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Non-Dimensionalization Procedure

Conservation of probability mass yields the set of partial differential equations

∂Pi
∂t

= L̂iPi +
∑
j 6=i

[ζj→iPj − ζi→jPi] . (1)

Expanding the shorthand for the Smoluchowski propagator,

∂Pi
∂t

= D∇ ·
[
e−βFi∇

(
eβFiPi

)]
+
∑
j 6=i

[ζj→iPj − ζi→jPi] . (2)

Non-dimensionalizing the gradient operators ∇̃ ≡ L · ∇,

∂Pi
∂t

=
D
L2
∇̃ ·
[
e−βFi∇̃

(
eβFiPi

)]
+
∑
j 6=i

[ζj→iPj − ζi→jPi] . (3)

As explained in the main text, the diffusive timescale τ ≡ D/L2, implying

τ
∂Pi
∂t

= ∇̃ ·
[
e−βFi∇̃

(
eβFiPi

)]
+
∑
j 6=i

[τ · ζj→iPj − τ · ζi→jPi] . (4)

Introducing the non-dimensional time and sink/source rates (t̃ ≡ t/τ and ζ̃ij ≡ τ · ζij) yields

the final non-dimensionalized equations

∂Pi

∂t̃
= ∇̃ ·

[
e−βFi∇̃

(
eβFiPi

)]
+
∑
j 6=i

[
ζ̃j→iPj − ζ̃i→jPi

]
. (5)
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Computational Details

Similarity Transformation

The Smoluchowski diffusion operator from the main text reads

L̂iPi ≡ D∇ ·
[
e−βFi∇

(
eβFiPi

)]
. (6)

As written, this operator is not self-adjoint. This makes numerical solution more difficult,

and makes a diagonalization procedure unstable.S1 A standard similarity transformationS2

can be employed to write L̂i in a self-adjoint form L̂Hi , formally written as

L̂i = exp (−βFi/2) L̂Hi exp (βFi/2) (7)

Recasting the full population dynamics equations in terms of L̂Hi creates some changes to

the sink and source terms which render the entire propagator self-adjoint, the details of

this transformation have been worked out by Ouyang and Subotnik.S1 Since the self-adjoint

form of the operator is the one we actually use when carrying out numerical calculations, we

report a discretization scheme for L̂Hi , rather than the original propagator.

Interior Point Discretization

We choose a finite-volume discretization of the SME because it explicitly conserves mass to

numerical precision and also naturally incorporates no-flux boundary conditions, which are

employed at most boundaries in this model. Fig. S1 shows a schematic of one of the node

points hosting a finite volume. Our charge is to discretize the self-adjoint version of the

Smoluchowski propagator, written as

L̂H = eβF/2
∂

∂xi
e−βF

∂

∂xi
eβF/2, (8)
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Figure S1: Schematic of the finite-volume discretization used for numerical solution of the
Smoluchowski master equation.

where xi is a generalized coordinate (here, refers to either x or z), and Einstein summation

is implied. Inspection reveals that the operator in Eq. (8) is a (weighted) divergence of flux

terms.

Using a two-point forward difference stencil, the appropriately-weighted fluxes piercing
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the boundary surfaces in Fig. S1 of an interior point can be expressed as

Fx−δx/2,y = exp [−βF (x− δx/2, y)]

[
exp [βF (x, y)/2]P (x, y)− exp [βF (x− δx, y)/2]P (x− δx, y)

δx

]
(9)

Fx+δx/2,y = exp [−βF (x+ δx/2, y)]

[
exp [βF (x+ δx, y)/2]P (x+ δx, y)− exp [βF (x, y)/2]P (x, y)

δx

]
(10)

Fx,y−δy/2 = exp [−βF (x, y − δy/2)]

[
exp [βF (x, y)/2]P (x, y)− exp [βF (x, y − δy)/2]P (x, y − δy)

δy

]
(11)

Fx,y+δy/2 = exp [−βF (x, y + δy/2)]

[
exp [βF (x, y + δy)/2]P (x, y + δy)− exp [βF (x, y)/2]P (x, y)

δy

]
(12)

The diffusion operator can now be assembled by weighting the fluxes by their appropriate

Boltzmann weight from Eq. (6) and making a first order central finite difference approxi-

mation for the divergence. The diffusion operator at a node point centered at (x, y) can be

expressed as

LH(x, y) =
exp [βF (x+ δx/2, y)/2]Fx+δx/2,y − exp [βF (x− δx/2, y)/2]Fx−δx/2,y

δx

+
exp [βF (x, y + δy/2)/2]Fx,y+δy/2 − exp [βF (x, y − δy/2)/2]Fx,y−δy/2

δy
(13)

Note that Eq. (13) requires evaluating the free energy on the dual grid of the grid defining

the node points; this is not difficult if the free energy can be expressed as an analytical

function in closed form, as in this work.

S5



Boundary Point Discretization

At boundary points, we have to take additional care to implement the appropriate boundary

condition. No-flux (Neumann) conditions are simple to incorporate into the discretization

scheme, we simply need to set the corresponding boundary flux term in Eq. (13) to zero.

This results in a closed set of equations; the values of the probability field at the interior

points are the only dependent variables involved.

Concentration (Dirichlet) boundary conditions are slightly more difficult to implement.

The two-point central difference flux stencils in Eqns. (9)–(12) must be changed to two-

point forward difference stencils that involve the specified boundary probability. For the

flux Fx,y+δy/2 out of a top boundary with a specified boundary probability,

Fx,y+δy/2 = exp [−βF (x, y + δy/2)]

[
exp [βF (x, y + δy/2)/2]Pbdy.(x)− exp [βF (x, y)/2]P (x, y)

(δy/2)

]
,

(14)

where Pbdy.(x) is the boundary probability. Note that the first term in the bracketed expres-

sion is a constant, while the second term involves a dependent field variable. The first term

comprises an inhomogeneity in the propagator, and leads to the existence of a non-trivial

steady state solution.

Steady-State Solution

The discretization scheme described in the previous two sections approximates the un-

bounded Smoluchowski diffusion operator in Eq. (6) by a bounded finite difference operator.

The hopping terms can be included straightforwardlyS1 into the bounded difference operator,

reducing the population dynamics partial differential equation to the matrix equation

dp

dt
= Lp + c, (15)
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where L is the matrix encoding the bounded propagator, p is the probability distribution

evaluated at the finite difference nodes, and c is a constant inhomogeneity vector arising

from the Dirichlet boundary conditions. The solution of the system

Lp = −c (16)

comprises a steady-state of the SME model. In practice, the L operator is very sparse with

a predictable structure (block-diagonal with appropriate bandwidth), and so sparse matrix

algorithms can be used to efficiently solve the system in Eq. (16).

Computing Current

Comparing results from the SME model to experimental current-voltage data requires a

working definition for net ET current towards a single species. If we let Pi(x, z) denote

the steady-state probability distributions of the species given the appropriate boundary

conditions, an intuitive definition of the net ET current towards species k is:

Jk ≡
∫

dxdz
∑
j 6=k

[Pj · ζj→k − Pk · ζk→j] (17)

Alternatively, we can compute the current by integrating the net probability flux out of the

z = 1 boundary for species k. While appropriate as a definition for the current, this is more

numerically ill-conditioned since it involves a finite difference expression at a point where

the potential profile has a corner. This ill-conditioning becomes worse at higher values of

the applied potential. For all current-voltage curves measured here, we use the definition in

Eq. (17), which is numerically robust over a wide range of applied potentials.

S7



Transfer Coefficients

Traditional Marcus Theory

Marcus theory provides a prediction for the dependence of the transfer coefficient on the

applied potential. I will reproduce the derivation of this dependence here using the param-

eters defined in the two-surface model; the end result is identical to the textbook resultS3

with appropriate redefinition of variables. Take two Marcus free energies defined on a single

coordinate x:

f1(x) =
kreorg

2
· (x− 1)2 (18)

f2(x) =
kreorg

2
· x2 + ∆Eint + eV, (19)

where V is the applied potential. The two curves intersect at:

x∗ =
1

2
− ∆Eint + eV

kreorg
(20)

The free energy at this point referenced to the minimum of f1 is exactly the activation energy

Ea, and is given by:

Ea =
kreorg

2

[
1

2
+

∆Eint + eV

kreorg

]2
(21)

Therefore,

αMarcus = − ∂Ea
∂(eV )

=

[
1

2
+

∆Eint + eV

kreorg

]
. (22)

Eq. (22) is identical to the one produced in the main text.

Model for Transfer Coefficient Attenuation

The model for transfer coefficient attenuation relies on the calculation of an activation energy

profile over the approach coordinate. We can derive this in a similar manner to the traditional
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Marcus derivation. The two Marcus free energies are now defined over the product space

(x, z):

f1(x, z) =
kreorg

2
· (x− 1)2 (23)

f2(x, z) =
kreorg

2
· x2 + ∆Eint + eV z, (24)

The two curves intersect at:

x∗ =
1

2
− ∆Eint + eV z

kreorg
(25)

The activation energy profile is straightforward to calculate from here:

Ea(z) =
kreorg

2

[
1

2
+

∆Eint + eV z

kreorg

]2
(26)

Applying the Leibniz rule requires computing

dEa
d(eV )

= z

[
1

2
+

∆Eint + V z

kreorg

]
(27)

The final transfer coefficient expression from the main text is

α = −
∫

dz ˜̄∆(z) ·
[

dEa
d(eV )

]
, (28)

Fig. S2 depicts a graphical representation of the integral in Eq. (28), using the same

parameters discussed in the main text, for V = −0.20 V (zero overpotential). Current

distributions that are highly localized near the electrode surface (z = 0) overlap with the

initial, increasing branch of this function, and lead to low transfer coefficients. When the

ET event is entirely localized to the EDL boundary, implying that ˜̄∆(z) = δ[z− 1], then the

integration “sifts out” the value of Eq. (27) at z = 1. At zero overpotential, this value is

exactly 1/2, implying that we recover the Marcus result from Eq. (22) in the appropriate

limit.
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Figure S2: Traces of the normalized marginal current ˜̄∆(z) for values of zdec,01 ∈ [0.01, 0.40],
as well as a plot of the integration weight function in Eq. (27).
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Potential Dependence of the Net Current Profile

Figure S3: Normalized net current marginal profiles for a range of values of the applied
voltage, using the same parameters as the main text. The shape of the profile is a weak
function of the applied voltage.

The derivation of the transfer coefficient model in the main text employed an assumption

that the normalized net current marginal ˜̄∆(z) was roughly independent of the applied

voltage. Figure S3 provides numerical confirmation that the net current marginal profile is

only a weak function of voltage over the voltage range studied. Note that this is only an

appropriate assumption when the reactant species does not carry a charge. For a charged

reactant, the ET localization behavior is a strong function of potential, as discussed in the

main text.
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Additional Intuition

The main text makes reference to a “pinning” effect that attenuates the transfer coefficient as

a consequence of ET localization near the electrode surface. Fig. S4 provides some schematic

intuition for this phenomenon. Since the driving force is constrained to be exactly zero at

the electrode surface, modulating the voltage yields less “bang for the buck” activation

energy-wise when the ET event is constrained to occur near the electrode.

Figure S4: Schematic picture of the distance-dependent potential driving force in the SME
model with linear potential decay. As ET occurs closer to the electrode, modulating the
external potential has a smaller effect on the potential driving force felt by the redox-active
species.

Results for Higher Reorganization Energy

A replication of Figure 3 from the main text, but with k = 2.00 eV. As expected, for higher

reorganization energies, the current-voltage curves are linear over a broader voltage range,

and the transfer coefficient prediction from Eq. (28) is more quantitatively correct.
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A B

Figure S5: Current-voltage curves and transfer coefficient predictions from the two-surface
model, for kreorg = 2.00 eV. (A) Several current-voltage curves measured for different values
of the coupling localization parameter zdec,01, with Γ̄01 = 6 eV. (B) Transfer coefficients
determined by linear fitting for a number of different coupling strengths are shown as colored
dots. The solid lines are predictions from the simple model/approximation developed in Eq.
(28).

Figure S6: Transfer coefficients determined from linear fitting of current-voltage behavior
versus zdec,01, presented here on a dimensional scale, assuming L = 5 Å.
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Dimensionalized Results for Transfer Coefficient Attenuation

A replication of Figure 3B from the main text, but this time with the parameter zdec,01

presented on a dimensional scale, taking L = 5 Å, characteristic for an aqueous electrolyte

with a 1M concentration of monovalent salt. We hope this helps contextualize the results

presented in the main text in terms of length scales familiar to electrochemical literature.

Results for Exponential Potential Decay Profile

Figure S7: Transfer coefficients determined from linear fitting of current-voltage behavior
versus zdec,01 from a model using the Gouy-Chapman potential decay profile in Eq. (29).

A replication of Figure 3B from the main text, but with an augmented potential profile,

φ(z) = V exp
[
−z
ν

]
, (29)

representing the Gouy-Chapman solution to potential decay in an electrolyte with mobile

charges at a plane interface held at constant potential. In these simulations, we set ν =

0.285L. Note that the solid lines from the main-text figure are derived from an analytical

approximation that only holds for the linear decay profile presented in the main text, so the
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solid lines are omitted from this figure.
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