Supporting Information

Discovery and Characterization of 1*H*-1,2,3-Triazole Derivatives as Novel Prostanoid EP4 Receptor Antagonists for Cancer Immunotherapy

Jun-Jie Yang[†], Wei-Wei Yu[†], Long-Long Hu, Wen-Juan Liu, Xian-Hua Lin, Wei Wang, Qiansen Zhang, Pei-Li Wang, Shuo-Wen Tang, Xin Wang, Mingyao Liu, Weiqiang Lu*, and Han-Kun Zhang*

Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China

List of Contents

Antagonistic Activity of Compounds **59** and **4** in Calcium Flux Assay S2

S1

S					3
Cytotoxic A	ctivi	ty of	Selected	Comp	ounds
S					4
The Prim	er S	s e q u	ences	of Q	- P C R
S					5
Crystal Structure	of	Compoun	ds 11a ,	11g an	d 13b
S6					
HPLC Tra	c e s	of C	ompou	nds 1	5 - 6 5
S		1			0
Characterization	of	Structural	Isomers	by	HMBC

Inhibitory Activity of Compounds **59** and **4** in β -Arrestin Recruitment Assay

S61

Figure S1. The antagonistic effects of Compounds **59** and **4** on human EP4 in calcium flux assay. (A, B) Dose-response curve of Compounds **59** and **4** in CHO-G α_{16} cells overexpressing human EP4 receptor. (C, D) Dose-response curve of Compounds **59** and **4** in CHO-G α_{16} cells overexpressing mouse EP4 receptor. Data are presented as mean ± SEM of three independent experiments. n = 3 per group.

Figure S2. The inhibitory effects of Compounds **59** and **4** on human EP4 in β -arrestin recruitment assay. (A, B) Dose-response curve of Compounds **59** and **4** in HEK293 cells co-expressing human EP4 -LgBit and SmBit- β -arrestin.

β -Arrestin recruitment assay.

A NanoBiT[®] β -arrestin recruitment assay of EP4 was developed (unpublished data). In brief, 2 ×10⁴ co-expressing of EP4-LgBit and SmBit- β -arrestin HEK293 cells were seeded into white 96-well plates (Costar, USA) and cultured overnight. After incubation with substrate furimazine at room temperature for 30 min, cells were subsequently treated with different concentrations of compounds **59** or **4** for additional 15 min. Then cells were simulated with endogenous EP4 agonists PGE₂ (10 nM) and luminescence was continuously detected for 30 min by using a hybrid multi-mode microplate reader Cytation 5 (BioTek, USA).

	Cytotoxicity Activity				
Compd.	CT26	Panc02	EMT-6	LLC	HEK293
	IC ₅₀ , μΜ				
O a maaita kiinaa	0.016 ±	0.073 ±		0.0053 ±	0.0051 ±
Gemcitabine	0.0001	0.0003	-	0.0002	0.0001
34	>100	>100	>100	>100	>100
43	>100	>100	>100	>100	>100
45	>100	>100	>100	>100	>100
48	>100	>100	>100	>100	>100
52	>100	>100	>100	>100	>100
56	>100	>100	>100	>100	>100
57	>100	>100	>100	>100	>100
58	>100	>100	>100	>100	>100
59	>100	>100	>100	>100	>100
04	40.5 ±	50.1 ±	30.2 ±		× 400
01	0.1	0.7	0.5	35.8 ± 0.2	>100
62	ND ^a	ND	ND	ND	ND
64	ND	ND	ND	ND	ND
65	ND	ND	ND	ND	ND

 Table S1: Cytotoxic Activity of Selected Compounds.

CT26, Panc02, EMT-6, LLC, HEK293 were treated with 100 μM selected compounds

for 72 h. Then cell viability was determined by CCK8 assay. All the data are presented as mean ± SEM of three independent experiments. ^{*a*}ND: not determined.

Cell viability. CT26 (2.5×10^4 cells/mL), Panc02 (8.0×10^4 cells/mL), EMT6 (2.0×10^4 cells/mL), LLC (2.5×10^4 cells/mL), and HEK293 (3.0×10^4 cells/mL) cells were seeded into 96-well plates (Costar, USA) overnight, and then treated with different concentrations of tested compounds for 72 h. Cell viability was determined using Cell Counting Kit-8 (CCK8) (7seabiotech, China). CCK-8 solution was added into the 96-well plate in 37 °C for 0.5-4 h after drug treatment (0.1% DMSO; negative control) according to the manufacturer's manual, and the absorbance was measured at 450 nm with Versa Max Microplate Reader (Molecular Devices, USA).

 Table S2.
 The primer sequences of Q-PCR

Gene	Direction	Primer sequences (5'-3')		
O ACTINI	Forward	GTACGCCAACACAGTGCTG		
β-ACTIN	Reverse	CGTCATACTCCTGCTTGCTG		
ince	Forward	ATGCCGCCGCTCTAATACTT		
///////////////////////////////////////	Reverse	GGAAAGGCCCAAGCCATCAT		
11.6	Forward	GGGACTGATGCTGGTGACAA		
12-0	Reverse	ACAGGTCTGTTGGGAGTGGT		
CVCI 1	Forward	CCATCCAGAGCTTGACGGTG		
	Reverse	TGGGGGTTGAGGCAAACTTC		
IL-4Rα	Forward	ACACCAATGTGTCCGACGAA		
	Reverse	CTGCAGGGTTGTCCTCTCTG		
IL-10	Forward	AAGGGTTACTTGGGTTGCCA		
	Reverse	GCCTGGGGCATCACTTCTAC		
COY2	Forward	CATCCCCTTCCTGCGAAGTT		
	Reverse	CATGGGAGTTGGGCAGTCAT		
ARG1	Forward	ACATTGGCTTGCGAGACGTA		
	Reverse	ATCACCTTGCCAATCCCCAG		
II 18	Forward	TGCCACCTTTTGACAGTGATG		
IL-IB	Reverse	AAGGTCCACGGGAAAGACAC		

Structure Determination of Compounds 15, 13, and 21

The structure of compounds **15** and **21** was determined by their corresponding intermediates **11a** and **11g**, respectively. The structure of ester **13** was identified by its isomer **13b**. Structure was solved by Xiao-Li Zhao, Ph.D., Shanghai Key Laboratory of Green Chemistry and Chemical Processes, and Department of Chemistry, East China Normal University, Shanghai 200062, China.

Figure S2. Crystal structure of 11a, 11g and 13b

Table S3A. Crystal data and structure refinement for 11a

Identification code	11a
Empirical formula	$C_{11}H_9F_4N_3O_3$
Formula weight	307.21
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	P2₁/n
a/Å	7.36990(10)
b/Å	16.2416(3)
c/Å	10.7978(2)
α/°	90
β/°	101.712(2)
γ/°	90
Volume/Å ³	1265.58(4)
Z	4
ρ _{calc} g/cm ³	1.612
µ/mm ⁻¹	1.396
F(000)	624
Crystal size/mm ³	0.38 × 0.26 × 0.22
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	9.982 to 134.054

Index ranges	$-8 \le h \le 8, -19 \le k \le 19, -12 \le l \le 12$
Reflections collected	27246
Independent reflections	2220 [$R_{(int)}$ = 0.0873, $R_{(sigma)}$ = 0.0350]
Data/restraints/parameters	2220/0/194
Goodness-of-fit on F ²	1.037
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0330$, $wR_2 = 0.0824$
Final R indexes [all data]	R ₁ = 0.0377, wR ₂ = 0.0850
Largest diff. peak/hole / e Å ^{.3}	0.25/-0.21

Table S3B. Crystal data and structure refinement for 11g

Identification code	11g
Empirical formula	$C_{14}H_{14}F_3N_3O_2$
Formula weight	313.28
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	13.1372(4)
b/Å	11.8491(3)
c/Å	10.1560(4)
α/°	90
β/°	103.698(4)
γ/°	90
Volume/Å ³	1535.96(9)
Z	4
$\rho_{calc}g/cm^3$	1.355
µ/mm ⁻¹	1.013
F(000)	648
Crystal size/mm ³	0.46 × 0.38 × 0.32
Radiation	CuKα (λ = 1.54184)

2O range for data	40 496 to 494 46
collection/°	10.186 to 134.16
Index ranges	$-15 \le h \le 15, -14 \le k \le 14, -12 \le l \le 12$
Reflections collected	31270
Independent reflections	2731 [$R_{(int)}$ = 0.1108, $R_{(sigma)}$ = 0.0409]
Data/restraints/parameters	2731/70/229
Goodness-of-fit on F ²	1.081
Final R indexes [I>= 2σ (I)]	R ₁ = 0.0496, wR ₂ = 0.1404
Final R indexes [all data]	R ₁ = 0.0561, wR ₂ = 0.1466
Largest diff. peak/hole / e Å [.]	0 10/-0 15
3	0.13/-0.13

Table S3C. Crystal data and structure refinement for 13b

Identification code	13b
Empirical formula	$C_{11}H_7BrF_3N_3O_2$
Formula weight	350.11
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	4.8139(2)
b/Å	6.2811(2)
c/Å	20.6190(7)
α/°	83.193(3)
β/°	86.789(3)
γ/°	79.241(3)
Volume/Å ³	607.80(4)
Z	2
$ ho_{calc} g/cm^3$	1.913
µ/mm ⁻¹	5.072
F(000)	344
Crystal size/mm ³	0.28 × 0.26 × 0.18
Radiation	CuKα (λ = 1.54184)

2O range for data	8.644 to 134.128		
collection/°			
Index ranges	$-5 \le h \le 5, -7 \le k \le 7, -24 \le l \le 24$		
Reflections collected	7236		
Independent reflections	2064 [$R_{(int)}$ = 0.1538, $R_{(sigma)}$ = 0.0942]		
Data/restraints/parameters	2064/18/182		
Goodness-of-fit on F ²	1.109		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0694$, $wR_2 = 0.1833$		
Final R indexes [all data]	R ₁ = 0.0781, wR ₂ = 0.1949		
Largest diff. peak/hole / e Å-3	1.55/-2.41		

Peak#	Ret. Time	Area	Area%
1	11.275	5845.76367	98.7038
2	11.973	40.51000	0.6840
3	12.234	18.02865	0.3044
4	12.437	18.22928	0.3078

HPLC trace of compound 16

Peak#	Ret. Time	Area	Area%
1	11.881	2551.83179	97.6267
2	12.180	8.72361	0.3337
3	12.950	18.07315	0.6914
4	14.091	13.97124	0.5345
5	14.598	21.26625	0.8136

HPLC trace of compound 17

Table Peak

Peak#	Ret. Time	Area	Area%
1	11.827	1502.11194	95.9551
2	12.159	21.63539	1.3821
3	14.620	41.68489	2.6628

Peak#	Ret. Time	Area	Area%
1	11.611	4052.66479	97.7315
2	11.916	4.90736	0.1183
3	12.255	16.52071	0.3984
4	12.543	17.22178	0.4153
5	13.433	17.24001	0.4157
6	13.712	18.48209	0.4457

7 14.088	19.69880	0.4750
----------	----------	--------

HPLC trace of compound 19

Table Peak

Peak#	Ret. Time	Area	Area%
1	9.879	71.91354	0.8128
2	11.455	8748.88672	98.8795
3	12.137	8.65984	0.0979
4	12.574	18.57173	0.2099

HPLC trace of compound 20

Peak#	Ret. Time	Area	Area%
1	11.679	8050.58838	97.1047
2	12.537	240.03699	2.8953

HPLC trace of compound 21

Table Peak

Peak#	Ret. Time	Area	Area%
1	10.871	10.60129	0.2842
2	11.772	3544.09863	95.0090
3	13.643	56.36662	1.5111
4	14.021	60.91159	1.6329
5	14.145	58.29802	1.5628

HPLC trace of compound 22

Peak#	Ret. Time	Area	Area%
1	11.777	21.82972	0.8919
2	12.389	2403.70068	98.2089
3	12.900	22.00776	0.8992

HPLC trace of compound 23

Table Peak

Peak#	Ret. Time	Area	Area%
1	12.591	35.41896	0.2887
2	12.750	121884	99.3345
3	13.094	46.23549	0.3768

HPLC trace of compound 24

Peak#	Ret. Time	Area	Area%
1	12.370	7090.19971	95.0527
2	14.029	369.03293	4.9473

Peak#	Ret. Time	Area	Area%
1	11.149	2294.17651	99.3684
2	12.557	14.58215	0.6316

HPLC trace of compound 26

Peak#	Ret. Time	Area	Area%
1	11.489	6.34281	0.3331
2	11.604	4.13072	0.2169
3	11.700	3.65398	0.1919
4	12.088	1848.55896	97.0803
5	12.884	11.998032	0.6292
6	13.196	29.48799	1.5486

HPLC trace of compound 27

Peak#	Ret. Time	Area	Area%
1	11.882	3631.75439	99.0232
2	12.579	35.82351	0.9768

HPLC trace of compound 28

Peak#	Ret. Time	Area	Area%
1	11.583	1215.35913	97.2175
2	11.910	3.01075	0.2408
3	12.252	3.39025	0.2712
4	14.374	28.38466	2.2705

HPLC trace of compound 29

Table Peak

Peak#	Ret. Time	Area	Area%
1	10.085	237.71516	4.3756
2	11.317	5168.15039	95.1305
3	12.636	26.83220	0.4939

HPLC trace of compound 30

Peak#	Ret. Time	Area	Area%
1	8.804	0.1138	1.0509
2	10.697	0.1014	0.7623
3	11.401	0.0773	98.1868

HPLC trace of compound 31

Table Peak

Peak#	Ret. Time	Area	Area%
1	10.237	19.61359	0.4511
2	11.113	4274.33545	98.3086
3	11.405	35.16422	0.8088
4	12.251	18.76078	0.4315

HPLC trace of compound 32

Peak#	Ret. Time	Area	Area%
1	10.343	24.60720	0.3882
2	11.420	6224.20264	98.1952
3	11.747	20.71974	0.3269
4	11.963	15.27273	0.2409
5	12.563	7.88881	0.1245
6	14.642	45.91381	0.7244

Peak#	Ret. Time	Area	Area%
1	11.802	2463.35254	98.7379
2	13.745	8077165	0.3516
3	14.109	22.71547	0.9105

HPLC trace of compound 34

Peak#	Ret. Time	Area	Area%
1	12.019	6225.67969	99.2690
2	12.306	45.84183	0.7310

Peak#	Ret. Time	Area	Area%
1	11.060	45.42304	0.7878
2	11.578	5720.73291	99.2122

Peak#	Ret. Time	Area	Area%
1	11.682	2035.68823	99.2295
2	13.208	6.06097	0.7705

HPLC trace of compound 37

Table Peak

Peak#	Ret. Time	Area	Area%
1	11.509	32.13597	0.3454
2	11.660	293.26526	3.1518
3	11.881	8979.18555	96.5028

Peak#	Ret. Time	Area	Area%
1	12.127	38.79142	0.7922
2	12.336	4858.00977	99.2078

HPLC trace of compound 39

Peak#	Ret. Time	Area	Area%
1	10.422	28.78823	0.4381
2	11.099	153.11110	2.3298
3	11.310	38.75622	0.5897
4	11.649	6262.10938	95.2886
5	12.195	15.02488	0.2286
6	12.656	28.02688	0.4265

7 13.143	45.91587	0.6987
----------	----------	--------

Peak#	Ret. Time	Area	Area%
1	11.197	50.56622	0.4282
2	11.639	11726.3	99.2960
3	11.924	32.56635	0.2758

Peak#	Ret. Time	Area	Area%
1	10.993	67.36498	1.4808
2	11.222	50.04362	1.1000
3	11.558	4333.29736	95.2522
4	12.451	16.44314	0.3614
5	12.633	44.47114	0.9775
6	14.009	37.66735	0.8280

HPLC trace of compound 42

Peak#	Ret. Time	Area	Area%
1	8.827	58.07767	0.6314
2	9.471	42.06168	0.4573
3	10.124	3.86209	0.0420
4	11.197	9094.02637	98.8693

Peak#	Ret. Time	Area	Area%
1	8.795	41.71376	0.7005
2	10.229	50.37642	0.8459
3	11.488	5834.06494	97.9669
4	11.744	28.98110	0.4867

Peak#	Ret. Time	Area	Area%
1	12.255	3199.03394	96.5201
2	13.038	115.33668	3.4799

Peak#	Ret. Time	Area	Area%
1	10.240	70.99714	1.2093
2	12.277	5799.94727	98.7907

Peak#	Ret. Time	Area	Area%
1	10.459	8441.84180	99.6908
2	11.920	26.18334	0.3092

HPLC trace of compound 47

Peak#	Ret. Time	Area	Area%
1	11.369	1.66592	0.0188
2	11.580	19.92364	0.2243
3	12.211	8703.31348	97.9889
4	14.018	157.03271	1.7680

Peak#	Ret. Time	Area	Area%
1	11.268	8.68029	0.4140
2	11.621	2042.90112	97.4336
3	11.905	8.98877	0.4287
4	12.650	17.74973	0.8466
5	13.674	16.36952	0.7807
6	14.075	2.02157	0.0964

Peak#	Ret. Time	Area	Area%
1	11.989	2368.24561	98.9886
2	12.558	24.19634	1.0114

Peak#	Ret. Time	Area	Area%
1	12.268	2385.48289	96.7671
2	12.956	42.01667	1.7044
3	13.309	37.68092	1.5285

Table Peak

Peak#	Ret. Time	Area	Area%
1	11.062	78.17957	2.1255
2	12.013	23.89422	0.6496
3	12.511	3576.11914	97.2249

Table Peak

Peak#	Ret. Time	Area	Area%
1	11.159	22.53733	0.5991
2	11.432	15.69731	0.4173
3	11.809	27.54461	0.7322
4	12.200	3696.11377	98.2514

Peak#	Ret. Time	Area	Area%
1	12.037	96.86595	3.4564
2	12.459	2682.69385	95.7245
3	12.773	7.28807	0.2601
4	12.948	15.66621	0.5590

Peak#	Ret. Time	Area	Area%
1	8.792	39.03863	1.0354
2	10.964	63.12403	1.6742
3	11.425	3590.69995	95.2346
4	11.910	36.54180	0.9692
5	12.180	40.96756	1.0866

Peak#	Ret. Time	Area	Area%
1	8.446	7.66046	0.1050
2	8.811	25.51624	0.3497
3	9.286	18.51205	0.2537
4	11.394	19.54040	0.2678
5	11.528	24.31993	0.3333
6	11.727	27.12337	0.3718

7 12.143	7173.02197	98.3186
----------	------------	---------

Table Peak

Peak#	Ret. Time	Area	Area%
1	11.341	25.85585	0.4042
2	11.663	56.32615	0.8806
3	11.900	6314.21631	98.7152

HPLC trace of compound 57

Peak#	Ret. Time	Area	Area%
1	8.445	39.13825	2.3785
2	11.634	1594.22925	96.8847
3	12.421	12.12417	0.7368

Peak#	Ret. Time	Area	Area%
1	11.681	120.80442	2.8953
2	11.852	30.04974	0.7202
3	12.256	4021.61743	96.3845

Peak#	Ret. Time	Area	Area%
1	11.398	31.65802	0.8299
2	11.617	17.13957	0.4493
3	11.801	3718.96338	97.4893
4	12.258	29.75363	0.7800
5	12.448	17.22470	0.4515

Peak#	Ret. Time	Area	Area%
1	10.358	29.90369	0.3687
2	10.552	111.91039	1.4277
3	11.000	70.61876	0.9009
4	11.317	30.67211	0.3913
5	11.639	7580.27686	96.7065
6	11.972	16.05639	0.2049

Peak#	Ret. Time	Area	Area%
1	11.410	49.92123	1.1860
2	11.692	8.51424	0.2023
3	12.080	4150.72998	98.6117

Peak#	Ret. Time	Area	Area%
1	11.354	34.65250	1.1346
2	11.493	71.69067	2.3474
3	11.666	2906.25879	95.1605
4	12.280	41.45732	1.3574

Peak#	Ret. Time	Area	Area%
1	11.717	77.74043	1.3216
2	11.843	5726.37598	97.3485
3	12.299	53.37857	0.9074
4	12.776	24.84932	0.4224

Table Peak

Peak#	Ret. Time	Area	Area%
1	11.530	3006.27002	98.3550
2	11.897	21.63510	0.7078
3	12.252	10.55579	0.3454
4	12.513	18.08790	0.5918

Peak#	Ret. Time	Area	Area%
1	11.650	3666.66675	96.4915
2	11.985	133.32355	3.5085

Characterization of Structural Isomers by HMBC

¹H NMR of 12h

¹H NMR of 11h

¹H NMR of 12j

90 80 fl (ppm)

HMBC of 12j

¹H NMR of 11j

¹³C NMR of 11j

HMBC of 11j

¹H NMR of 12x

¹³C NMR of 12x

HMBC of 12x

¹H NMR of 11x

