CC2 Benchmark for models of phenylalanine protein chains: 0-0 transition energies and IR signatures of the $\pi\pi^*$ excited state.

Mi-Song Dupuy,[†] *Eric Gloaguen, Benjamin Tardivel, Michel Mons and Valérie Brenner** LIDYL, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.

Appendix S1: Definition of the characteristic dihedral angles of the backbone of capped peptides.

Appendix S2: Characteristic geometrical parameters of the DFT-D optimized geometry of the ground state (S_0) of the four Fa conformers.

Appendix S3: Comparison of the CC2/cc-pVXZ (X=D and T) optimized geometries of both the S_0 and S_1 states for the four Fa conformers.

Appendix S4: *Amide* A region frequencies of both the ground (S₀) and $\pi\pi^*$ excited (S₁) states of the four Fa conformers.

Appendix S5: ZPVE of both the ground (S₀) and $\pi\pi^*$ excited (S₁) states according to the basis set for the four Fa conformers.

Appendix S6: Comparison of the CC2/cc-pVDZ optimized geometry of the S_0 and S_1 states of Fa B and D.

Appendix S7: Characteristic geometrical parameters of CC2/cc-pVDZ optimized geometry of both the ground (S₀) and lowest $\pi\pi^*$ excited (S₁) states of the Fm, GFa, FFa and QFa conformers.

Appendix S8: Comparison of the CC2/cc-pVDZ optimized geometry of the S_0 and S_1 states of the Fm, GFa, FFa and QFa conformers.

Appendix S9: *Amide* A region frequencies of both the ground (S₀) and $\pi\pi^*$ excited (S₁) states of the Fm, GFa, FFa and QFa conformers.

Appendix S10: Experimental vs. CC2/cc-pVDZ calculated harmonic *amide* A region frequencies of both the S_0 and S_1 states of the series of capped peptides and the corresponding mode-dependent linear ($v_{exp.} = av_{theo.} + b$) scaling functions.

Appendix S11: DFT-D structures of the ground state of QFa A, B and C

References

Appendix S1: Definition of the characteristic dihedral angles of the backbone of capped peptides.

Figure S1: Definition of the characteristic dihedral angles of the backbone of capped peptides: Example of N-Ac-Phe-NH₂ (Fa) from the N-terminus (left-most [i-1] module) through the central Phe (central [i] module) to C-terminal NH₂ protecting group (right-most [i+1] module).

Appendix S2: Characteristic geometrical parameters of the DFT-D optimized geometry of the ground state (S_0) of the four Fa conformers.

		Dihedra	al ang	les (°) ^a	Intermolec	Intermolecular distances (Å)				
		Φ	Ψ	χ^1	$d_{\rm NHO}$	$d_{\rm NH\dots\pi}{}^b$				
\mathbf{S}_0	А	-160		192	2.28	2.56 (3.37, 2.84)				
	В	-83	55	44	2.02	2.44 (3.23, 2.54)				
	С	-85	72	-55	2.03	2.77 (3.76, 2.85)				
	D	-83	84	193	2.24					

Table S2: Characteristic geometrical parameters of the ground state (S_0) of the four Fa conformers optimized at the DFT-D level.¹⁻²

^a For the definition of the dihedral angles, see the Supporting Information (Figure S1).

^b The NH... π bond is characterized by three distances: the distance of the NH_{Phe} (A conformer) or NH₂ (B conformer and C conformer) hydrogen atom with the C_{γ} carbon atom of the phenylalanine residue and given in parentheses by the two distances with the two C_{δ} carbon atoms (C $_{\delta}^{C-term}$, C $_{\delta}^{N-term}$) of the phenylalanine residue.

Appendix S3: Comparison of the CC2/cc-pVXZ (X=D and T) optimized geometries of both the S_0 and S_1 states for the four Fa conformers.

Figure S3-1: Comparison of the CC2/cc-pVDZ (blue) and CC2/cc-VTZ (red) optimized geometries of the S_0 state for the four Fa conformers. For each conformer, the phenyl rings have been overlapped.

Figure S3-2: Comparison of the CC2/cc-pVDZ (blue) and CC2/cc-VTZ (red) optimized geometries of the S_1 state for the four Fa conformers. For each conformer, the phenyl rings have been overlapped.

Conformer/Stat	e	$\mathrm{NH}_{\mathrm{phe}}$	NH _{2 sym.}	$NH_{2 \text{ anti.}}$
cc-pVDZ				
Fa A	\mathbf{S}_1	3594	3546	3695
	\mathbf{S}_0	3583	3561	3713
Fa B	\mathbf{S}_1	3545	3469	3689
	\mathbf{S}_0	3589	3474	3690
Fa C	\mathbf{S}_1	3553	3473	3674
	\mathbf{S}_0	3597	3476	3675
Fa D	\mathbf{S}_1	3618	3498	3677
	\mathbf{S}_0	3618	3500	3677
Experiment				
Fa A	\mathbf{S}_1	3434	3417	3535
	\mathbf{S}_0	3433	3426	3541
Fa C	\mathbf{S}_1	3439	3344	3514
	\mathbf{S}_0	3463	3345	3515
cc-pVTZ				
Fa A	\mathbf{S}_1	3590	3549	3698
	\mathbf{S}_0	3588	3569	3712
Fa B	\mathbf{S}_1	3524	3454	3686
	\mathbf{S}_0	3577	3460	3687
Fa C S ₁		3560	3463.9	3688
	\mathbf{S}_0	3614	3471	3683
Fa D	\mathbf{S}_1	3627	3501	3682
	\mathbf{S}_0	3627	3504	3681

Appendix S4: *Amide* A region frequencies of both the ground (S₀) and $\pi\pi^*$ excited (S₁) states of the four Fa conformers.

Table S4: CC2/cc-pVXZ (X=D and T) *amide* A region frequencies (cm⁻¹) of both the ground (S₀) and $\pi\pi^*$ excited (S₁) states of the four Fa conformers, together with the available experimental ones.

		ZPVE (au)
0	А	0.238368
cc-pVDZ	В	0.239126
•	С	0.238832
	D	0.239007
	А	0.238510
cc-pVTZ	В	0.239284
-	С	0.238696
	D	0.239019
	А	0.232277
cc-pVDZ	В	0.232950
•	С	0.232845
	D	0.232960
	А	0.232336
cc-pVTZ	В	0.233100
*	С	0.232730
	D	0.232907

Appendix S5: ZPVE of both the ground (S₀) and $\pi\pi^*$ excited (S₁) states according to the basis set for the four Fa conformers.

Table S5: ZPVE (au) of the optimized geometry of both the ground (S₀) and $\pi\pi^*$ excited (S₁) states obtained at the CC2/cc-pVXD (X=D and T) levels for the four Fa conformers. The values for S₀ state at the DFT-D/TZVPP level are 0.233370 (A), 0.233924 (B), 0.233337 (C) and 0.233567 (D).

Appendix S6: Comparison of the CC2/cc-pVDZ optimized geometry of the S_0 and S_1 states of Fa B and D.

Figure S6: Comparison of the CC2/cc-pVDZ optimized geometries of the S₀ (atom-based colors) and S₁ (green) states for Fa B and D. For each conformer, the phenyl rings have been overlapped. Only distances (dash-dot) that vary significantly (|d| > 0.01 Å) between the ground and the excited state (see Table 1) are mentioned.

Appendix S7: Characteristic geometrical parameters of CC2/cc-pVDZ optimized geometry of both the ground (S₀) and lowest $\pi\pi^*$ excited (S₁) states of the Fm, GFA, FFa and QFa conformers.

Fm		Dihedr	al ang	gles (°)	^a Intramolecular distances (Å)
		Φ	Ψ	χ^1	$d_{\rm NH0}$ $d_{\rm NH\pi^b}$
S_0	А	-163	152	183	2.22 2.59 (2.94, 2.80)
	В	-83	60	41	1.92 2.34 (2.50, 3.10)
	С	-89	75	-51	1.96 2.58 (3.48, 2.72)
\mathbf{S}_1	А	-165	153	177	2.23 2.54 (3.02, 2.54)
	В	-84	60	43	1.92 2.35 (2.33, 3.28)
	С	-89	75	-50	1.96 2.52 (3.49, 2.53)

Table S7-1: Characteristic geometrical parameters of CC2/cc-pVDZ optimized geometry of both the ground (S₀) and lowest $\pi\pi^*$ excited (S₁) states of the Fm conformers.

^a For the definition of the dihedral angles, see the Supporting Information (Figure S1).

^b The NH... π bond is characterized by three distances: the distance of the NH_{phe} (A conformer) or NH_{C-term} (B and C conformer) hydrogen atom with the C_{γ} carbon atom of the phenyl residue and given in parentheses by the two distances with the two C_{δ} carbon atoms (C $_{\delta}$ ^{to C-term}, C $_{\delta}$ ^{to N-term}) of the phenyl residue.

GFa		Dihedral angles (°) ^a		Dihee	dral an	gles (°)	Intramolecu	Intramolecular distances (Å)		
		Φ_1	Ψ_1	χ_1^1	Φ_2	Ψ_{2}	χ_2^1	$d_{\rm NHO}{}^{\rm b}$	$d_{\mathrm{NH}\pi}^{\mathbf{c}}$	
S_0	А	-81	67		-84	79	-59	1.96 - 1.99	2.87 (3.86, 3.03)	
	A'	-279	295		-81	80	-57	1.92 - 1.99		
	В	-71	346		-91	9	53	1.92	2.45 (3.29, 2.48)	
	B'	-304	220		-100	14	55	2.01	2.64 (3.47, 2.67)	
	С	-115	166		-161	161	193	2.26 - 2.16	2.48 (2.67, 2.95)	
\mathbf{S}_1	А	-80	71		-86	78	-55	1.95 - 1.98	2.70 (3.54, 3.06)	
	A'	-279	293		-80	80	-56	1.93 - 1.99		
	В	-70	345		-91	9	53	1.91	2.44 (3.33, 2.40)	
	В'	-304	220		-95	10	57	2.01	2.60 (3.50, 2.56)	
	С	-113	166		-165	155	181	2.28 - 2.21	2.52 (2.92, 2.63)	

Table S7-2: Characteristic geometrical parameters of CC2/cc-pVDZ optimized geometry of both the ground (S₀) and lowest $\pi\pi^*$ excited (S₁) states of the GFa conformers.

^a For the definition of the dihedral angles, see the Supporting Information (Figure S1). The residue 1 correspond to the first residue from the N terminal cap, the N-term.

^b A and A' conformers: the two distances correspond to the two C_7 hydrogen bond distances. B and B' conformers, the distance is that of the C_{10} H-bond. C conformer: the two distances correspond to the two C_5 H-bond distances.

^c The NH... π bond is characterized by three distances: the distance of NH_{phe} (B and B' conformer) or NH₂ (C conformer) hydrogen atom with the C_{γ} carbon atom of the phenylalanine residue and given in parentheses by the two distances with the two C_{δ} carbon atoms (C $_{\delta}$ ^{to C-term}, C $_{\delta}$ ^{to N-term}) of the phenylalanine residue.

FFa	FFa Dihedral angles (°) ^a		Dihedral angles (°)		gles (°)	Intr	Intramolecular distances (Å)		
		Φ_1	Ψ_1	χ_1^1	Φ_2	Ψ_{2}	χ_2^1	$d_{\rm NHO}{}^{\rm b}$	$d_{ m NH\dots\pi^c}$
S_0	А	-69	353	62	-110	14	51	2.15	[2.62, 2.54] -[2.42, 2.41]
	В	-153	27	51	-95	75	-41	2.05	[2.70, 2.85] -[2.45, 3.00]
	С	-163	151	181	-80	70	45	1.99 - 2.24	2.60 (2.94, 2.74) - 2.49 (3.41, 2.50)
\mathbf{S}_1	A_1	-68	349	61	-103	12	52	2.10	[2.59, 2.47] - [2.43, 2.41]
	A_2	-69	352	62	-111	12	50	2.17	[2.63, 2.56] - [2.38, 2.33]
	B_1	-151	24	52	-95	75	-40	2.03	[2.66, 2.78] - [2.43, 2.99]
	B_2	-152	27	51	-95	75	-40	2.05	[2.68, 2.87] - [2.42, 2.94]
	С	-160	161	182	-73	67	41	1.96 - 2.21	2.46 (2.62, 3.15) - 2.24 (3.23, 2.17)

Table S7-3: Characteristic geometrical parameters of CC2/cc-pVDZ optimized geometry of both the ground (S₀) and lowest $\pi\pi^*$ excited (S₁) states of the FFa (Ac-Phe1-Phe2-NH₂) conformers. ^a For the definition of the dihedral angles, see the Supporting Information (Figure S1). The residue 1 correspond to the first residue from the N-term.

^b A, A_1 and A_2 conformers: the distance corresponds to the C_{10} hydrogen bond distances. B, B_1 and B_2 conformers, the distance is that of the C_7 H-bond. C conformer: the distances correspond to the C_7 and the C_5 H-bond distances.

^c The NH... π bond is characterized by two group of distances. A and B conformers: the distances of the NH_{Phe1} hydrogen atom with the C_{γ} and the C_{δ}^{to N-term} carbon atoms of Phe1 and those of the NH_{phe2} hydrogen atom with the C_{γ} and the C_{δ}^{to N-term} carbon atoms of Phe2. C conformer: the distances of the NH_{Phe2} hydrogen atom with the C_{γ} and the two C_{δ} carbon atoms (C $_{\delta}$ ^{to C-term} and C $_{\delta}$ ^{to N-term}) of Phe1 and those of the same hydrogen atom with the C_{γ} and the two C_{δ} carbon atoms (C $_{\delta}$ ^{to C-term} and C $_{\delta}$ ^{to N-term}) of Phe1 and those of the same hydrogen atom with the C_{γ} and the two C_{δ} carbon atoms (C $_{\delta}$ ^{to N-term}) carbon atoms of Phe2.

QFa	a Dihedral angles (°) ^a			Dihed	ral an	gles (°)	Intramolecular distances (Å)		
		Φ_1	Ψ_1	χ_1^1	Φ_2	Ψ_{2}	χ_2^1	$d_{\rm NH\dots O}{}^{\rm b}$	$d_{\mathrm{NH}\dots\pi}{}^{\mathrm{c}}$
S_0	А	-74	349	-63	-93	10	53	1.82 - 2.00	2.33 (3.25, 2.47)
	В	-76	348	79	-106	13	-58	1.87 - 2.01	2.86 (2.63, 2.75)
	С	-69	343	71	-96	14	51	1.85 - 1.99	2.43 (3.19, 2.43)
\mathbf{S}_1	А	-65	340	-58	-106	15	47	1.83 - 2.06	2.37 (3.07, 2.35)
	В	-69	341	67	-112	16	-50	1.84 - 2.04	2.92 (2.81, 2.36)
	С	-69	342	69	-97	14	48	1.85 - 2.00	2.39 (3.11, 2.39)

Table S7-4: Characteristic geometrical parameters of CC2/cc-pVDZ optimized geometry of both the ground (S₀) and lowest $\pi\pi^*$ excited (S₁) states of the QFa conformers.

^a For the definition of the dihedral angles, see the Supporting Information (Figure S1). The residue 1 correspond to the first residue from the N-term.

^b The two distances correspond to the C₇ and C₁₀ H-bond distances.

^c The NH... π bond is characterized by three distances: the distance of the NH_{Phe} (A and C conformer) or NH_{2,chain} group (B conformer) hydrogen atom with the C_{γ} (A and C conformer) or C_{ξ} (B conformer) carbon atom of the phenylalanine residue and in parentheses, the two distances with the two C_{δ} carbon atoms (C $_{\delta}$ ^{to C-term}, C $_{\delta}$ ^{to N-term}) of the phenylalanine residue (A and C conformers) or with the C $_{\delta}$ ^{to C-term} and C $_{\epsilon}$ ^{to C-term} carbon atoms (B conformer).

Appendix S8: Comparison of the CC2/cc-pVDZ optimized geometry of the S_0 and S_1 states of the Fm, GFa, FFa and QFa conformers.

Figure S8-1: Comparison of the CC2/cc-pVDZ optimized geometry of the S₀ (atom-based colors) and S₁ states (green) of the Fm conformers. For each conformer, the phenyl rings have been overlapped. Only distances (dash-dot) that vary significantly (|d| > 0.01 Å) between the ground and the excited state (see Table S7.1) are mentioned.

Figure S8-2: Comparison of the CC2/cc-pVDZ optimized geometry of the S₀ (atom-based colors) and S₁ states (green) of GFa A, A', B and B'. For each conformer, the phenyl rings have been overlapped. Only distances (dash-dot) that vary significantly (|d| > 0.01 Å) between the ground and the excited state (see Table S7.2) are mentioned.

Figure S8-3: Comparison of the CC2/cc-pVDZ optimized geometry of the S_0 (atom-based colors) and S_1 states (green) of FFa A_1 , B_1 , B_2 and C. The phenyl rings have been overlapped for all conformers except FFa C for which this is not possible. In this latter case, the backbones until Phe1 are overlapped. Only distances (dash-dot) that vary significantly (|d| > 0.01 Å) between the ground and the excited state (see Table S7.3) are mentioned. In the case of FFa B_2 , the distances of the NH_{Phe1} hydrogen atom with the Ce^{to C-term} carbon atoms of Phe2 are added.

Figure S8-4: Comparison of the CC2/cc-pVDZ optimized geometry of the S₀ (atom-based colors) and S₁ states (green) of QFa A and C. For each conformer, the backbones have been overlapped. Only distances (dash-dot) that vary significantly (|d| > 0.01 Å) between the ground and the excited state (see Table S7.4) are mentioned.

Conformer/State		$\mathrm{NH}_{\mathrm{Phe}}$	NH _{C-term}
Fm A	S_1	3592	3565
	S_0	3597	3609
Fm B	S_1	3540	3463
	S_0	3587	3467
Fm C	S_1	3552	3483
	S_0	3599	3487
Experiment			
Fm A	S_1	3433	3433
	S_0	3433	3460
Fm B	S_1	3401	3342
	S_0	3433	3346

Appendix S9: *Amide A* region frequencies of both the ground (S₀) and $\pi\pi^*$ excited (S₁) states of the Fm, GFa, FFa and QFa conformers.

Table S9-1: CC2/cc-pVDZ *amide* A region frequencies (cm⁻¹) of both the ground (S₀) and $\pi\pi^*$ excited (S₁) states of the Fm conformers, together with the available IR experimental ones (cm⁻¹).

Conformer/State	;	$\mathrm{NH}_{\mathrm{Gln}}$	NH _{Phe}	NH ₂ sym./C-term	NH ₂ anti./C-term	NH ₂ sym./Chain	NH ₂ anti./Chain
QFa A	S_1	3397	3570	3529	3705	3601	3759
	S_0	3399	3582	3521	3700	3603	3761
QFa B	S_1	3415	3599	3514	3689	3522	3695
	S_0	3458	3593	3517	3688	3567	3722
QFa C	S_1	3441	3560	3517	3699	3588	3740
	S_0	3450	3576	3519	3699	3587	3739
Experiment							
QFa A	S_0	3285	3409	3365	3519	3442	3562
QFa B	S_0	3322	3445	3366	3512	3406	3527
QFa C	S_0	3336	3440	3367	3514	3426	3557

Table S9-2: CC2/cc-pVDZ *amide* A region frequencies (cm⁻¹) of both the ground (S₀) and $\pi\pi^*$ excited (S₁) states of the QFa conformers, together with the available IR experimental ones (cm⁻¹).

Conformer/State	;	$\mathrm{NH}_{\mathrm{Gly}}$	NH _{Phe}	NH _{2sym.}	NH _{2anti} .
GFa A	S_1	3635	3434	3475	3675
	\mathbf{S}_0	3642	3452	3480	3675
GFa A'	\mathbf{S}_1	3645	3443	3472	3668
	S_0	3647	3448	3474	3670
GFa B	S_1	3643	3559	3538	3709
	S_0	3644	3596	3541	3710
GFa B'	S_1	3626	3582	3530	3694
	S_0	3626	3603	3529	3695
GFa C	S_1	3572	3569	3546	3695
	S_0	3567	3571	3561	3709
Experiment					
GFa A	S_1	3492	3302	3358	3510
	S_0	3494	3320	3355	3519
GFa A'	S_0	3495	3322	3353	3517
GFa B	\mathbf{S}_0	3494	3445	3391	3521
GFa B'	S_1	3494	3423	3387	3519
	S_0	3493	3441	3385	3518
GFa C	\mathbf{S}_1	3445	3408	3416	3535
	S_0	3444	3405	3425	3541

Table S9-3: CC2/cc-pVDZ *amide* A region frequencies (cm⁻¹) of both the ground (S₀) and $\pi\pi^*$ excited (S₁) states of the GFa conformers, together with the IR available experimental ones (cm⁻¹).

Conformer/State	e	$\mathrm{NH}_{\mathrm{Phe1}}$	NH _{Phe2}	NH _{2sym.}	NH _{2anti} .
FFa A ₁	S_1	3540	3587	3545	3711
FFa A ₂	\mathbf{S}_1	3576	3562	3547	3713
FFa A	\mathbf{S}_0	3581	3596	3549	3714
FFa B ₁	\mathbf{S}_1	3509	3552	3483	3681
FFa B ₂	\mathbf{S}_1	3487	3537	3489	3683
FFa B	\mathbf{S}_0	3520	3556	3489	3683
FFa C	\mathbf{S}_1	3595	3467	3458	3681
	S_0	3607	3541	3488	3692
Experiment					
FFa A ₁	\mathbf{S}_1	3414	3438	3390	3524
FFa A ₂	\mathbf{S}_1	3446	3414	3390	3524
FFa A	\mathbf{S}_0	3447	3438	3391	3524
FFa B	\mathbf{S}_0	3412	3430	3357	3514
FFa C	\mathbf{S}_0	3445	3418	3382	3518

Table S9-4: CC2/cc-pVDZ *amide* A region frequencies (cm⁻¹) of both the ground (S₀) and $\pi\pi^*$ excited (S₁) states of the FFa conformers, together with the IR available experimental ones (cm⁻¹).

Appendix S10: Experimental vs. CC2/cc-pVDZ calculated harmonic *amide* A region frequencies of both the S₀ and S₁ states of the series of capped peptides and the corresponding mode-dependent linear ($v_{exp.} = av_{theo.} + b$) scaling functions.

Figure S10-1: Experimental vs. CC2/cc-pVDZ calculated harmonic *amide* A region frequencies of the S₀ states of the series of capped peptides and the corresponding mode-dependent linear ($v_{exp.} = av_{theo.} + b$) scaling functions.

Figure S10-2: Experimental vs. CC2/cc-pVDZ calculated harmonic *amide* A region frequencies of the S₁ states of the series of capped peptides and the corresponding mode-dependent linear ($v_{exp.} = av_{theo.} + b$) scaling functions.

S11: DFT-D structures of the ground state of QFa A, B and C

Figure S11: B97-D3 structures of the three most stable forms of QFa, which account for the conformer-selective IR spectra recorded (shown in Fig. 4). In these three forms the peptide backbone exhibits a β -turn structure stabilized by C₁₀ H-bond and by a main chain/side chain H-bond, labelled 7^{δ} (see molecule sketch in the insert). The 3 conformers differ by the arrangement of the glutamine side chain relative to the backbone.

References:

1. Chin, W.; Mons, M.; Dognon, J. P.; Piuzzi, F.; Tardivel, B.; Dimicoli, I. Competition between local conformational preferences and secondary structures in gas-phase model tripeptides as revealed by laser spectroscopy and theoretical chemistry. *Physical Chemistry Chemical Physics* **2004**, *6* (10), 2700-2709.

2. Alaudin, M.; Vaquero-Vara, V.; Habka, S.; Tardivel, B.; Gloaguen, E.; Mons, M., unpublished results.