylation of 1,3-Dienes: Access to Unnatural α-Amino Acid Derivatives Containing Vicinal Quaternary and Tertiary Stereogenic Centers

Zongpeng Zhang, Fan Xiao, Hui-Min Wu, Xiu-Qin Dong,* and Chun-Jiang Wang*
E-mail: xiuqindong@whu.edu.cn; cjwang@whu.edu.cn

Table of Contents

I. General Remarks 2
II. General Procedure for Pd-Catalyzed Asymmetric Hydroalkylation of 1,3- Dienes with Azlactones 2
III. Synthetic Transformations. 19
IV. Proposed Catalytic Cycle. 22
V. Reference 23
VI. NMR and HPLC Spectra 24

I. General Remarks

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl_{3}. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 100 MHz spectrometer in CDCl_{3}. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker 376 MHz spectrometer in CDCl_{3}. Chemical shifts are reported in ppm with the internal $\mathrm{CF}_{3} \mathrm{COOH}$ signal at 76.55 ppm . The data are reported as $(\mathrm{s}=$ single, $\mathrm{d}=$ double, $\mathrm{t}=$ triple, $\mathrm{q}=$ quarter, $\mathrm{m}=$ multiple or unresolved, brs = broad single, coupling constant(s) in Hz, integration). Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with silica gel-coated plates. Enantiomeric ratios were determined by chiral-phase HPLC analysis in comparison with authentic racemic materials. Substrates $\mathbf{1}$ and $\mathbf{2}$ were prepared according to the literature procedure. ${ }^{1,2}$ The absolute configuration of compound $\mathbf{7}$ was determined by comparing with the optical rotation of known chiral compound. ${ }^{3}$ The absolute configuration of others were assigned by analogy.

II. General Procedure for Pd-Catalyzed Asymmetric Hydroalkylation of 1,3-

Dienes with Azlactones

In an Ar-filled glovebox, to a vial equipped with a magnetic stirring rod was added successively: Pd-L7 catalyst ($0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$), azalctone ($0.15 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL), 1,3-diene ($0.10 \mathrm{mmol}, 1.0$ equiv.), and lastly $\mathrm{Et}_{3} \mathrm{~N}(0.3 \mathrm{mmol}, 3.0$ equiv.). Then $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ (0.01 mmol in 1 mL DCM) was added dropwise to the solution. Once starting material was consumed (monitored by TLC), the organic solvent was removed by rotary evaporation. The dr value was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture and the residue was purified by column chromatography to give the product. Procedure for the alcoholysis with MeOH : After the reaction of 1,3-diene with azlactone was completed, $\mathrm{MeOH}(1 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol})$ were added, then
the mixture was stirred at room temperature for 2 h . The solvent was removed by vacuo, and the residue was purified by column chromatography on silica column.

(R)-4-methyl-2-phenyl-4-((S,E)-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one (3a):

Yield (92%); 28.1 mg ; colorless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=20 / 1) ;[\alpha]^{28} \mathrm{D}=+119.8\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{dd}, J=5.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.53-$ $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J$ $=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.65(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.05$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.9,160.1,136.9,132.74,132.65$, 129.2, 128.8, 128.5, 128.0, 127.5, 126.3, 125.8, 72.4, 45.0, 22.6, 15.8. HRMS (ESI+) Calcd. For $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 306.1489$, found: 306.1487. The product was analyzed by HPLC to determine the enantiomeric excess: 95\% ee (Chiralpak AD-H, i propanol $/$ hexane $=2 / 98$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=4.65$ and 5.15 min .

(R)-4-ethyl-2-phenyl-4-((S,E)-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one (3b):

Yield (85\%); 27.1 mg ; colorless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=20 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=+87.8\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=15.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.26(\mathrm{dd}, J=15.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dq}, J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dq}, J=14.9$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dq}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 180.5, 160.4, 136.9, 132.7, 132.3, 129.6, 128.8, 128.5, 128.0, 127.4, 126.3, 125.8, 77.2, 44.6, 29.3, 16.0, 8.1. HRMS (ESI+) Calcd. For
$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 320.1645$, found: 320.1634 . The product was analyzed by HPLC to determine the enantiomeric excess: $>99 \%$ ee (Chiralpak ID, i-propanol/hexane $=$ $2 / 98$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=4.24$ and 4.71 min .

Methyl (2R,3S,E)-2-benzamido-2-benzyl-3-methyl-5-phenylpent-4-enoate (3c):

Yield (82\%); 33.8 mg ; colorless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-40.6\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.62(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}$, 4H), 7.21-7.18 (m, 4H), 7.14-7.07 (m, 2H), $6.86(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.17$ (dd, $J=15.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~d}, J=13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47(\mathrm{dd}, J=15.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.7,167.2,137.0,136.6,135.4,132.0,131.4,130.6,130.0,128.6,128.5$, 128.2, 127.4, 126.8, 126.3, 67.9, 52.6, 42.4, 37.1, 16.0. HRMS (ESI+) Calcd. For $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 414.2064$, found: 414.2055 . The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (Chiralpak AD-H, i-propanol/hexane $=$ $10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=13.55$ and 16.81 min .

Methyl (2R,3S,E)-2-benzamido-2-isobutyl-3-methyl-5-phenylpent-4-enoate (3d):

Yield (80\%); 30.0 mg ; colorless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-55.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.80-7.71 (m, 2H), 7.51-7.44 (m, 1H), 7.40 (dd, $J=15.1,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.25(\mathrm{dd}, J=8.6$, $1.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=15.7,9.1 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.84$ (s, 3H), $3.51(\mathrm{dq}, J=14.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=14.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (dd, $J=14.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5,166.5,137.2$, 135.5, 131.7, 131.3, 130.8, 128.6, 128.4, 127.2, 126.8, 126.2, 67.0, 52.5, 43.5, 40.8, 25.0, 24.1, 21.9, 15.7. HRMS (ESI+) Calcd. For $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 380.2220$, found: 320.2208. The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (Chiralpak AD-H, i-propanol/hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}) ; \mathrm{t}_{\mathrm{r}}=5.99$ and 7.04 min .

Methyl (2R,3S,E)-2-allyl-2-benzamido-3-methyl-5-phenylpent-4-enoate (3e):

Yield (75\%); 27.2 mg ; colorless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-49.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.76-7.69 (m, 2H), 7.50-7.44 (m, 1H), 7.41-7.36 (m, 2H), 7.35-7.32 (m, 2H), 7.31-7.26 $(\mathrm{m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=15.7$, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.03(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{dd}, J=14.0,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.31(\mathrm{dq}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.1, 166.6, 137.0, 135.1, 132.8, 132.0, 131.4, 130.7, 128.6, 128.5, 127.4, 126.8, 126.3, 119.0, 66.9, 52.7, 42.9, 36.2, 15.8. HRMS (ESI+) Calcd. For $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 364.1907$, found: 364.1902. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee $($ Chiralpak IE, i-propanol $/$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=29.77$ and 30.78 min .

Yield (54\%); 19.7 mg ; colorless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-19.1\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.80 (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.39(\mathrm{dd}, J=15.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.03(\mathrm{~m}, 1 \mathrm{H})$, $1.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.1$, $166.9,137.5,136.2,131.6,131.2,131.0,128.6,128.4,127.0,126.8,126.3,72.2,52.8$, 40.4, 31.2, 18.4, 18.1, 16.7. HRMS (ESI+) Calcd. For $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 366.2064$, found: 366.2054 . The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AD-H, i-propanol/hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=6.60$ and 9.39 min .
(R)-4-methyl-4-((S,E)-4-phenylbut-3-en-2-yl)-2-(p-tolyl)oxazol-5(4H)-one (3g):

Yield (89\%); 28.4 mg ; white solid; mp 84-86 ${ }^{\circ} \mathrm{C}$; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=20 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=+78.5\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=8.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.9,9.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.83-2.76 (m, 1H), $2.44(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.1,160.2,143.4,136.9,132.7,129.5,129.3,128.5,127.9,127.5$, 126.4, 123.0, 72.3, 45.1, 22.7, 21.7, 15.8. HRMS (ESI+) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 320.1645$, found: 320.1634. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak AD-H, i-propanol/hexane $=3 / 97$,
flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=4.86$ and 5.70 min .

(R)-2-(4-methoxyphenyl)-4-methyl-4-((S,E)-4-phenylbut-3-en-2-yl)oxazol-5(4H)one (3h):

Yield (90\%); 30.1 mg ; yellow oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=20 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=+75.1\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.19$ (m, 1H), 6.99 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.9,9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89$ (s, 3H), 2.79 (dq, $J=13.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.49$ (s, 3H), 1.04 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.2,163.1,159.8,137.0,132.6,129.8,129.4,128.5$, 127.4, 126.3, 118.2, 114.2, 72.2, 55.5, 45.1, 22.8, 15.8. HRMS (ESI+) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 336.1594$, found: 336.1586 . The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (Chiralpak AD-H, i-propanol/hexane $=$ $2 / 98$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=6.17$ and 6.96 min .

(R)-2-(4-fluorophenyl)-4-methyl-4-((S,E)-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one

 (3i):

Yield (87%); 28.1 mg ; white solid; mp $74-76^{\circ} \mathrm{C}$; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=20 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=+69.9\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{ddd}, J=8.0,5.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (dd, $J=15.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dq}, J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8$
$\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.7,166.7,164.2,159.2,136.9,132.8,130.4$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}), 129.1,128.5,127.5,126.3,122.1(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=21.3 \mathrm{~Hz})$, 72.5, 45.0, 22.6, 15.8. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-105.45; HRMS (ESI+) Calcd. For $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FNO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 324.1394$, found: 324.1381 . The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (Chiralpak AD-H, $i-$ propanol $/$ hexane $=1.5 / 98.5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=5.49$ and 6.20 min .

(R)-2-(4-chlorophenyl)-4-methyl-4-((S,E)-4-phenylbut-3-en-2-yl)oxazol-5(4H)-

 one (3j):

Yield (80\%); 27.1 mg ; colourless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=20 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=+101.9\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=15.9$, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dq}, J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.5,159.3,139.0,136.8,132.9,129.3,129.2,129.0,128.5$, 127.5, 126.3, 124.3, 72.5, 45.0, 22.6, 15.8. HRMS (ESI+) Calcd. For $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClNO}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 340.1099$, found: 340.1104. The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (Chiralpak AD-H, i-propanol/hexane $=2 / 98$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=5.11$ and 5.81 min .
(R)-4-methyl-4-((S,E)-4-phenylbut-3-en-2-yl)-2-(m-tolyl)oxazol-5(4H)-one (3k):

Yield (78\%); 24.9 mg ; colorless oil; (Flash column chromatography eluent, petroleum
ether/ethyl acetate $=20 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=+87.2\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dq}$, $J=13.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 181.0,160.3,138.7,136.9,133.5,132.7,129.3,128.7,128.5$, 128.4, 127.5, 126.4, 125.7, 125.2, 72.3, 45.1, 22.7, 21.3, 15.8. HRMS (ESI+) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 320.1645$, found: 320.1634 . The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (Chiralpak AD-H, $i-$ propanol $/$ hexane $=2 / 98$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=4.14$ and 4.78 min .
(\boldsymbol{R})-2-(3-fluorophenyl)-4-methyl-4-((S, $\boldsymbol{E})$-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one (31):

Yield (86\%); 27.7 mg ; colorless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=20 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=+63.8\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{ddd}, J=9.2,2.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{td}, J=8.0,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=15.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dq}, J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}$, 3 H), 1.05 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.5,162.7$ (d, $J=246.1$ $\mathrm{Hz}), 159.1,136.8,132.9,130.5(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}), 129.0,128.5,127.9$ (d, $J=8.4 \mathrm{~Hz})$, $127.5,126.3,123.7(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 119.7(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 114.9(\mathrm{~d}, J=24.0 \mathrm{~Hz}), 72.6$, 45.0, 22.6, 15.8. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-111.43; HRMS (ESI+) Calcd. For $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FNO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 324.1394$, found: 324.1388 . The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (Chiralpak AD-H, $i-$ propanol $/$ hexane $=3 / 97$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=4.54$ and 4.95 min .
(\boldsymbol{R})-2-(2-fluorophenyl)-4-methyl-4-((S, \boldsymbol{E})-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one (3m):

Yield (75\%); 24.2 mg ; colorless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=20 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=+78.6\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.94-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=15.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-$ $2.81(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 180.3, 161.5 (d, $J=258.8 \mathrm{~Hz}), 157.0(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 136.8,134.2(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 132.9$, $130.6,128.9,128.4,127.5,126.3,124.3(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 117.1(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 114.4$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}), 72.1,44.9,22.4,15.6 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-108.51$; HRMS (ESI+) Calcd. For $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FNO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 324.1394$, found: 324.1383 . The product was analyzed by HPLC to determine the enantiomeric excess: 94\% ee (Chiralpak AD-H, $i-$ propanol $/$ hexane $=2 / 98$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=5.20$ and 6.16 min .

Methyl (2R,3S,E)-2-acetamido-3-methyl-2,5-diphenylpent-4-enoate (3n):

Yield (70\%); 23.6 mg ; colorless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-3.6\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{dd}, J=5.3,3.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37-7.31 (m, 2H), 7.31-7.27 $(\mathrm{m}, 5 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.48-6.44(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{dd}, J=15.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 3.80-3.67(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.2,169.1,137.8,137.1,131.8,130.3,128.5,128.0,127.6,127.4,127.2$, 126.3, 68.5, 52.7, 43.1, 23.8, 16.2. HRMS (ESI+) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$:
338.1751, found: 338.1743. The product was analyzed by HPLC to determine the enantiomeric excess: 95\% ee (Chiralpak AS-H, i-propanol/hexane $=5 / 95$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=17.76$ and 25.21 min .

Methyl (2S,3S,E)-2-benzamido-3-methyl-2,5-diphenylpent-4-enoate (30) and

Methyl (2R,3S,E)-2-benzamido-3-methyl-2,5-diphenylpent-4-enoate (3o'):

Yield (85%); $33.9 \mathrm{mg} ; \mathbf{3 0} \mathbf{3 0} \mathbf{3 o}^{\prime}=1.25: 1$, colourless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-2.2\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8 7.81-7.76 (m, 2H), 7.58-7.48 (m, 3H), 7.47-7.41 (m, 2H), 7.39-7.26 (m, 7 H), 7.24-7.17 (m, 1H), 6.57 (major) (d, $J=15.9 \mathrm{~Hz}, 0.55 \mathrm{H}$), 6.52 (minor) (d, $J=15.9$ $\mathrm{Hz}, 0.45 \mathrm{H}$), 6.14 (minor) (dd, $J=15.9,8.2 \mathrm{~Hz}, 0.45 \mathrm{H}), 6.02$ (major) (dd, $J=15.9,8.8$ $\mathrm{Hz}, 0.55 \mathrm{H}$), 3.81-3.76 (m, 1H), 3.80 (minor) ($\mathrm{s}, 1.35 \mathrm{H}$), 3.77 (major) ($\mathrm{s}, 1.65 \mathrm{H}$), 1.23 (minor) (d, $J=6.9 \mathrm{~Hz}, 1.35 \mathrm{H}$), 1.19 (major) (d, $J=6.9 \mathrm{~Hz}, 1.65 \mathrm{H}$). ${ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 172.5,172.3,166.3,166.0,137.8,137.1,136.9,136.5,134.6,134.4,132.1$, 132.0, 131.7, 131.6, 130.53, 130.50, 128.7, 128.6, 128.58, 128.5, 128.1, 128.0, 127.7, $127.63,127.58,127.4,127.2,126.98,126.96,126.3,68.6,68.4,53.0,52.9,43.7,43.4$, 16.5, 16.2. HRMS (ESI+) Calcd. For $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 400.1907$, found: 400.1902. The product was analyzed by HPLC to determine the enantiomeric excess: 87% ee (major); 84% ee (minor) (Chiralpak AD-H, i-propanol/hexane $=10 / 90$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}($ major $)=15.98$ and $18.84 \mathrm{~min} ; \mathrm{t}_{\mathrm{r}}($ minor $)=24.36$ and 27.60 min.

Methyl (2R,3S,E)-2-benzamido-2,3-dimethyl-5-(p-tolyl)pent-4-enoate (4a):

Yield (82\%); 28.8 mg ; colourless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-71.9\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.71 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H})$, 7.12 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.82 (s, 1H), 6.49 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11$ (dd, $J=15.8,9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78$ (s, 3H), 2.99-2.92 (m, 1H), 2.33 (s, 3H), 1.79 (s, 3H), 1.21 (d, J=7.0 Hz, 3 H) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,166.7,137.5,134.6,134.0,132.3,131.5$, 129.3, 129.0, 128.6, 126.9, 126.2, 62.5, 52.4, 45.3, 21.2, 20.7, 15.7. HRMS (ESI+) Calcd. For $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 352.1907$, found: 352.1899. The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (Chiralcel OD-H, i propanol $/$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=7.97$ and 8.58 min .

Methyl (2R,3S,E)-2-benzamido-5-(4-methoxyphenyl)-2,3-dimethylpent-4-enoate

 (4b):

Yield (90\%); 33.0 mg ; white solid; mp 120-122 ${ }^{\circ} \mathrm{C}$; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28} \mathrm{D}=-58.5\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 3 \mathrm{H}), 6.47(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02$ (dd, $J=15.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.97-2.89(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H})$, $1.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3$, 166.7, 159.2, 134.6, $131.9,131.5,129.5,128.6,127.8,127.5,126.8,114.0,62.5,55.3,52.4,45.3,20.7,15.8$. HRMS (ESI+) Calcd. For $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 368.1856$, found: 368.1848. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee
(Chiralpak AS-H, i-propanol/hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=$ 10.66 and 20.45 min .

Methyl (2R,3S,E)-2-benzamido-5-(4-fluorophenyl)-2,3-dimethylpent-4-enoate (4c):

Yield (82\%); 29.1 mg ; white solid; mp $94-96^{\circ} \mathrm{C}$; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-57.6\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.74-7.68(m, 2H), $7.47(\mathrm{dd}, J=8.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.34-7.28 (m, 2H), $6.99(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ $(\mathrm{dd}, J=15.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.04-2.96(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,166.7,162.2(\mathrm{~d}, J=245.3 \mathrm{~Hz}$), 134.6, 132.9, 131.5, 131.1, $129.9(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 128.5,127.8(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 126.8$, $115.4(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 62.7,52.5,45.0,20.5,15.7 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 114.41; HRMS (ESI+) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{FNO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 356.1656, found: 356.1648 . The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak ID-H, i-propanol/hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=$ 16.29 and 19.33 min .

Methyl (2R,3S,E)-2-benzamido-5-(4-chlorophenyl)-2,3-dimethylpent-4-enoate

 (4d):

Yield (71\%); 26.3 mg ; colorless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-71.4\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.75-7.68 (m, 2H), 7.50-7.44 (m, 1H), 7.38 (dd, $J=10.4,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=2.1$

Hz, 4H), 6.86 (s, 1H), 6.45 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=15.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 3.07-2.99(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.4,166.7,135.3,134.6,133.2,131.6,131.0,130.9,128.7,128.6,127.5$, 126.8, 62.7, 52.5, 45.0, 20.5, 15.6. HRMS (ESI+) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClNO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 372.1361, found: 356.1348 . The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak AS-H, i-propanol/hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=7.73$ and 13.40 min .

Methyl (2R,3S,E)-2-benzamido-5-(4-bromophenyl)-2,3-dimethylpent-4-enoate

 (4e):

Yield (62\%); 25.7 mg ; colorless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-69.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.70 (dd, $J=8.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.50-7.45 (m, 1H), 7.40 (dd, $J=15.6,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.21$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=15.8,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{dq}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}{ }^{\text {C NMR }}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4,166.7,135.7,134.6,131.63,131.56,131.1,131.0$, 128.6, 127.8, 126.8, 121.3, 62.7, 52.5, 44.9, 20.5, 15.6. HRMS (ESI+) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BrNO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 416.0856$, found: 416.0849 . The product was analyzed by HPLC to determine the enantiomeric excess: 95\% ee (Chiralpak ID-H, ipropanol $/$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=17.58$ and 19.11 min .

Methyl (2R,3S, \boldsymbol{E})-2-benzamido-2,3-dimethyl-5-(o-tolyl)pent-4-enoate (4f):

Yield (50\%); 17.5 mg ; colorless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-57.3\left(c 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.73 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.34$ (m, 3H), 7.19-7.06 (m, 3H), $6.87(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=15.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, 3.08-3.00 (m, 1H), $2.28(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,166.6,136.0,135.1,134.6,131.7,131.5,130.4,130.2,128.6$, 127.5, 126.8, 126.2, 126.0, 62.6, 52.5, 45.3, 20.6, 19.7, 15.8. HRMS (ESI+) Calcd. For $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 352.1907$, found: 352.1898 . The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralcel OD-H, i-propanol/hexane $=$ $10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=9.36$ and 11.20 min .

Methyl (2R,3S,E)-2-benzamido-5-(2-fluorophenyl)-2,3-dimethylpent-4-enoate

 (4g):

Yield (74\%); 26.2 mg ; white solid; mp $90-92^{\circ} \mathrm{C}$; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-52.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.76-7.71(m, 2H), 7.49-7.37 (m, 4H), $7.21(\mathrm{tdd}, J=7.2,5.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.11-6.99 (m, 2H), $6.85(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.9,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.06-2.98(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.3,166.6,160.0(\mathrm{~d}, J=247.2 \mathrm{~Hz}), 134.6,132.9,131.5,128.6$, $127.4(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 126.9,124.7(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 124.2,115.6(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 62.5$, 52.5, 45.5, 20.6, 15.5. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-118.56; HRMS (ESI+) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{FNO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 356.1656$, found: 356.1648 . The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (Chiralpak AS-H, $i-$ propanol $/$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=7.76$ and 17.78 min .

Methyl (2R,3S,E)-2-benzamido-2,3-dimethyl-5-(m-tolyl)pent-4-enoate (4h):

4h
Yield (85\%); 29.8 mg ; colourless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-66.8\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.72 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.11(\mathrm{~m}$, $3 \mathrm{H}), 7.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=15.8$, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,166.7,138.1,136.7,134.6,132.6,131.5$, 129.8, 128.54, 128.46, 128.4, 127.0, 127.0, 123.5, 62.5, 52.4, 45.2, 21.4, 20.6, 15.7. HRMS (ESI+) Calcd. For $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 352.1907$, found: 352.1897. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak AD-H, i-propanol/hexane $=5 / 95$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=$ 13.22 and 14.68 min.

Methyl (2R,3S, \boldsymbol{E})-2-benzamido-5-(3-fluorophenyl)-2,3-dimethylpent-4-enoate (4i):

Yield (84\%); 29.8 mg ; colourless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-65.8\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.76-7.67 (m, 2H), 7.51-7.44 (m, 1H), 7.39 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.11$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=10.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{td}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (s, 1H), 6.47 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=15.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.09-$ $3.02(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 173.4, 166.7, $163.0(\mathrm{~d}, J=243.9 \mathrm{~Hz}), 139.1(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 134.6,131.6(\mathrm{~d}, J=8.0$ $\mathrm{Hz}), 131.2(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 128.6,126.8,122.1(\mathrm{~d}, J=2.7 \mathrm{~Hz})$, $114.3(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 112.7(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 62.7,52.6,44.8,20.5,15.6 .{ }^{19} \mathrm{~F}$ NMR
($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.45; HRMS (ESI+) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{FNO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 356.1656, found: 356.1645 . The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (Chiralpak AS-H, i-propanol/hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=7.87$ and 13.54 min .

Methyl (2R,3S,E)-2-benzamido-5-(furan-2-yl)-2,3-dimethylpent-4-enoate (4j):

Yield (86\%); 28.1 mg ; yellow oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-82.8\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.77-7.69 (m, 2H), 7.53-7.44 (m, 1H), 7.40 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{~s}, 1 \mathrm{H}), 6.36-6.29(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=15.8,9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.02-2.98(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 173.3,166.7,152.1,141.9,134.7,131.4,128.5,128.4,126.8$, 120.7, 111.1, 107.6, 62.7, 52.4, 44.5, 20.5, 15.6. HRMS (ESI+) Calcd. For $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 328.1534$, found: 328.1543 . The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, i-propanol/hexane $=$ $10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=10.00$ and 21.11 min .

Methyl (2R,3S,E)-2-benzamido-5-cyclohexyl-2,3-dimethylpent-4-enoate (4k):

4k
Yield (55\%); 28.1 mg ; colourless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-15.2\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.75 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H})$, $5.55(\mathrm{dd}, J=15.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=15.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.59$
$(\mathrm{m}, 1 \mathrm{H}), 2.04-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 8 \mathrm{H}), 1.30-1.03(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,166.5,140.1,134.6,131.5,128.5,127.6,126.9,61.9$, 52.2, 45.3, 40.7, 33.1, 33.0, 26.0, 25.9, 20.6, 15.7. HRMS (ESI+) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{3}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 344.2220$, found: 344.2212. The product was analyzed by HPLC to determine the enantiomeric excess: 86\% ee (Chiralpak ID, i-propanol/hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=11.25$ and 19.41 min .

Methyl (2R,3S,E)-2-benzamido-2,3-dimethyl-7-phenylhept-4-enoate (41):

Yield (78\%); 28.4 mg ; colourless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-13.1\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.76-7.69 (m, 2H), 7.50 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H})$, 7.16 (dd, $J=12.7,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 5.67-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=15.3,9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.38-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.2, 166.6, 141.5, 134.6, 132.9, 131.5, $130.8,128.5,128.33,128.29,126.8,125.9,62.0,52.2,45.0,35.8,34.2,20.6,15.7$. HRMS (ESI+) Calcd. For $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 366.2064$, found: 366.2055. The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (Chiralpak AD-H, i-propanol/hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=$ 7.99 and 9.27 min .

Methyl $\quad(S, E)$-4-((R)-4-methyl-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)pent-2enoate (4m):

Yield (82\%); 23.5 mg ; colourless oil; (Flash column chromatography eluent, petroleum
ether/ethyl acetate $=10 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=+79.6\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.04-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=15.7,9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.98$ (dd, $J=15.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (s, 3H), 2.83-2.77 (m, 1H), 1.47 (s, 3H), 1.01 $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.2,166.4,160.5,147.4,132.8$, 128.8, 128.0, 125.6, 123.6, 71.6, 51.6, 43.8, 22.6, 15.0. HRMS (ESI+) Calcd. For $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 288.1230$, found: 288.1222. The product was analyzed by HPLC to determine the enantiomeric excess: 87% ee (Chiralpak AS-H, i-propanol/hexane $=$ $10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=5.64$ and 6.08 min .

III. Synthetic Transformations

(1). Scale-up reaction

In an Ar-filled glovebox, to a vial equipped with a magnetic stirring rod was added successively: Pd-L7 catalyst ($0.2 \mathrm{mmol}, 357 \mathrm{mg}, 10 \mathrm{~mol} \%$), 1a ($3 \mathrm{mmol}, 525 \mathrm{mg}, 1.5$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), \mathbf{2 a}\left(2 \mathrm{mmol}, 260 \mathrm{mg}, 1.0\right.$ equiv.), and lastly $\mathrm{Et}_{3} \mathrm{~N}(6 \mathrm{mmol}$, $606 \mathrm{mg}, 3.0$ equiv.). Then $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(0.2 \mathrm{mmol}, 32.4 \mathrm{mg}$ in 10 mL DCM) was added dropwise to the solution. Once starting material was consumed (monitored by TLC), the organic solvent was removed by rotary evaporation. The dr value was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture and the residue was purified by column chromatography (petroleum ether/ethyl acetate $=10 / 1$) to give the product as a colorless oil ($573 \mathrm{mg}, 94 \%$). The product was analyzed by HPLC to determine the enantiomeric excess: 94\% ee (Chiralpak AD-H, i-propanol $/$ hexane $=2 / 98$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $220 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=4.65$ and 5.15 min .

(2). Reduction of $\mathbf{3 a}{ }^{\mathbf{4}}$

To a solution of $\mathbf{3 a}(0.2 \mathrm{mmol}, 61 \mathrm{mg})$ in THF $(1 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(2 \mathrm{mmol}$, 10 equiv.) at $0^{\circ} \mathrm{C}$. Then, $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added at the same temperature. The reaction mixture was allowed to stir at rt for 4 h . The solvent was removed by vacuo, and the residue was purified by column chromatography on silica column.

[^0]Yield (99\%); 61.8 mg ; white solid; mp $110-112{ }^{\circ} \mathrm{C}$; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=1 / 1) ;[\alpha]^{28} \mathrm{D}=-75.3\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{dd}, J=5.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}$, 4 H), 7.31 (dd, $J=10.3,4.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (ddd, $J=7.2,3.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.58 (d, $J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35-6.28(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.23(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,137.2,134.7,131.72,131.67,130.6,128.7,128.5,127.4,126.8$, 126.2, 68.4, 61.8, 40.5, 19.6, 14.0. HRMS (ESI+) Calcd. For $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 310.1802, found: 310.1796 . The product was analyzed by HPLC to determine the enantiomeric excess: 94\% ee (Chiralpak ID, i-propanol/hexane $=5 / 95$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=47.03$ and 52.64 min .

(3) RCM reaction of $3 e^{5}$

A solution of $\mathbf{3 e}(0.1 \mathrm{mmol}, 36.3 \mathrm{mg})$ and Grubbs-II catalyst ($0.01 \mathrm{mmol}, 8.49 \mathrm{mg}$)
in DCM (2 mL) was refluxed in oil bath under nitrogen for 12 h . The solvent was removed by vacuo, and the residue was purified by column chromatography on silica column.

Methyl (1R,2S)-1-benzamido-2-methylcyclopent-3-ene-1-carboxylate (6):

6
Yield (70\%); 18.1 mg ; colourless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=3 / 1) ;[\alpha]^{28}{ }_{\mathrm{D}}=-16.3\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.80-7.75 (m, 2H), 7.54-7.49 (m, 1H), 7.47-7.40 (m, 2H), 6.66 (s, 1H), 5.70-5.63 (m, 2 H), 3.75 ($\mathrm{s}, 3 \mathrm{H}$), 3.47-3.34 (m, 1H), 3.29-3.24 (m, 1H), 2.83-2.77 (m, 1H), 1.15 (d, J $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.0,167.2,134.0,131.7,128.6,127.0$, 126.9, 66.8, 52.7, 46.7, 43.6, 14.1. HRMS (ESI+) Calcd. For $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 260.1281, found: 260.1272. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, i-propanol/hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=11.82$ and 15.03 min .
(4) Alcoholysis of 3a

$\mathrm{MeOH}(1 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol})$ were added to the solution of $\mathbf{3 a}(0.1 \mathrm{mmol}$, 30.5 mg), then the mixture was stirred at room temperature for 2 h . The solvent was removed by vacuo, and the residue was purified by column chromatography on silica column.

Yield (95\%); 32.0 mg ; colorless oil; (Flash column chromatography eluent, petroleum ether/ethyl acetate $=5 / 1) ;[\alpha]^{28} \mathrm{D}=-65.4\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{dd}, J=5.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.41-$ 7.33 (m, 4H), 7.33-7.28 (m, 2H), 7.26-7.20 (m, 1H), 6.86 (s, 1H), 6.52 (d, J=15.8 Hz, $1 \mathrm{H}), 6.17$ (dd, $J=15.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.96(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.22$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,166.7,136.7,134.6,132.4$, 131.5, 130.1, 128.52, 128.50, 127.6, 126.8, 126.3, 62.5, 52.4, 45.1, 20.5, 15.6. HRMS (ESI+) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 338.1751$, found: 338.1739 . The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (Chiralpak AS-H, i propanol $/$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=8.32$ and 17.15 min . The characterization data of compound $\mathbf{7}$ is in accordance with the reported data in the literature. ${ }^{3}$

IV. Proposed Catalytic Cycle

Based on the experimental observations and literature results, ${ }^{6}$ a plausible reaction mechanism is proposed as follow. The chiral palladium complex A triggers the initial oxidative addition of Brønsted acid, affording hydrido-Pd(II) intermediate \mathbf{B}, which undergoes migration insertion with 2a to give a π-allyl-Pd complex \mathbf{C}. In the presence of $\mathrm{Et}_{3} \mathrm{~N}$, an intermolecular Tsuji-Trost allylation of intermediate \mathbf{C} and azlactone proceeds to provide the final product 3a with exclusive regioselectivity and high diastereo-/enantioselectivity and to regenerate the chiral palladium complex \mathbf{A}, which was involved in the next catalytic cycle. The achieved high diastereoselectivity in this case can be ascribed to the substrate control, and similar phenomenon was also observed in previous Mo- or Ir-catalyzed asymmetric allylations of azlactones reported by Prof. Trost (J. Am. Chem. Soc. 2002, 124, 7256-7257) and Prof. Hartwig (J. Am. Chem. Soc. 2013, 135, 2068-2071), respectively. The stereochemical outcome of this
reaction could be rationalized by the proposed transition state. Admittedly, the detailed mechanism of those asymmetric allylation reactions and the current Pd-catalyzed asymmetric hydroalkylation need to be further investigated.

Scheme S1. Proposed catalytic cycle and rationale of the stereochemical outcome.

V. Reference

[1] a) Shaw, S. A.; Aleman, P.; Vedejs, E. J. Am. Chem. Soc. 2003, 125, 13368; b) Melhado, A. D.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12638; c) Weber, M.; Jautze, S.; Frey, W.; Peters, R. J. Am. Chem. Soc. 2010, 132, 12222.
[2] a) Preuß, T.; Saak, W.; Doye, S. Chem.-Eur. J. 2013, 19, 3833; b) Lishchynskyi, A.; Muñiz, K. Chem.-Eur. J. 2012, 18, 2212; c) Galvani, G.; Lett, R.; Kouklovsky, C. Chem.-Eur. J. 2013, 19, 15604.
[3] Kawatsura, M.; Ikeda, D.; Ishii, T.; Komatsu, Y.; Uenishi, J. Synlett. 2006, 2435.
[4] a) Mosey, R. A.; Fisk, J. S.; Friebe, T. L.; Tepe, J. J.; Org. Lett. 2008,10, 825; b)
Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc.1998, 120, 11532; c) Tice, C. M.; Hormann,
R. E.; Thompson, C. S.; Friz, J. L.; Cavanaugh, C. K.; Michelotti, E. L.; Garcia, J.; Nicolas, E.; Albericio, F. Bioorg. Med. Chem. Lett. 2003, 13, 475.
[5] Hickmann, V.; Alcarazo, M.; Ferstner, A. J. Am. Chem. Soc. 2010, 132, 11042.
[6] a) Nie, S. Z.; Davison, R. T.; Dong, V. M. J. Am. Chem. Soc. 2018, 140, 16450; b)
Park, S.; Adamson, N. J.; and Malcolmson, S. J. Chem. Sci. 2019, 10, 5176; c) Park, S.;
Malcolmson, S. J. ACS Catal. 2018, 8, 8468.

V. NMR and HPLC Spectra

3a

Data File E:\DATA \ZZP\ZZP-8-16\ZZP-8-16-1 2019-09-22 15-48-03\ZZP-8-162.D
Sample Name: ZZP-8-16-1

Additional Info : Peak(s) manually integrated
DAD1 B, Sig=254,4 Ref=off (E:IDATAIZZPIZZP-8-16IZZP-8-16-12019-09-22 15-48-031ZZP-8-162.D)
$\begin{aligned} &=== \\ & \text { Area Percent Report }\end{aligned}$

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution	Factor with	ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	4.665	MF	0.2380	3822.98901	267.72723	47.5827
2	5.110	FM	0.2662	4211.41797	263.68408	52.4173
Total	s :			8034.40698	531.41132	

Data File E:\DATA \ZZP\ZZP-6-1 \ZZP-6-1 2019-04-26 09-44-31\zzp-6-11.D
Sample Name: ZZP-6-1-1

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution	Factor with	ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	4.653		0.2287	223.22818	16.26787	2.7089
2	5.154	FM	0.2705	8017.25293	494.06342	97.2911
Totals				8240.48111	510.33129	

Data File E:\DATA \ZZP\ZZP-6-10\ZZP-6-10) 2019-05-06 20-07-48\ZZP-6-105.D
Sample Name: ZZP-6-8

Acq. Operator	: SYSTEM	Seq. Line : 6
Acq. Instrument	: 1260	Location : 72
Injection Date	: 5/6/2019 8:51:25 PM	Inj : 1
		Inj Volume : $2.000 \mu \mathrm{l}$
Acq. Method	$\begin{aligned} & \text { E: \DATA } \backslash Z Z P \backslash Z Z P-6-10 \backslash Z Z P-6-10) \\ & M \end{aligned}$	2019-05-06 20-07-48\ID-98-2, 2UL,1.0ML, 20MIN.
Last changed	5/6/2019 8:57:31 PM by SYSTEM (modified after loading)	
Analysis Method	E: \DATA \ZZP \ZZP-6-10\ZZP-6-10) M (Sequence Method)	2019-05-06 20-07-48\ID-98-2, 2UL,1.0ML, 20MIN.
Last changed	9/10/2019 5:00:40 PM by SYSTEM (modified after loading)	

Additional Info : Peak(s) manually integrated

Area Percent Report	
Sorted By	Signal
Multiplier	1.0000
Dilution	1.0000

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	4.244	MF	0.1501	1198.40283	133.08110	49.6879
2	4.713	FM	0.2273	1213.45691	88.96022	50.3121
Totals	s :			2411.85974	222.04132	

Data File E:\DATA \ZZP\ZZP-6-10\ZZP-6-10) 2019-05-06 20-07-48\ZZP-6-106.D
Sample Name: ZZP-6-10

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	4.243		0.1559	4348.47412	464.82629	100.0000
Tota	s :			4348.47412	464.82629	

Sample Name: ZZP-6-40-RAC

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	13.963	BB	0.5869	2825.18457	71.52072	50.2184
2	17.367	MM	0.7934	2800.61499	58.83350	49.7816
Totals				5625.79956	130.35423	

Data File E:\DATA \ZZP\ZZP-6-40\ZZP-6-40-GH 2019-05-25 15-21-09\ZZP-6-40-GH.D
Sample Name: ZZP-6-40-GH

Additional Info : Peak(s) manually integrated
DAD1 B, Sig=254,4 Ref=off (E:IDATAIZZPIZZP-6-40IZZP-6-40-GH 2019-05-25 15-21-09\ZZP-6-40-GH.D)

| $==================================$ | |
| :--- | :--- | :--- |
| | Area Percen |
| $====================================$ | |

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	Area \%
1	13.550	PP	0.5783	242.48613	6.98868	2.6410
2	16.808	BB	0.7094	8939.27051	188.44026	97.3590
Total	s :			9181.75664	195.42894	

Data File E:\DATA \ZZP \ZZP-6-36\ZZP-6-36-RAC 2019-05-25 11-40-21 \ZZP-6-RAC.D
Sample Name: ZZP-6-26

Signal 1: DAD1 B, Sig=254,4 Ref=off

Data File E:\DATA\ZZP\ZZP-6-70\ZZP-6-70 2019-06-25 15-44-49\ZZP-6-701.D
Sample Name: ZZP-6-70

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	5.990	BV	0.3035	547.73846	27.60386	3.4401
2	7.040	VBA	0.3557	1.53745 e 4	655.31622	96.5599
Totals	s :			1.59223 e 4	682.92008	

3e

11
1

家 $\frac{2}{5}$
,

-1
8

$\begin{array}{lllll}3 & 3.0 & 2.5 & 2.0 & 1.5\end{array}$

$\stackrel{\circ}{\circ}$

Data File E:\DATA\ZZP\ZZP-7-72\ZZP-7-79 2019-08-29 16-06-02\ZZP-7-793.D
Sample Name: ZZP-7-79-RAC

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	29.596		0.6188	1.40490 e 4	378.40958	47.9097
2	30.720	FM	0.6741	1.52749 e 4	377.65997	52.0903
Total	:			2.93239 e 4	756.06955	

Data File E:\DATA\ZZP\ZZP-7-72\ZZP-7-79 2019-08-29 16-06-02\ZZP-7-794.D
Sample Name: ZZP-7-79

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	Area \%
1	29.773	BV E	0.4401	121.78240	3.98937	0.6101
2	30.779	VB R	0.5931	1.98406 e 4	504.22745	99.3899

Totals :
1.99624 e 4508.21681

Data File E:\DATA $\backslash Z Z P \backslash Z Z P-6-36 \backslash Z Z P-6-36-R A C \quad 2019-05-2511-40-21 \backslash Z Z P-6-R A C 1 . D$
Sample Name: ZZP-6-32

Signal 1: DAD1 B, Sig=254,4 Ref=off

Data File E:\DATA\ZZP\ZZP-6-38\ZZP-6-38 2019-05-25 12-34-20\ZZP-6-381.D
Sample Name: ZZP-6-38-2

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	6.600	MM	0.3588	5704.43311	264.95068	98.4146
2	9.387	MP	0.4124	91.89323	3.71346	1.5854
Totals :				5796.32634	268.66414	

$\stackrel{m}{=}$	®	
¢	¢	\%ion ionionic
T	-	--\%.

Data File E:\DATA \ZZP\ZZP-6-31\ZZP-6-31 2019-05-18 21-00-00\ZZP-6-31.D
Sample Name: ZZP-6-31-2

Signal 1: DAD1 A, Sig=254,4 $\operatorname{Ref}=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	4.795	MF	0.2472	1397.84070	94.22900	48.0597
2	5.583	FM	0.2987	1510.71204	84.30472	51.9403
Totals				2908.55273	178.53372	

Data File E:\DATA \ZZP\ZZP-6-34\ZZP-6-34 2019-05-22 15-31-46\ZZP-6-341.D
Sample Name: ZZP-6-34-1

Signal 1: DAD1 A, Sig=254,4 Ref=360, 100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	4.855	MM	0.2279	13.45818	$9.84306 \mathrm{e}-1$	1.8192
2	5.703	BB	0.2672	726.32715	41.10188	98.1808
Total	s :			739.78533	42.08619	

Sample Name: ZZP-5-70-2

Acq. Operator	: SYSTEM Seq. Line :	
Acq. Instrument	: 1260 Location :	61
Injection Date	: 4/24/2019 4:14:29 PM Inj :	1
	Inj Volume :	$2.000 \mu \mathrm{l}$
Acq. Method	$\begin{aligned} & \text { E: \DATA } \mathrm{ZZZP} \backslash Z Z P-5-70 \backslash Z Z P-5-70-2 \text { 2019-04-24 } \\ & \text {.M } \end{aligned}$	$15-37-28 \backslash A D-98-2,2 U L, 1.0 M L, 20 M I N$
Last changed	4/24/2019 4:21:57 PM by SYSTEM (modified after loading)	
Analysis Method	E: \DATA $\backslash Z Z P \backslash Z Z P-5-70 \backslash Z Z P-5-70-2 ~ 2019-04-24 ~$.M (Sequence Method)	$15-37-28 \backslash A D-98-2,2 U L, 1.0 \mathrm{ML}, 20 \mathrm{MIN}$
Last changed	9/10/2019 7:24:10 PM by SYSTEM (modified after loading)	

Additional Info : Peak(s) manually integrated
DAD1 B, Sig=254,4 Ref=off (E:IDATAIZZPIZZP-5-701ZZP-5-70-2 2019-04-2415-37-281ZZP-5-70-2-RAC3.D)

$===$	
	Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	Area \%
1	6.210	MM	0.3084	1587.38989	85.77534	50.0083
2	7.002	MM	0.3404	1586.86047	77.69465	49.9917
Total				3174.25037	163.46999	

Data File E:\DATA\ZZP\ZZP-5-69\ZZP-5-69 2019-04-24 19-09-24\ZZP-5-691.D
Sample Name: ZZP-5-69-2

Acq. Operator	: SYSTEM	Seq. Line :	2
Acq. Instrument	: 1260	Location	62
Injection Date	: 4/24/2019 7:25:11 PM	Inj :	1

Acq. Method : E:\DATA \ZZP \ZZP-5-69\ZZP-5-69 2019-04-24 19-09-24\AD-98-2,2UL,1.0ML,20MIN.M Last changed : 4/24/2019 7:22:34 PM by SYSTEM
Analysis Method : E:\DATA \ZZP\ZZP-5-69\ZZP-5-69 2019-04-24 19-09-24\AD-98-2,2UL,1.0ML, 20MIN.M
(Sequence Method)
Last changed : 9/10/2019 7:30:12 PM by SYSTEM (modified after loading)
Additional Info : Peak(s) manually integrated
DAD1 B, Sig=254,4 Ref=off (E:IDATAIZZPIZZP-5-691ZZP-5-69 2019-04-2419-09-24ZZZP-5-691.D)
===2,
Area Percent Report
==2

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution	Factor with	ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	6.174	BB	0.2853	58.57859	2.74153	0.8707
2	6.960	BB	0.3119	6669.56201	319.02716	99.1293
Totals				6728.14060	321.76869	

(10)

Data File E:\DATA \ZZP\ZZP-6-2\ZZP-6-2-2 2019-04-25 10-33-32\ZZP-6-21.D
Sample Name: ZZP-6-2

Additional Info : Peak(s) manually integrated
DAD1 B, Sig=254,4 Ref=off (E:IDATAIZZPIZZP-6-2IZZP-6-2-2 2019-04-25 10-33-32IZZP-6-21.D)
DAD1 B, Sig=254,4 Ref=off (E:IDATAIZZPIZZP-6-2|ZZP-6-2-2 2019-04-25 10-33-321ZZP-6-21.D)

$==$	
	Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	5.164	BV	0.2436	2987.37036	178.20671	49.2600
2	5.777	VB	0.2708	3077.12915	165.56377	50.7400
Totals				6064.49951	343.77048	

Data File E:\DATA $Z Z Z P \backslash Z Z P-F \backslash Z Z P-F L$ 2019-11-09 19-49-25\ZZP-F6.D
Sample Name: ZZP-F-6

Acq. Operator	: SYSTEM	Seq. Line	7
Acq. Instrument	: 1260	Location	46
Injection Date	: 11/9/2019 8:56:04 PM	Inj	1
		Inj Volume	. 000

 Last changed : 11/9/2019 7:49:25 PM by SYSTEM
Analysis Method : E:\DATA \ZZP \ZZP-F\ZZP-Fl 2019-11-09 19-49-25\AD-98.5-1.5,2UL,1.0ML, 10MIN.M
(Sequence Method)
Last changed : 11/20/2019 10:00:45 AM by SYSTEM (modified after loading)
Additional Info : Peak(s) manually integrated
Additional Info : Peak(s manually integrated
$==$
Area Percent Report
==2

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution	Factor with	ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.491		0.1198	65.99379	8.20404	2.4674
2	6.199	VB	0.1353	2608.59082	289.15280	97.5326
Totals				2674.58461	297.35684	

$\underbrace{\infty}{ }^{\infty}{ }^{\infty}{ }^{\infty}$ NiNへN

Data File E:\DATA $\backslash Z Z P \backslash Z Z P-6-29 \backslash Z Z P-6-29$ 2019-05-17 14-58-01\SC-11-31-rearrangement.D
Sample Name: ZZP-6-29-1

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	4.936	BV	0.2378	3362.96606	208.92862	49.5938
2	5.611		0.2687	3418.05737	189.29442	50.4062
Totals :				6781.02344	398.22304	

Data File E:\DATA\ZZP\ZZP-CL\ZZP-CL 2019-11-09 16-16-11\ZZP-Cl6.D
Sample Name: zzp-cl-6

| Acq. Operator $:$ SYSTEM | Seq. Line : 7 |
| :--- | ---: | :--- |
| Acq. Instrument : 1260 | Location : 46 |
| Injection Date $: 11 / 9 / 20195: 04: 56 \mathrm{PM}$ | Inj : 1 |

Last changed : 11/9/2019 4:16:11 PM by SYSTEM
Analysis Method : E:\DATA \ZZP $\backslash Z Z P-C l \backslash z z p-c l ~ 2019-11-09 ~ 16-16-11 \backslash A D 98-2,2 U L, 1 M L, 7 M I N . M ~(~$
Sequence Method)
Last changed : 11/20/2019 9:55:31 AM by SYSTEM (modified after loading)
Additional Info : Peak(s) manually integrated
DAD1 B, Sig=254,4 Ref=off (E:IDATAIZZPIZZP-CLIZZP-CL 2019-11-09 16-16-11/ZZP-C16.D)
===2
Area Percent Report
==2

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution	Factor with	ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	5.107	MM	0.1252	67.41597	8.97214	2.7347
2	5.812	BB	0.1273	2397.80884	287.62769	97.2653
Totals				2465.22481	296.59982	

N్

$\stackrel{\text { N }}{\stackrel{\circ}{\circ}}$
(

Data File E:\DATA \ZZP \ZZP-6-11 \ZZP-6-11-1 2019-05-07 10-14-50\ZZP-6-11-11.D
Sample Name: ZZP-6-11-1

Acq. Operator	: SYSTEM Seq. Line :	
Acq. Instrument	1260 Location	63
Injection Date	$:$ 5/7/2019 10:23:46 AM Inj	1
	Inj Volume	$2.000 \mu \mathrm{l}$
Acq. Method	$: E: \backslash D A T A \backslash Z Z P \backslash Z Z P-6-11 \backslash Z Z P-6-11-1 \quad 2019-05-07$.M	10-14-50\AD-98-2, 2UL , 1.0ML, 20MIN
Last changed	: 5/7/2019 10:32:24 AM by SYSTEM (modified after loading)	
Analysis Method	: E:\DATA \ZZP \ZZP-6-11\ZZP-6-11-1 2019-05-07 .M (Sequence Method)	$10-14-50 \backslash A D-98-2,2 U L, 1.0 M L, 20 M I N$
Last changed	: 9/10/2019 5:35:09 PM by SYSTEM (modified after loading)	

Additional Info : Peak(s) manually integrated
DAD1 B, Sig=254,4 Ref=off (E:IDATAIZZPIZZP-6-11IZZP-6-11-1 2019-05-07 10-14-50ZZP-6-11-11.D)

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	4.244	MM	0.2417	3122.70117	215.35159	50.0252
2	4.997	VB	0.2339	3119.55615	195.78053	49.9748
Totals	s :			6242.25732	411.13213	

Data File E:\DATA $\backslash Z Z P \backslash Z Z P-6-18 \backslash Z Z P-6-18$ 2019-05-11 15-11-08\CC-9-136-R1.D
Sample Name: ZZP-6-18-1

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	4.143	BB	0.2460	110.51006	7.16107	2.3603
2	4.781		0.2288	4571.43604	291.73410	97.6397
Total	s :			4681.94610	298.89517	

| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 1 | -10 | -20 | -30 | -40 | -50 | -60 | -70 | 1 |

Data File E:\DATA \ZZP\ZZP-6-25\ZZP-6-25-1-2 2019-05-14 17-49-34\XSM 201905143.D
Sample Name: ZZP-6-25-1

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	4.538	MF	0.2292	544.58289	39.59743	47.8651
2	4.943		0.2559	593.16199	38.62579	52.1349
Total	s :			1137.74487	78.22322	

Data File E:\DATA\ZZP\ZZP-6-34\ZZP-6-34 2019-05-22 15-31-46\ZZP-6-342.D
Sample Name: ZZP-6-34-2

Acq. Operator	: SYSTEM	Seq. Line	3
Acq. Instrument	: 1260	Location	62
Injection Date	: 5/22/2019 3:48:44 PM	Inj	1
		Inj Volume	. 000

Acq. Method : E:\DATA\ZZP\ZZP-6-34\ZZP-6-34 2019-05-22 15-31-46\AD-97-3,1UL,1ML,10MIM.M
Last changed : 5/22/2019 3:47:16 PM by SYSTEM
Analysis Method : E:\DATA \ZZP\ZZP-6-34\ZZP-6-34 2019-05-22 15-31-46\AD-97-3,1UL,1ML,10MIM.M (
Sequence Method)
Last changed : 9/10/2019 7:55:37 PM by SYSTEM (modified after loading)
Additional Info : Peak(s) manually integrated

$===$
Area Percent Report
==2

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Data File E:\DATA \ZZP \ZZP-6-11 \ZZP-6-11-3 2019-05-07 10-49-34\ZZP-6-11-11.D
Sample Name: ZZP-6-11-3

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.149	MF	0.2770	2008.51721	120.82961	49.0794
2	6.099	FM	0.3220	2083.86230	107.86211	50.9206
Total	s :			4092.37952	228.69172	

Data File E:\DATA $\backslash Z Z P \backslash Z Z P-6-18 \backslash Z Z P-6-18$ 2019-05-11 15-11-08\CC-9-136-R2.D
Sample Name: ZZP-6-18-2

===	
Acq. Operator : SYSTEM	Seq. Line : 3
Acq. Instrument : 1260	Location : 62
Injection Date : 5/11/2019 3:29:21 PM	Inj : 1

Acq. Method : E:\DATA \ZZP \ZZP-6-18\ZZP-6-18 2019-05-11 15-11-08\AD98-2,2UL,1ML,7MIN.M
Last changed : 5/11/2019 3:17:53 PM by SYSTEM
Analysis Method : E:\DATA\ZZP\ZZP-6-18\ZZP-6-18 2019-05-11 15-11-08\AD98-2, 2UL, 1ML,7MIN.M (
Sequence Method)
Last changed : 9/10/2019 5:40:04 PM by SYSTEM (modified after loading)

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	5.196	BB	0.2171	51.19048	3.44931	2.9350
2	6.159		0.2756	1692.94031	89.93631	97.0650
Total	s :			1744.13079	93.38562	

「どming

$3 n$

Data File E:\DATA\ZZP\ZZP-9-11\ZZP-9-12 2019-11-27 14-08-42\ZZP-9-111.D
Sample Name: ZZP-9-11

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	14.985	BB	0.6928	2325.13940	51.88815	27.5755
2	16.961	BB	0.8652	1658.62830	28.23995	19.6709
3	20.505	BB	1.0598	2575.21631	34.86258	30.5414
4	24.522	BB	1.0713	1872.90759	21.77895	22.2122

Data File E:\DATA\ZZP\ZZP-9-11\ZZP-9-12 2019-11-27 14-08-42\ZZP-9-112.D
Sample Name: ZZP-9-11-GH

Additional Info : Peak(s) manually integrated

===2
Area Percent Report
==2

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \&	Dilution	Factor with
ISTDs		

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	17.760	BB	0.9240	4010.64600	66.27621	97.6088
2	25.208	PM	1.2687	98.25127	1.29068	2.3912
Total	s :			4108.89726	67.56690	

Data File E:\DATA \ZZP \ZZP-9-11\ZZP-9-11-3 2019-11-28 21-15-16\ZZP-9-11-31.D
Sample Name: ZZP-9-11-3

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*s}]} \end{gathered}$	Height [mAU]	Area \%
1	15.832	BB	0.3935	1463.89966	57.41402	29.7159
2	18.567	BB	0.5035	1455.96118	44.28938	29.5548
3	24.147	BB	0.6228	1003.15607	24.65083	20.3632
4	27.348	BB	0.6895	1003.29791	21.07263	20.3661

Data File $E: \backslash D A T A \backslash Z Z P \backslash Z Z P-9-11 \backslash Z Z P-9-11-3$ 2019-11-28 21-15-16\ZZP-9-11-33.D
Sample Name: ZZP-9-11-3-GH

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	15.976	BB	0.3922	2172.82910	85.00035	51.9735
2	18.835	BB	0.4452	150.99010	4.69492	3.6116
3	24.356	BB	0.4877	147.75714	3.63927	3.5343
4	27.597	BB	0.7201	1709.07373	35.85708	40.8806
Total	s :			4180.65007	129.19162	

Data File E:\DATA \ZZP \ZZP-6-41 \ZZP-6-41-1 2019-05-25 21-32-20\ZZP-6-41-12.D
Sample Name: ZZP-6-41-1

Acq. Operator	: SYSTEM Seq. Line :	
Acq. Instrument	: 1260 Location	61
Injection Date	: 5/25/2019 9:51:01 PM Inj	1
	Inj Volume :	$2.000 \mu \mathrm{l}$
Acq. Method	$: E: \backslash D A T A \backslash Z Z P \backslash Z Z P-6-41 \backslash Z Z P-6-41-1 \quad 2019-05-25$ M	21-32-20\OD, 90-10, 2UL, 1ML, 30MIN.
Last changed	: 5/25/2019 10:00:44 PM by SYSTEM (modified after loading)	
Analysis Method	: E:\DATA \ZZZP\ZZP-6-41\ZZP-6-41-1 2019-05-25 M (Sequence Method)	21-32-20\OD, $90-10,2 U L, 1 M L, 30 M I N$.
Last changed	: 9/10/2019 8:05:14 PM by SYSTEM (modified after loading)	

Additional Info : Peak(s) manually integrated

| ==================================== | |
| :--- | :--- | :--- |
| | Area Percen |

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	7.954	MF	0.4057	1883.46558	77.37347	49.0280
2	8.720	FM	0.4528	1958.14441	72.07433	50.9720
Totals				3841.60999	149.44780	

Data File E:\DATA \ZZP\ZZP-6-42\ZZP-6-42-23 2019-05-27 20-36-24\ZZP-6-423.D
Sample Name: ZZP-6-42-3

Additional Info : Peak(s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*s}]} \end{gathered}$	Height [mAU]	Area \%
1	7.973	MF	0.4174	9402.24316	375.44598	95.9894
2	8.583	FM	0.3437	392.83899	19.04754	4.0106
Totals	s :			9795.08215	394.49352	

Data File E:\DATA \ZZP\ZZP-6-45\ZZP-6-45-35 2019-06-01 09-05-50\ZZP-6-451.D
Sample Name: ZZP-6-45-3

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	10.858	BB	0.8048	3301.74585	61.45637	49.9615
2	20.878		1.5570	3306.82788	28.89760	50.0385
Tota	s :			6608.57373	90.35397	

Data File E:\DATA \ZZP \ZZP-6-46\ZZP-6-46-13 2019-06-03 10-49-44\ZZP-6-46-133.D
Sample Name: ZZP-6-46-3

Additional Info : Peak(s) manually integrated
(E:IDATAIZZPIZZP-6-46/ZZP-6-46-13 2019-06-0310-49-44/ZZP-6-46-133.D)

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.664	MM	0.8517	65.96181	1.29073	1.5794
2	20.454	MM	1.7732	4110.40674	38.63438	98.4206
Total	s :			4176.36855	39.92512	

Data File E:\DATA \ZZP\ZZP-4BR\ZZP-4BR 2019-11-11 15-20-50\ZZP-4Br8.D
Sample Name: zzp-4f

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	16.383	BB	0.6005	1206.50049	30.30393	49.3635
2	19.331	BB	0.6441	1237.61365	28.75495	50.6365
Total	s :			2444.11414	59.05888	

Data File E:\DATA \ZZP\ZZP-4Br\zzp-4br 2019-11-11 15-20-50\ZZP-4Br7.D
Sample Name: zzp-4f

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	16.293	BB	0.6243	9936.77637	245.43620	98.0621
2	19.328	BB	0.5430	196.37254	5.12484	1.9379
Total	s :			1.01331 e 4	250.56104	

Data File E:\DATA \ZZP\ZZP-6-45\ZZP-6-45-35 2019-06-01 09-05-50\ZZP-6-452.D
Sample Name: ZZP-6-45-4

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

| Peak
 RetTime
 $\#$ | [min] |
| :---: | :---: | :---: | :---: | :---: | :---: |

Data File E:\DATA \ZZP \ZZP-6-59\ZZP-5-59-1 2019-06-19 09-01-25\ZZP-6-59-11.D
Sample Name: ZZP-5-59-1

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	Area \%
1	7.726	BB	0.4821	216.48560	6.82393	1.8061
2	13.404	BBA	1.2058	1.17700 e 4	147.67722	98.1939
Total	s :			1.19864 e 4	154.50114	

Data File E:\DATA \ZZP\ZZP-4BR\ZZP-4BR-2 2019-11-11 18-46-59\ZZP-4Br.D
Sample Name: zzp-4Br

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	17.589	BV	0.6684	1963.27124	45.77510	48.8656
2	19.041		0.6693	2054.42603	45.80133	51.1344
Total	s :			4017.69727	91.57644	

Data File E:\DATA \ZZP-4BR\ZZP-4BR-3 2019-11-11 19-21-08\ZZP-4Br.D
Sample Name: zzp-4Br

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	17.578	MF	0.7326	1.21459 e 4	276.32147	97.2736
2	19.110	FM	0.8253	340.42383	6.87504	2.7264
Total	:			1.24863e4	283.19652	

Data File E:\DATA \ZZP\ZZP-6-41\ZZP-6-41-23-3 2019-05-28 19-39-55\ZZP-6-41-232.D
Sample Name: ZZP-6-41-3

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	9.135	BB	0.4337	2272.83691	78.98444	50.4704
2	10.836	BB	0.5164	2230.47266	65.31155	49.5296
Total	s :			4503.30957	144.29600	

Sample Name: ZZP-6-42-1

Additional Info : Peak(s) manually integrated
DAD1 B, Sig=254,4 Ref=off (E:IDATAIZZPIZZP-6-41ZZZP-6-41-1-2 2019-05-2916-06-18/ZZP-6-414.D)

| $====================================$ | |
| :--- | :--- | :--- |
| | Area Percen |

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	9.360	BB	0.4498	2123.67090	72.06597	98.7472
2	11.204	MM	0.5264	26.94297	$8.53038 \mathrm{e}-1$	1.2528
Total	s :			2150.61387	72.91901	

Data File E:\DATA\ZZP\ZZP-6-47\ZZP-5-47 2019-06-04 16-47-05\ZZP-5-471.D
Sample Name: ZZP-6-47-1

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*s}]} \end{gathered}$	Height [mAU]	Area \%
1	8.079	BB	0.8579	4156.84033	70.70460	50.0499
2	18.966		2.2232	4148.55811	31.10066	49.9501
Total	s :			8305.39844	101.80526	

Data File E:\DATA\ZZP\ZZP-6-50\ZZP-6-50 2019-06-06 20-05-23\ZZP-6-501.D Sample Name: ZZP-6-50-1

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	7.761		0.7743	89.62027	1.92902	2.6923
2	17.781		1.4826	3239.20337	26.98168	97.3077
Total	s :			3328.82364	28.91070	

Data File E:\DATA \ZZP\ZZP-6-42\ZZP-6-42-23 2019-05-27 20-36-24\ZZP-6-425.D
Sample Name: ZZP-6-41-2

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	13.721		0.5697	3910.41187	102.36488	49.1542
2	15.213	VB	0.6545	4044.98584	91.36078	50.8458
Total	s :			7955.39771	193.72566	

Data File E:\DATA \ZZP\ZZP-6-42\ZZP-6-42-23 2019-05-27 20-36-24\ZZP-6-424.D
Sample Name: ZZP-6-42-2

Additional Info : Peak(s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area $[\mathrm{mAU} * \mathrm{~s}]$	Height [mAU]	Area \%
1	13.223	MF	0.7540	4643.86768	102.64550	97.8793
2	14.678	FM	0.5768	100.61829	2.90725	2.1207
Total	s :			4744.48597	105.55275	

(2)

Data File E:\DATA\ZZP\ZZP-6-47\ZZP-5-47 2019-06-04 16-47-05\ZZP-5-472.D
Sample Name: ZZP-6-47-2

Acq. Operator	: SYSTEM	Seq. Line : 3
Acq. Instrument	: 1260	Location : 54
Injection Date	: 6/4/2019 5:25:15 PM	Inj : 1
		Inj Volume : $2.000 \mu \mathrm{l}$
Acq. Method	: E: \DATA \ZZP\ZZP-5-47\ZZP-5-47	2019-06-04 16-47-05\AS, 90-10, 2UL, 1ML, 20MIN.M
Last changed	: 6/4/2019 5:21:19 PM by SYSTEM	
Analysis Method	: E:\DATA\ZZP\ZZP-6-47\ZZP-5-47 (Sequence Method)	2019-06-04 16-47-05\AS, 90-10, 2UL , 1ML, 20MIN.M
Last changed	: 9/24/2019 6:08:53 PM by SYSTEM	

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.120	BB	0.7629	3462.03076	67.22150	49.4527
2	14.245		1.3475	3538.65649	38.10336	50.5473
Total	s :			7000.68726	105.32486	

Data File E:\DATA \ZZP\ZZP-6-50\ZZP-6-50 2019-06-06 20-05-23\ZZP-6-502.D
Sample Name: ZZP-6-50-2

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	7.865	MM	0.7603	97.89665	2.14592	2.8456
2	13.537	BB	1.2137	3342.38647	40.21384	97.1544
Total	s :			3440.28313	42.35976	

Sample Name: ZZP-6-60-2

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	10.178	BB	1.1312	2910.35864	37.42667	51.2927
2	21.766	BB	1.8478	2763.66260	17.56326	48.7073
Totals :				5674.02124	54.98993	

Sample Name: ZZP-6-62

Acq. Operator	SYSTEM Seq. Line :	
Acq. Instrument	1260 Location :	82
Injection Date	6/22/2019 3:48:32 PM Inj :	1
	Inj Volume :	$2.000 \mu \mathrm{l}$
Acq. Method	: E:\DATA \ZZP \ZZP-6-62\ZZP-6-62-2 2019-06-22 M	$15-47-15 \backslash \mathrm{AS}, 90-10,2 \mathrm{UL}, 1 \mathrm{ML}, 20 \mathrm{MIN} .$
Last changed	: 6/22/2019 3:47:37 PM by SYSTEM (modified after loading)	
Analysis Method	: E:\DATA \ZZP \ZZP-6-62\ZZP-6-62-2 2019-06-22 M (Sequence Method)	$15-47-15 \backslash \mathrm{AS}, 90-10,2 \mathrm{UL}, 1 \mathrm{ML}, 20 \mathrm{MIN} .$
Last changed	: 9/10/2019 9:16:52 PM by SYSTEM (modified after loading)	

Additional Info : Peak(s) manually integrated

$\begin{aligned} &=== \\ & \text { Area Percent Report }\end{aligned}$

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.003	MP	1.0187	90.11457	1.47428	1.3047
2	21.106	BB	2.0351	6816.76123	45.20910	98.6953
Total	s :			6906.87580	46.68338	

Data File E:\DATA \ZZP\ZZP-6-45\ZZP-6-45-13 2019-05-31 15-48-34\ZZP-6-458.D
Sample Name: ZZP-6-45-2

Additional Info : Peak(s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 D, Sig=230,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area $[\mathrm{mAU} * \mathrm{~s}]$	Height [mAU]	Area \%
1	11.293	BB	0.3389	2437.98535	110.72532	49.9757
2	19.346	BB	0.8447	2440.35522	44.71667	50.0243
Total	s :			4878.34058	155.44199	

Data File E:\DATA \ZZP \ZZP-6-46\ZZP-6-46-13 2019-06-03 10-49-44\ZZP-6-46-131.D
Sample Name: ZZP-6-46-1

Additional Info : Peak(s) manually integrated

===================================		
	Area Percent	
======================================		
	$:$	Signal
Sorted By	$:$	1.0000
Multiplier	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 D, Sig=230,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.247	BB	0.3501	4394.93213	191.25177	93.1911
2	19.414	BB	0.7463	321.11188	6.28257	6.8089
Total	s :			4716.04401	197.53434	

$\stackrel{\stackrel{7}{7} \mathrm{~F}}{5}$

Data File E:\DATA \ZZP\ZZP-6-45\ZZP-6-45-13 2019-05-31 15-48-34\ZZP-6-451.D
Sample Name: ZZP-6-45-1

Additional Info : Peak(s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=210,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	8.277	BV	0.3750	2930.12817	117.45807	50.8356
2	9.651	VB	0.4223	2833.80078	100.10265	49.1644
Totals				5763.92896	217.56072	

Data File E:\DATA \ZZP\ZZP-6-53\ZZP-6-53 2019-06-12 19-00-55\ZZP-6-531.D
Sample Name: ZZP-6-53-2

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=210,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	Area \%
1	7.991	MF	0.4139	9723.21973	391.51294	96.4628
2	9.274	FM	0.4375	356.54272	13.58161	3.5372

Data File E:\DATA \ZZP\ZZP-9-2\ZZP-9-2-GH 2019-11-19 19-12-35\ZZP-9-2-GH2.D
Sample Name: ZZP-9-2-RAC

Additional Info : Peak(s) manually integrated
DAD1 B, Sig=254,4 Ref=off (E:IDATAIZZPIZZP-9-2IZZP-9-2-GH 2019-11-19 19-12-35IZZP-9-2-GH2.D)

===2
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution	Factor with	ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.470	BV E	0.0880	279.41269	47.92768	4.7455
2	5.631	VB R	0.1308	2650.54663	300.73383	45.0162
3	6.082	BV R	0.1416	2486.04419	269.43274	42.2223
4	6.518	VB E	0.1500	471.98459	48.30260	8.0161
Total				5887.98810	666.39684	

Data File E:\DATA \ZZP\ZZP-9-2\ZZP-9-2-GH 2019-11-19 19-12-35\ZZP-9-2-GH1.D
Sample Name: ZZP-9-2-GH

Acq. Operator	: SYSTEM	Seq. Line :	2
Acq. Instrument	: 1260	Location	56
Injection Date	: 11/19/2019 7:24:46 PM	Inj	2

Acq. Method : E:\DATA \ZZP \ZZP-9-2\ZZP-9-2-GH 2019-11-19 19-12-35
Last changed : 11/19/2019 7:12:35 PM by SYSTEM
Analysis Method : E:\DATA \ZZP\ZZP-9-2\ZZP-9-2-GH 2019-11-19 19-12-35\AS,90-10, 2UL,1ML,10MIN.M
(Sequence Method)
Last changed : 11/29/2019 9:34:42 AM by SYSTEM (modified after loading)
Additional Info : Peak(s) manually integrated
Additional Info : Peak(s) manually integrated
$==$
Area Percent Report
===1

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution	Factor with	ISTDs

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	5.637	BV	0.1318	349.46179	40.05820	6.5368
2	6.084		0.1451	4996.57764	524.82355	93.4632
Totals				5346.03943	564.88175	

Data File E:\DATA \ZZP \ZZP-8-3\ZZP-8-3-RAC-2 2019-09-04 17-10-56\ZZP-8-3-RAC3.D
Sample Name: zzp-8-3-rac

Acq. Operator	: SYSTEM Seq. Line : 4
Acq. Instrument	1260 Location : 63
Injection Date	: 9/4/2019 7:07:38 PM Inj : 1
	Inj Volume : $2.000 \mu \mathrm{l}$
Acq. Method	: E:\DATA \ZZP\ZZP-8-3\ZZP-8-3-RAC-2 2019-09-04 17-10-56\ID,95-5,2UL,1ML, 20MIN .M
Last changed	9/4/2019 7:08:05 PM by SYSTEM (modified after loading)
Analysis Method	: E:\DATA \ZZP\ZZP-8-3\ZZP-8-3-RAC-2 2019-09-04 17-10-56\ID, 95-5, 2UL, 1ML, 20MIN .M (Sequence Method)
Last changed	9/10/2019 9:19:35 PM by SYSTEM (modified after loading)

Additional Info : Peak(s) manually integrated
DAD1 B, Sig=254,4 Ref=off (E:IDATAIZZPIZZP-8-3IZZP-8-3-RAC-2019-09-0417-10-561ZZP-8-3-RAC3.D)

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	Area $\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]$	Height [mAU]	Area \%
1	46.017	BB	1.4743	1.04994 e 4	109.14314	49.9799
2	51.196	BB	1.6180	1.05079 e 4	94.88618	50.0201
Total	s :			2.10073 e 4	204.02931	

Data File E:\DATA
Sample Name: ZZP-8-3-GH

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	47.027	PM	1.5874	4526.65625	47.52705	97.3833
2	52.644	PM	1.4867	121.63187	1.36354	2.6167
Totals :				4648.28812	48.89059	

Data File E:\DATA \ZZP\ZZP-7-67\ZZP-7-67 2019-08-30 16-54-15\ZZP-7-671.D
Sample Name: ZZP-7-67

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=220,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.674	PM	0.4507	3036.45679	112.29697	48.5146
2	14.736	BB	0.5018	3222.39502	94.03548	51.4854
Total	s :			6258.85181	206.33246	

Data File E:\DATA \ZZP\ZZP-8-1\ZZP-8-1 2019-09-02 10-47-59\ZZP-8-11.D
Sample Name: ZZP-8-1

Signal 1: DAD1 A, Sig=220,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	11.817	MM	0.5005	7022.30371	233.82272	99.5634
2	15.033	MM	0.3799	30.79710	1.35119	0.4366
Totals :			7053.10081		235.17392	

Data File E:\DATA \ZZP \ZZP-8-16\ZZP-8-16-2 2019-09-22 16-15-31\ZZP-8-16-23.D
Sample Name: ZZP-8-16-2

Acq. Operator	: SYSTEM Seq. Line :	4
Acq. Instrument	: 1260 Location	4
Injection Date	: 9/22/2019 4:41:28 PM Inj :	1
	Inj Volume :	$2.000 \mu \mathrm{l}$
Acq. Method	$\begin{aligned} & : ~ E: \backslash D A T A \backslash Z Z P \backslash Z Z P-8-16 \backslash Z Z P-8-16-2 \text { 2019-09-22 } \\ & \mathrm{M} \end{aligned}$	16-15-31\AS, 90-10, 2UL , 1ML, 20MIN.
Last changed	: 9/22/2019 5:02:24 PM by SYSTEM (modified after loading)	
Analysis Method	: E:\DATA \ZZZP $\backslash Z Z P-8-16 \backslash Z Z P-8-16-2$ 2019-09-22 M (Sequence Method)	16-15-31\AS, 90-10, 2UL , 1ML, 20MIN.

Last changed : 9/22/2019 5:06:31 PM by SYSTEM

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	8.278	BB	0.8700	3980.96582	66.54219	49.7888
2	17.154	BB	1.4025	4014.73340	34.94067	50.2112
Total	s :			7995.69922	101.48286	

Data File E:\DATA $\backslash Z Z P \backslash Z Z P-8-16 \backslash Z Z P-8-16-2$ 2019-09-22 16-15-31
Sample Name: ZZP-8-16-3

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.324	BB	0.6487	222.15175	4.13547	3.0037
2	17.145		1.5344	7173.88672	62.25256	96.9963
Total	s :			7396.03847	66.38803	

[^0]: $\mathrm{N}-((2 R, 3 S, E)$-1-hydroxy-2,3-dimethyl-5-phenylpent-4-en-2-yl)benzamide (5):

 5

