CC2 Benchmark for models of phenylalanine protein chains: 0-0 transition energies and IR signatures of the $\pi \pi^{*}$ excited state.

Mi-Song Dupuy, ${ }^{\dagger}$ Eric Gloaguen, Benjamin Tardivel, Michel Mons and Valérie Brenner* LIDYL, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.

Appendix S1: Definition of the characteristic dihedral angles of the backbone of capped peptides.
Appendix S2: Characteristic geometrical parameters of the DFT-D optimized geometry of the ground state $\left(\mathrm{S}_{0}\right)$ of the four Fa conformers.

Appendix S3: Comparison of the CC2/cc-pVXZ (X=D and T) optimized geometries of both the S_{0} and S_{1} states for the four Fa conformers.

Appendix S4: Amide A region frequencies of both the ground $\left(\mathrm{S}_{0}\right)$ and $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states of the four Fa conformers.

Appendix S5: ZPVE of both the ground $\left(\mathrm{S}_{0}\right)$ and $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states according to the basis set for the four Fa conformers.

Appendix S6: Comparison of the CC2/cc-pVDZ optimized geometry of the S_{0} and S_{1} states of Fa B and D.

Appendix S7: Characteristic geometrical parameters of CC2/cc-pVDZ optimized geometry of both the ground $\left(\mathrm{S}_{0}\right)$ and lowest $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states of the Fm, GFa, FFa and QFa conformers.

Appendix S8: Comparison of the CC2/cc-pVDZ optimized geometry of the S_{0} and S_{1} states of the $\mathrm{Fm}, \mathrm{GFa}, \mathrm{FFa}$ and QFa conformers.

Appendix S9: Amide A region frequencies of both the ground $\left(\mathrm{S}_{0}\right)$ and $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states of the $\mathrm{Fm}, \mathrm{GFa}, \mathrm{FFa}$ and QFa conformers.

Appendix S10: Experimental vs. CC2/cc-pVDZ calculated harmonic amide A region frequencies of both the S_{0} and S_{1} states of the series of capped peptides and the corresponding mode-dependent linear ($v_{\text {exp. }}=a v_{\text {theo. }}+b$) scaling functions.

Appendix S11: DFT-D structures of the ground state of $\mathrm{QFa} \mathrm{A}, \mathrm{B}$ and C

References

Appendix S1: Definition of the characteristic dihedral angles of the backbone of capped peptides.

Figure S1: Definition of the characteristic dihedral angles of the backbone of capped peptides: Example of $\mathrm{N}-\mathrm{Ac}-\mathrm{Phe}-\mathrm{NH}_{2}(\mathrm{Fa})$ from the N -terminus (left-most [i-1] module) through the central Phe (central [i] module) to C -terminal NH_{2} protecting group (right-most [i+1] module).

Appendix S2: Characteristic geometrical parameters of the DFT-D optimized geometry of the ground state $\left(\mathrm{S}_{0}\right)$ of the four Fa conformers.

		Dihedral angles $\left(^{\circ}\right)^{\text {a }}$			Intermolecular distances (\AA)	
		Φ	Ψ	χ^{1}	$\mathrm{d}_{\mathrm{NH} \ldots . .}$	$\mathrm{d}_{\mathrm{NH} \ldots} \ldots{ }^{\text {b }}$
So	A	-160	159	192	2.28	2.56 (3.37, 2.84)
	B	-83	55	44	2.02	2.44 (3.23, 2.54)
	C	-85	72	-55	2.03	2.77 (3.76, 2.85)
	D	-83	84	193	2.24	

Table S2: Characteristic geometrical parameters of the ground state (S_{0}) of the four Fa conformers optimized at the DFT-D level. ${ }^{1-2}$
${ }^{a}$ For the definition of the dihedral angles, see the Supporting Information (Figure S1).
${ }^{\mathrm{b}}$ The NH... π bond is characterized by three distances: the distance of the $\mathrm{NH}_{\text {Phe }}$ (A conformer) or NH_{2} (B conformer and C conformer) hydrogen atom with the C_{γ} carbon atom of the phenylalanine residue and given in parentheses by the two distances with the two C_{δ} carbon atoms $\left(\mathrm{C}_{\delta}{ }^{\mathrm{C} \text {-term }}, \mathrm{C}_{\delta}{ }^{\mathrm{N}}\right.$ ${ }^{\text {term }}$) of the phenylalanine residue.

Appendix S3: Comparison of the CC2/cc-pVXZ ($\mathrm{X}=\mathrm{D}$ and T) optimized geometries of both the S_{0} and S_{1} states for the four Fa conformers.

Figure S3-1: Comparison of the CC2/cc-pVDZ (blue) and CC2/cc-VTZ (red) optimized geometries of the S_{0} state for the four Fa conformers. For each conformer, the phenyl rings have been overlapped.

Figure S3-2: Comparison of the CC2/cc-pVDZ (blue) and CC2/cc-VTZ (red) optimized geometries of the S_{1} state for the four Fa conformers. For each conformer, the phenyl rings have been overlapped.

Appendix S4: Amide A region frequencies of both the ground $\left(\mathrm{S}_{0}\right)$ and $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states of the four Fa conformers.

Conformer/State	$\mathrm{NH}_{\text {phe }}$	$\mathrm{NH}_{2 \text { sym. }}$	$\mathrm{NH}_{2 \text { anti. }}$	
cc-pVDZ				
Fa A	S_{1}	3594	3546	3695
	$\mathrm{~S}_{0}$	3583	3561	3713
Fa B	S_{1}	3545	3469	3689
	$\mathrm{~S}_{0}$	3589	3474	3690
Fa C	S_{1}	3553	3473	3674
	$\mathrm{~S}_{0}$	3597	3476	3675
Fa D	S_{1}	3618	3498	3677
	$\mathrm{~S}_{0}$	3618	3500	3677
Experiment				
Fa A	S_{1}	3434	3417	3535
	$\mathrm{~S}_{0}$	3433	3426	3541
Fa C	S_{1}	3439	3344	3514
	$\mathrm{~S}_{0}$	3463	3345	3515
cc-pVTZ				
Fa A	S_{1}	3590	3549	3698
	$\mathrm{~S}_{0}$	3588	3569	3712
Fa B	S_{1}	3524	3454	3686
	$\mathrm{~S}_{0}$	3577	3460	3687
Fa C	S_{1}	3560	3463.9	3688
	$\mathrm{~S}_{0}$	3614	3471	3683
Fa D	S_{1}	3627	3501	3682
	$\mathrm{~S}_{0}$	3627	3504	3681

Table S4: CC2/cc-pVXZ ($\mathrm{X}=\mathrm{D}$ and T) amide A region frequencies $\left(\mathrm{cm}^{-1}\right)$ of both the ground $\left(\mathrm{S}_{0}\right)$ and $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states of the four Fa conformers, together with the available experimental ones.

Appendix S5: ZPVE of both the ground $\left(\mathrm{S}_{0}\right)$ and $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states according to the basis set for the four Fa conformers.

			ZPVE (au)
S_{0}		A	0.238368
	cc-pVDZ	B	0.239126
		C	0.238832
		D	0.239007
	cc-pVTZ	B	0.238510
		C	0.239284
		D	0.238696
$\mathrm{~S}_{1}$			0.239019
	cc-pVDZ	B	0.232277
		C	0.232950
		D	0.232845
		A	0.232960
	cc-pVTZ	B	0.232336
		C	0.233100
		D	0.232907

Table S5: ZPVE (au) of the optimized geometry of both the ground $\left(\mathrm{S}_{0}\right)$ and $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states obtained at the CC2/cc-pVXD ($\mathrm{X}=\mathrm{D}$ and T) levels for the four Fa conformers. The values for S_{0} state at the DFT-D/TZVPP level are 0.233370 (A), 0.233924 (B), 0.233337 (C) and 0.233567 (D).

Appendix S6: Comparison of the CC2/cc-pVDZ optimized geometry of the S_{0} and S_{1} states of Fa B and D.

Figure S6: Comparison of the CC2/cc-pVDZ optimized geometries of the S_{0} (atom-based colors) and S_{1} (green) states for Fa B and D. For each conformer, the phenyl rings have been overlapped. Only distances (dash-dot) that vary significantly ($|\mathrm{d}|>0.01 \AA$) between the ground and the excited state (see Table 1) are mentioned.

Appendix S7: Characteristic geometrical parameters of CC2/cc-pVDZ optimized geometry of both the ground $\left(\mathrm{S}_{0}\right)$ and lowest $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states of the Fm, GFA, FFa and QFa conformers.

Fm		Dihedral angles $\left({ }^{\circ}{ }^{\circ} \mathrm{a}\right.$			Intramolecular distances (\AA)	
		Φ	Ψ	χ^{1}	$\mathrm{~d}_{\mathrm{NH} \ldots} \ldots \mathrm{o}$	$\mathrm{d}_{\mathrm{NH} \ldots \ldots \mathrm{m}}^{\mathrm{b}}$
S_{0}	A	-163	152	183	2.22	$2.59(2.94,2.80)$
	B	-83	60	41	1.92	$2.34(2.50,3.10)$
	C	-89	75	-51	1.96	$2.58(3.48,2.72)$
S_{1}	A	-165	153	177	2.23	$2.54(3.02,2.54)$
	B	-84	60	43	1.92	$2.35(2.33,3.28)$
	C	-89	75	-50	1.96	$2.52(3.49,2.53)$

Table S7-1: Characteristic geometrical parameters of CC2/cc-pVDZ optimized geometry of both the ground $\left(\mathrm{S}_{0}\right)$ and lowest $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states of the Fm conformers.
${ }^{a}$ For the definition of the dihedral angles, see the Supporting Information (Figure S1).
${ }^{\mathrm{b}}$ The $\mathrm{NH} . . . \pi$ bond is characterized by three distances: the distance of the $\mathrm{NH}_{\text {phe }}$ (A conformer) or $\mathrm{NH}_{\mathrm{C} \text {-term }}$ (B and C conformer) hydrogen atom with the C_{γ} carbon atom of the phenyl residue and given in parentheses by the two distances with the two C_{δ} carbon atoms ($\mathrm{C}_{\delta}{ }^{\text {to } \mathrm{C} \text {-term }}, \mathrm{C}_{\delta}{ }^{\text {to }} \mathrm{N}$-term $)$ of the phenyl residue.

GFa		Dihedral angles ($\left.{ }^{\circ}\right)^{\text {a }}$			Dihedral angles (${ }^{\circ}$)			Intramolecular distances (\AA)	
		Φ_{1}	Ψ_{1}	$\chi_{1}{ }^{1}$	Φ_{2}	Ψ_{2}	$\chi_{2}{ }^{1}$	$\mathrm{d}_{\text {NH. .. }}{ }^{\text {b }}$	$\mathrm{d}_{\mathrm{NH} \ldots} \ldots \mathrm{m}^{\text {c }}$
S_{0}	A	-81	67		-84	79	-59	1.96-1.99	2.87 (3.86, 3.03)
	A ${ }^{\text {, }}$	-279	295		-81	80	-57	1.92-1.99	
	B	-71	346		-91	9	53	1.92	2.45 (3.29, 2.48)
	B'	-304	220		-100	14	55	2.01	2.64 (3.47, 2.67)
	C	-115	166		-161	161	193	2.26-2.16	2.48 (2.67, 2.95)
S_{1}	A	-80	71		-86	78	-55	1.95-1.98	2.70 (3.54, 3.06)
	A ${ }^{\text {, }}$	-279	293		-80	80	-56	1.93-1.99	
	B	-70	345		-91	9	53	1.91	2.44 (3.33, 2.40)
	B'	-304	220		-95	10	57	2.01	2.60 (3.50, 2.56)
	C	-113	166		-165	155	181	2.28-2.21	2.52 (2.92, 2.63)

Table S7-2: Characteristic geometrical parameters of CC2/cc-pVDZ optimized geometry of both the ground $\left(\mathrm{S}_{0}\right)$ and lowest $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states of the GFa conformers.
${ }^{\text {a }}$ For the definition of the dihedral angles, see the Supporting Information (Figure S1). The residue 1 correspond to the first residue from the N terminal cap, the N -term.
${ }^{\mathrm{b}} \mathrm{A}$ and A ' conformers: the two distances correspond to the two C_{7} hydrogen bond distances. B and B' conformers, the distance is that of the $\mathrm{C}_{10} \mathrm{H}$-bond. C conformer: the two distances correspond to the two $\mathrm{C}_{5} \mathrm{H}$-bond distances.
${ }^{\mathrm{c}}$ The NH... π bond is characterized by three distances: the distance of $\mathrm{NH}_{\text {phe }}$ (B and B' conformer) or NH_{2} (C conformer) hydrogen atom with the C_{γ} carbon atom of the phenylalanine residue and given in parentheses by the two distances with the two $\mathrm{C} \delta$ carbon atoms ($\mathrm{C}_{\delta}{ }^{\text {to } \mathrm{C} \text {-term }}, \mathrm{C} \delta{ }^{\text {to }} \mathrm{N}$-term $)$ of the phenylalanine residue.

FFa		Dihedral angles ($\left.{ }^{\circ}\right)^{\text {a }}$			Dihedral angles (${ }^{\circ}$)			Intramolecular distances (\AA)	
		Φ_{1}	Ψ_{1}	$\chi_{1}{ }^{1}$	Φ_{2}	Ψ_{2}	$\chi_{2}{ }^{1}$	$\mathrm{d}_{\mathrm{NH} \ldots} \ldots{ }^{\text {b }}$	$\mathrm{d}_{\mathrm{NH} \ldots . . \pi^{\text {c }}}$
S_{0}	A	-69	353	62	-110	14	51	2.15	[2.62, 2.54]-[2.42, 2.41]
	B	-153	27	51	-95	75	-41	2.05	[2.70, 2.85] -[2.45, 3.00]
	C	-163	151	181	-80	70	45	1.99-2.24	2.60 (2.94, 2.74) - 2.49 (3.41, 2.50)
S_{1}	A_{1}	-68	349	61	-103	12	52	2.10	[2.59, 2.47] - [2.43, 2.41]
	A_{2}	-69	352	62	-111	12	50	2.17	[2.63, 2.56] - [2.38, 2.33]
	B_{1}	-151	24	52	-95	75	-40	2.03	[2.66, 2.78] - [2.43, 2.99]
	B_{2}	-152	27	51	-95	75	-40	2.05	[2.68, 2.87] - [2.42, 2.94]
	C	-160	161	182	-73	67	41	1.96-2.21	2.46 (2.62, 3.15)-2.24 (3.23, 2.17)

Table S7-3: Characteristic geometrical parameters of CC2/cc-pVDZ optimized geometry of both the ground $\left(\mathrm{S}_{0}\right)$ and lowest $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states of the FFa (Ac-Phe1-Phe2- NH_{2}) conformers.
${ }^{\text {a }}$ For the definition of the dihedral angles, see the Supporting Information (Figure S1). The residue 1 correspond to the first residue from the N -term.
${ }^{\mathrm{b}} \mathrm{A}, \mathrm{A}_{1}$ and A_{2} conformers: the distance corresponds to the C_{10} hydrogen bond distances. $\mathrm{B}, \mathrm{B}_{1}$ and B_{2} conformers, the distance is that of the $\mathrm{C}_{7} \mathrm{H}$-bond. C conformer: the distances correspond to the C_{7} and the $\mathrm{C}_{5} \mathrm{H}$-bond distances.
${ }^{\mathrm{c}}$ The NH... π bond is characterized by two group of distances. A and B conformers: the distances of the $\mathrm{NH}_{\text {Phel }}$ hydrogen atom with the C_{γ} and the $\mathrm{C}_{\delta}{ }^{\text {to }}{ }^{\mathrm{N} \text {-term }}$ carbon atoms of Phel and those of the $\mathrm{NH}_{\text {phe2 }}$ hydrogen atom with the C_{γ} and the $\mathrm{C} \delta{ }^{\text {to }}{ }^{\mathrm{N} \text {-term }}$ carbon atoms of Phe2. C conformer: the distances of the $\mathrm{NH}_{\text {Phe2 }}$ hydrogen atom with the C_{γ} and the two $\mathrm{C} \delta$ carbon atoms $\left(\mathrm{C}_{\delta}{ }^{\text {to }}\right.$ - -term and $\mathrm{C}_{\delta}{ }^{\text {to }}$ ${ }^{\mathrm{N} \text {-term }}$) of Phe 1 and those of the same hydrogen atom with the C_{γ} and the two C_{δ} carbon atoms ($\mathrm{C}_{\delta}{ }^{\text {to }}$ C -term and $\mathrm{C}_{\delta}{ }^{\text {to }} \mathrm{N}$-term) carbon atoms of Phe2.

QFa		Dihedral angles ($\left.{ }^{\circ}\right)^{\text {a }}$			Dihedral angles (${ }^{\circ}$)			Intramolecular distances (\AA)	
		Φ_{1}	Ψ_{1}	$\chi_{1}{ }^{1}$	Φ_{2}	Ψ_{2}	$\chi_{2}{ }^{1}$	$\mathrm{d}_{\mathrm{NH} \ldots . . \mathrm{ob}}{ }^{\text {b }}$	
S_{0}	A	-74	349	-63	-93	10	53	1.82-2.00	2.33 (3.25, 2.47)
	B	-76	348	79	-106	13	-58	1.87-2.01	2.86 (2.63, 2.75)
	C	-69	343	71	-96	14	51	1.85-1.99	2.43 (3.19, 2.43)
S_{1}	A	-65	340	-58	-106	15	47	1.83-2.06	2.37 (3.07, 2.35)
	B	-69	341	67	-112	16	-50	1.84-2.04	2.92 (2.81, 2.36)
	C	-69	342	69	-97	14	48	1.85-2.00	2.39 (3.11, 2.39)

Table S7-4: Characteristic geometrical parameters of CC2/cc-pVDZ optimized geometry of both the ground (S_{0}) and lowest $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states of the QFa conformers.
${ }^{\text {a }}$ For the definition of the dihedral angles, see the Supporting Information (Figure S1). The residue 1 correspond to the first residue from the N -term.
${ }^{\mathrm{b}}$ The two distances correspond to the C_{7} and $\mathrm{C}_{10} \mathrm{H}$-bond distances.
${ }^{c}$ The $\mathrm{NH} . . . \pi$ bond is characterized by three distances: the distance of the $\mathrm{NH}_{\text {Phe }}$ (A and C conformer) or $\mathrm{NH}_{2 \text {,chain }}$ group (B conformer) hydrogen atom with the C_{γ} (A and C conformer) or C_{ξ} (B conformer) carbon atom of the phenylalanine residue and in parentheses, the two distances with the two $\mathrm{C} \delta$ carbon atoms $\left(\mathrm{C}_{\delta}{ }^{\text {to }} \mathrm{C}^{- \text {-term }}, \mathrm{C}_{\delta}{ }^{\text {to }}{ }^{\mathrm{N} \text {-term }}\right.$) of the phenylalanine residue (A and C conformers) or with the $\mathrm{C} \delta^{\text {to } \mathrm{C} \text {-term }}$ and $\mathrm{C} \varepsilon^{\text {to } \mathrm{C} \text {-term }}$ carbon atoms (B conformer).

Appendix S8: Comparison of the CC2/cc-pVDZ optimized geometry of the S_{0} and S_{1} states of the $\mathrm{Fm}, \mathrm{GFa}, \mathrm{FFa}$ and QFa conformers.

Figure S8-1: Comparison of the CC2/cc-pVDZ optimized geometry of the S_{0} (atom-based colors) and S_{1} states (green) of the Fm conformers. For each conformer, the phenyl rings have been overlapped. Only distances (dash-dot) that vary significantly ($|\mathrm{d}|>0.01 \AA$) between the ground and the excited state (see Table S7.1) are mentioned.

Figure S8-2: Comparison of the CC2/cc-pVDZ optimized geometry of the S_{0} (atom-based colors) and S_{1} states (green) of GFa A, A', B and B'. For each conformer, the phenyl rings have been overlapped. Only distances (dash-dot) that vary significantly ($|\mathrm{d}|>0.01 \AA$) between the ground and the excited state (see Table S7.2) are mentioned.

Figure S8-3: Comparison of the CC2/cc-pVDZ optimized geometry of the S_{0} (atom-based colors) and S_{1} states (green) of $F F a A_{1}, B_{1}, B_{2}$ and C. The phenyl rings have been overlapped for all conformers except FFa C for which this is not possible. In this latter case, the backbones until Phe 1 are overlapped. Only distances (dash-dot) that vary significantly ($|\mathrm{d}|>0.01 \AA$) between the ground and the excited state (see Table S7.3) are mentioned. In the case of FFa_{2}, the distances of the $\mathrm{NH}_{\text {Phe1 }}$ hydrogen atom with the $\mathrm{C} \varepsilon^{\text {to } \mathrm{C} \text {-term }}$ carbon atoms of Phe2 are added.

Figure S8-4: Comparison of the CC2/cc-pVDZ optimized geometry of the S_{0} (atom-based colors) and S_{1} states (green) of QFa A and C . For each conformer, the backbones have been overlapped. Only distances (dash-dot) that vary significantly ($|\mathrm{d}|>0.01 \AA$) between the ground and the excited state (see Table S7.4) are mentioned.

Appendix S9: Amide A region frequencies of both the ground $\left(\mathrm{S}_{0}\right)$ and $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states of the $\mathrm{Fm}, \mathrm{GFa}, \mathrm{FFa}$ and QFa conformers.

Conformer/State		$\mathrm{NH}_{\text {Phe }}$	$\mathrm{NH}_{\mathrm{C} \text {-term }}$
Fm A	S_{1}	3592	3565
	$\mathrm{~S}_{0}$	3597	3609
Fm B	S_{1}	3540	3463
	$\mathrm{~S}_{0}$	3587	3467
Fm C	S_{1}	3552	3483
	$\mathrm{~S}_{0}$	3599	3487
Experiment			
Fm A	S_{1}	3433	3433
	$\mathrm{~S}_{0}$	3433	3460
Fm B	S_{1}	3401	3342
	$\mathrm{~S}_{0}$	3433	3346

Table S9-1: CC2/cc-pVDZ amide A region frequencies $\left(\mathrm{cm}^{-1}\right)$ of both the ground $\left(\mathrm{S}_{0}\right)$ and $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states of the Fm conformers, together with the available IR experimental ones $\left(\mathrm{cm}^{-1}\right)$.

Conformer/State	$\mathrm{NH}_{\text {GIn }}$	$\mathrm{NH}_{\text {Phe }}$	NH_{2} sym./C-term	NH_{2} anti/C-term	NH_{2} sym./Chain	NH_{2} anti./Chain	
QFa A	S_{1}	3397	3570	3529	3705	3601	3759
	$\mathrm{~S}_{0}$	3399	3582	3521	3700	3603	3761
QFa B	S_{1}	3415	3599	3514	3689	3522	3695
	$\mathrm{~S}_{0}$	3458	3593	3517	3688	3567	3722
QFa C	S_{1}	3441	3560	3517	3699	3588	3740
	$\mathrm{~S}_{0}$	3450	3576	3519	3699	3587	3739
Experiment							
QFa A	S_{0}	3285	3409	3365	3519	3442	3562
QFa B	S_{0}	3322	3445	3366	3512	3406	3527
QFa C	S_{0}	3336	3440	3367	3514	3426	3557

Table S9-2: CC2/cc-pVDZ amide A region frequencies (cm^{-1}) of both the ground (S_{0}) and $\pi \pi^{*}$ excited $\left(\mathrm{S}_{1}\right)$ states of the QFa conformers, together with the available IR experimental ones $\left(\mathrm{cm}^{-1}\right)$.

Conformer/State		$\mathrm{NH}_{\text {Gly }}$	$\mathrm{NH}_{\text {Phe }}$	$\mathrm{NH}_{2 \text { sym. }}$	$\mathrm{NH}_{2 \text { anti. }}$
GFa A	S_{1}	3635	3434	3475	3675
	$\mathrm{~S}_{0}$	3642	3452	3480	3675
GFa A'	S_{1}	3645	3443	3472	3668
	$\mathrm{~S}_{0}$	3647	3448	3474	3670
GFa B	S_{1}	3643	3559	3538	3709
	$\mathrm{~S}_{0}$	3644	3596	3541	3710
GFa B'	S_{1}	3626	3582	3530	3694
	$\mathrm{~S}_{0}$	3626	3603	3529	3695
GFa C	S_{1}	3572	3569	3546	3695
	$\mathrm{~S}_{0}$	3567	3571	3561	3709
Experiment					
GFa A	S_{1}	3492	3302	3358	3510
	$\mathrm{~S}_{0}$	3494	3320	3355	3519
GFa A'	S_{0}	3495	3322	3353	3517
GFa B	S_{0}	3494	3445	3391	3521
GFa B'	S_{1}	3494	3423	3387	3519
	$\mathrm{~S}_{0}$	3493	3441	3385	3518
GFa C	S_{1}	3445	3408	3416	3535
	$\mathrm{~S}_{0}$	3444	3405	3425	3541

Table S9-3: CC2/cc-pVDZ amide A region frequencies $\left(\mathrm{cm}^{-1}\right)$ of both the ground (S_{0}) and $\pi \pi^{*}$ excited $\left(S_{1}\right)$ states of the GFa conformers, together with the IR available experimental ones $\left(\mathrm{cm}^{-1}\right)$.

Conformer/State		$\mathrm{NH}_{\text {Phel }}$	$\mathrm{NH}_{\text {Phe2 }}$	$\mathrm{NH}_{2 \text { sym. }}$	NH_{2} anti.
FFa A_{1}	S_{1}	3540	3587	3545	3711
FFa A_{2}	S_{1}	3576	3562	3547	3713
FFa A	S_{0}	3581	3596	3549	3714
FFa B_{1}	S_{1}	3509	3552	3483	3681
$\mathrm{FFa} \mathrm{B}_{2}$	S_{1}	3487	3537	3489	3683
FFa B	S_{0}	3520	3556	3489	3683
FFa C	S_{1}	3595	3467	3458	3681
	S_{0}	3607	3541	3488	3692
Experiment					
FFa A_{1}	S_{1}	3414	3438	3390	3524
FFa A_{2}	S_{1}	3446	3414	3390	3524
FFa A	S_{0}	3447	3438	3391	3524
FFa B	S_{0}	3412	3430	3357	3514
FFa C	S_{0}	3445	3418	3382	3518

Table S9-4: CC2/cc-pVDZ amide A region frequencies $\left(\mathrm{cm}^{-1}\right)$ of both the ground $\left(\mathrm{S}_{0}\right)$ and $\pi \pi^{*}$ excited $\left(S_{1}\right)$ states of the FFa conformers, together with the IR available experimental ones $\left(\mathrm{cm}^{-1}\right)$.

Appendix S10: Experimental vs. CC2/cc-pVDZ calculated harmonic amide A region frequencies of both the S_{0} and S_{1} states of the series of capped peptides and the corresponding mode-dependent linear ($v_{\text {exp. }}=a v_{\text {theo. }}+b$) scaling functions.

Figure S10-1: Experimental vs. CC2/cc-pVDZ calculated harmonic amide A region frequencies of the S_{0} states of the series of capped peptides and the corresponding mode-dependent linear ($v_{\text {exp. }}=$ $\left.a v_{\text {theo. }}+b\right)$ scaling functions.

Figure S10-2: Experimental vs. CC2/cc-pVDZ calculated harmonic amide A region frequencies of the S_{1} states of the series of capped peptides and the corresponding mode-dependent linear ($v_{\text {exp. }}=$ $\left.a v_{\text {theo. }}+b\right)$ scaling functions.

S11: DFT-D structures of the ground state of $\mathrm{QFa} \mathrm{A}, \mathrm{B}$ and C

Figure S11: B97-D3 structures of the three most stable forms of QFa, which account for the conformer-selective IR spectra recorded (shown in Fig. 4). In these three forms the peptide backbone exhibits a β-turn structure stabilized by $\mathrm{C}_{10} \mathrm{H}$-bond and by a main chain/side chain H bond, labelled 7^{δ} (see molecule sketch in the insert). The 3 conformers differ by the arrangement of the glutamine side chain relative to the backbone.

References:

1. Chin, W.; Mons, M.; Dognon, J. P.; Piuzzi, F.; Tardivel, B.; Dimicoli, I. Competition between local conformational preferences and secondary structures in gas-phase model tripeptides as revealed by laser spectroscopy and theoretical chemistry. Physical Chemistry Chemical Physics 2004, 6 (10), 2700-2709.
2. Alaudin, M.; Vaquero-Vara, V.; Habka, S.; Tardivel, B.; Gloaguen, E.; Mons, M., unpublished results.
