Supporting Information

Visual Detection of Fluoride anions Using Mixed Lanthanide Metal-Organic Frameworks with a Smartphone

Xiaoliang Zeng[†], Jing Hu[†], Meng Zhang[‡], Fenglei Wang[‡], Li Wu^{*†}, Xiandeng Hou^{*†‡}

† Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China

[‡] College of Chemistry and Key Laboratory of Green Chemistry and Technology of MOE, Sichuan University, Chengdu, Sichuan 610064, China

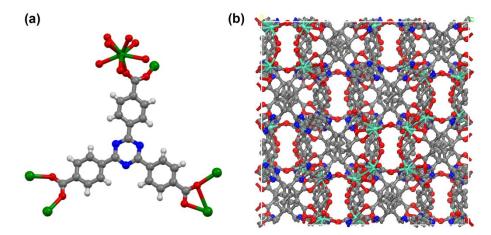

*E-mail: wuli@scu.edu.cn, houxd@scu.edu.cn

Table of Contents

- 1. Characterization of prepared MOFs
- 2. Ratiometric detection of fluoride ions
- 3. Sensing mechanism of ratiometric sensor
- 4. Visual detection of fluoride and sample analysis
- 5. References

1. Characterization of prepared MOFs

1.1. Crystal structures of Ln-MOFs

Figure S1¹. (a) Coordination mode of TATB³⁻ ligands and Tb³⁺ (Tb green, C gray, O red, N blue; H light grey). Each Tb³⁺ ion coordinates to one water oxygen atom and seven carboxylic oxygen atoms from six TATB³⁻ forming a distorted bicapped triprismatic coordination geometry. (b) Crystal structure of Tb(TATB) viewed along the *bc* plane (Tb green, C gray, O red, N blue; all H atoms are omitted for clarity).

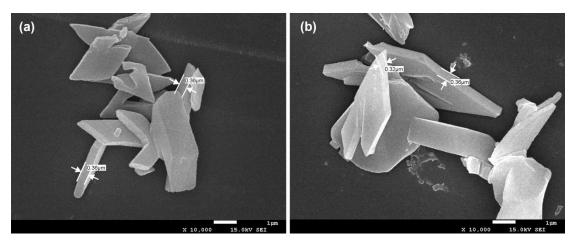
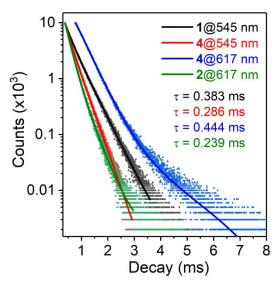
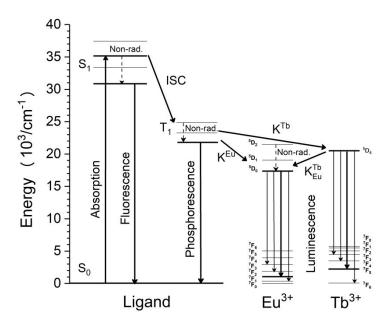


Figure S2. SEM images of synthesized Ln-MOFs a) Ln-MOFs 1 and b) Ln-MOFs 4.

1.2. Mixed Ln-MOF digestion procedures and Tb³⁺/Eu³⁺ ratio determination


The molar ratios of Tb³⁺/Eu³⁺ contained in mixed Ln-MOFs were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) with an ARCOS FHS12 (SPECTRO Analytical Instruments Inc., Germany). Sample digestion and acid evaporation were performed before the analysis by ICP-OES. Typically, each kind of MOF sample (2 mg) was dissolved in a 5 mL mixture of concentrated HNO₃ and HCI (v/v=3:1) and heated at 200 °C for 1 h. After that, the solution was evaporated at 150 °C for 10 min and the residue was diluted to 10 mL with 2% HCl solution (v/v).

-							
	MOF	Tb ³⁺ (ppm)	Eu ³⁺ (ppm)	Tb ³⁺ /Eu ³⁺ ratio			
-	Ln-MOFs 4	13.353	0.412	97:3			
	Ln-MOFs 5	12.687	0.620	95:5			
	Ln-MOFs 6	12.374	1.374	90:10			
-							


Table S1. Tb³⁺/Eu³⁺ ratios determined by ICP-OES

1.3. Luminescent decay curves and lifetime measurements

Luminescent decay curves were obtained with an Fluorolog-3 spectrofuorometer (Horiba Jobin Yvon) equipped with a spectra LED (280 nm, S-280, Horiba Scientific) as the excitation source. The data were fitted with the second order exponential decay. The efficiency of energy transfer (η_T) from Tb³⁺ to Eu³⁺ can be calculated based on the following equation: $\eta_T = 1 - (\tau/\tau_0)$, where τ and τ_0 is the luminescent lifetime of Tb³⁺ in Ln-MOFs **4** and Ln-MOFs **1**, respectively.²

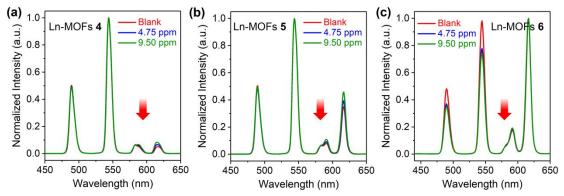
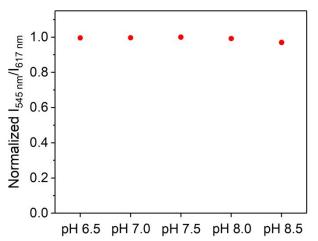
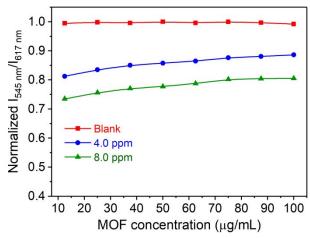
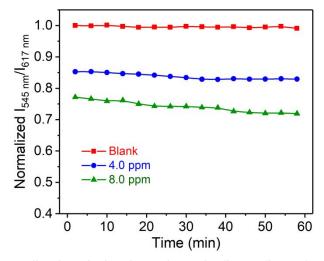


Figure S3. Luminescent decay curves of synthesized Ln-MOFs. Black line: Ln-MOFs **1**, red line and blue line: Ln-MOFs **4**; green line: Ln-MOFs **2**.

Figure S4. The schematic representation of energy transfer pathways in Tb/Eu(TATB). Abbreviations: S_0 = singlet ground state; T_1 = triplet excited state; k = nonradiative transition probability.

2. Ratiometric detection of fluoride ions

Figure S5. The emission spectra of synthesized mixed Ln-MOFs treated with different concentrations of fluoride ions under the excitation at 320 nm. (a) Ln-MOFs **4**; (b) Ln-MOFs **5**; (c) Ln-MOFs **6**.

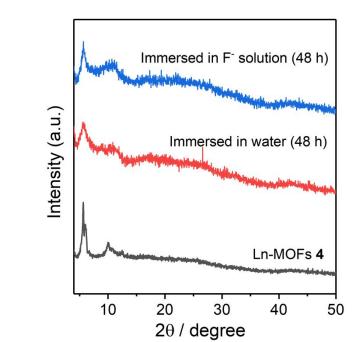

Figure S6. The emission intensity ratio $(I_{545 nm}/I_{617 nm})$ of Ln-MOFs 4 in solutions with different pH values.

Figure S7. The normalized emission intensity ratio $(I_{545 \text{ nm}}/I_{617 \text{ nm}})$ of Ln-MOFs **4** with different concentrations of MOFs.

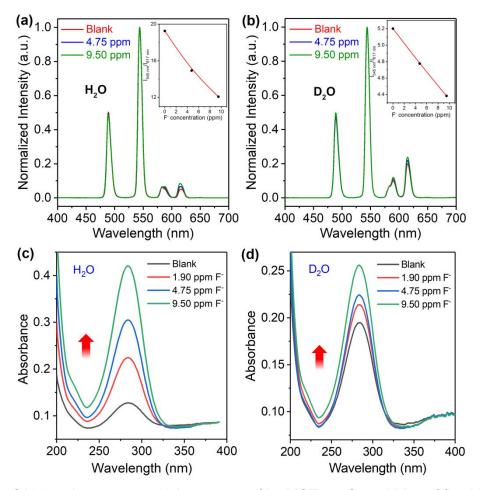


Figure S8. The normalized emission intensity ratio ($I_{545 \text{ nm}}/I_{617 \text{ nm}}$) of Ln-MOFs **4** with different incubation time.

3. Sensing mechanism of the ratiometric sensor

Figure S9. PXRD patterns of Ln-MOFs **4** and Ln-MOFs **4** treated with water and fluoride solution (10 ppm), respectively.

Figure S10. Luminescence emission spectra of Ln-MOFs **4** after addition of fluoride ions in the medium of water (a) and heavy water (b), respectively. The inset figures are corresponding changes in $I_{545 \text{ nm}}/I_{617 \text{ nm}}$ versus the concentration of F⁻. UV-Vis absorption spectra of Ln-MOFs **4** after addition of fluoride ions in the medium of water (c) and heavy water (d), respectively.

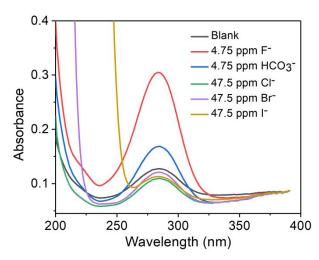
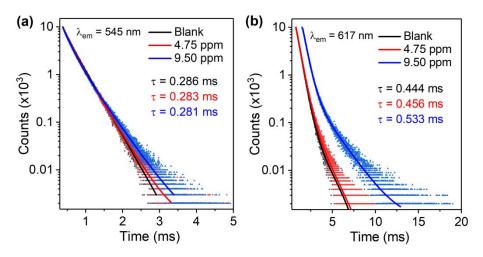
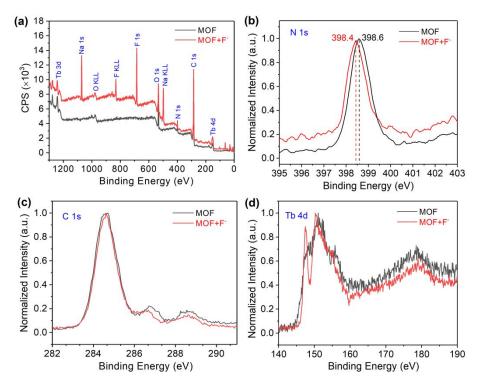




Figure S11. UV-Vis absorption spectra of Ln-MOFs 4 after addition of various anions.

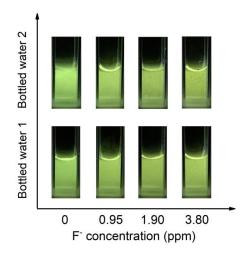


Figure S12. Luminescent decay curves of Ln-MOFs **4** after addition of different concentrations of fluoride ions. (a) Monitored at 545 nm; (b) Monitored at 617 nm. The data were fitted with the second order exponential decay.

Figure S13. XPS spectra of Ln-MOFs **4** before and after being treated with F⁻, respectively. (a) Full spectra; (b) N 1s spectra; (c) C 1s spectra; (d) Tb 4d spectra.

4. Visual detection of fluoride and sample analysis

Figure S14. Visual detections of F^- in bottled water samples. The photos were taken with a smartphone under a 310 nm LED lamp.

	Added (ppm)	This method				By ion
Sample		Found with fluorometer (ppm)	Recovery	Found with smartphone (ppm)	Recovery	chromatography (ppm)
Sample-1		0.11 ± 0.10		n.d.		<0.10
	0.95	0.94 ± 0.11	87.4%	1.07 ± 0.16	113%	0.94
	1.90	1.63 ± 0.13	80.1%	1.97 ± 0.32	104%	1.86
	3.80			3.59 ± 0.16	94.5%	3.64
Sample-2		n.d.		n.d.		<0.10
	0.95	0.85 ± 0.04	89.5%	1.12 ± 0.14	118%	0.93
	1.90	1.62 ± 0.13	85.3%	2.22 ± 0.32	113%	1.88
	3.80			3.47 ± 0.38	91.3%	3.72

Table S2. Fluoride content in bottled water samples (n=3)

System	Sensitivity	Selectivity	Ratiometric detection	Visual detection by RGB value	Reference
Fluorescein	15 ppb	Good	No	No	3
@MOF					
MOF-76	1900 ppb	Moderate	No	No	4
Boric acid MOF	67 ppb	Good	Yes	No	5
SION-105	9.1 ppb	Good	No	No	6
Ln-MOFs 4	96 ppb	Good	Yes	Yes	This work

Table S3. Comparison of Ln-MOFs 4 with existing MOF-based F⁻ sensors.

5. References

1. Zhang, H.; Li, N.; Tian, C.; Liu, T.; Du, F.; Lin, P.; Li, Z.; Du, S., Unusual High Thermal Stability within A Series of Novel Lanthanide TATB Frameworks: Synthesis, Structure, and Properties (TATB = 4,4 ' ,4 " -s-Triazine-2,4,6-triyl-tribenzoate). *Cryst. Growth Des.* **2012**, *12*, 670-678.

2. Zhou, J.; Li, H.; Zhang, H.; Li, H.; Shi, W.; Cheng, P., A Bimetallic Lanthanide Metal – Organic Material as a Self – Calibrating Color – Gradient Luminescent Sensor. *Adv. Mater.* **2015**, *27*, 7072-7077.

3. Hinterholzinger, F. M.; Rühle, B.; Wuttke, S.; Karaghiosoff, K.; Bein, T., Highly Sensitive and Selective Fluoride Detection in Water through Fluorophore Release from A Metal-Organic Framework. *Sci. Rep.* **2013**, *3*, 2562.

4. Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E. B., A Luminescent Microporous Metal–Organic Framework for the Recognition and Sensing of Anions. J. Am. Chem. Soc. **2008**, 130, 6718-6719.

5. Yang, Z.-R.; Wang, M.-M.; Wang, X.-S.; Yin, X.-B., Boric-Acid-Functional Lanthanide Metal–Organic Frameworks for Selective Ratiometric Fluorescence Detection of Fluoride Ions. *Anal. Chem.* **2017**, *89*, 1930-1936.

6. Ebrahim, F. M.; Nguyen, T. N.; Shyshkanov, S.; Gładysiak, A.; Favre, P.; Zacharia, A.; Itskos, G.; Dyson, P. J.; Stylianou,
K. C., Selective, Fast-Response, and Regenerable Metal–Organic Framework for Sampling Excess Fluoride Levels in Drinking Water. *J. Am. Chem. Soc.* 2019, *141*, 3052-3058.