
Supplementary Data

Catalytic co-pyrolysis of biomass and plastics (polypropylene and polystyrene) using spent FCC catalyst

Fig. S1. DTG curves for (a). Polypropylene (PP) (b).Polystyrene (PS) and (c). Lignocellulosic biomass (LB)

S.No	Reference	Reactor used	Operating	Feed considered	Catalyst used	Product yields	Observations
			Temperature	a			
1	Mullen et al.	Pyroprobe	650°C	Switchgrass and High-	HZSM-5 (15 mg)	Total aromatic yield-	In a series of experiments, they observed an increase in
	[22]	pyrolyzer		density polyethylene		GC/MS response (x10 ⁷	aromatics formation and slow catalyst deactivation by
				(HDPE) – 1 mg (total)		area counts per sample mg)	coke up to $\sim 2:1$ cumulative feed to catalyst loading.
				Biomass/plastic ratio -		_	However, the effect of HDPE addition from 2:1 to 4:1
				1:1		Switchgrass – 290	cumulative feed to catalyst ratio was less beneficial due to
						HDPE - ~183	excess coke formation inside the catalyst pores.
						Switchgrass and HDPE	
						blend - 341	
2	Zhang et al.	Continuous	600°C	Black liquor lignin and	LOSA-1, spent FCC	Petrochemical yield (%C-	The petrochemical yield (aromatics plus olefins)
	[23]	Fluidized bed		polyethylene (PE); 5-200	catalyst, γ -Al ₂ O ₃ , sand –	aromatics and olefins) –	decreased in the order LOSA-1 >spent FCC catalyst > γ -
		reactor		g/h; Biomass/plastic ratio	30 g	LOSA-1 - ~44%; spent	Al ₂ O ₃ > sand.
				- 1:1		FCC - ~35%; γ-Al ₂ O ₃ -	
						~30%; Sand - ~18%;	

Table S1. Co-pyrolysis studies of biomass with plastics

3	Hong et al.	Microscale	400-600°C	Cellulose and	ZSM-5, Desilicated	Aromatic yields: 33.5 wt%	Synergy was observed for both desilicated ZSM-5 and Al-
	[24]	analytical		Polypropylene - 0.8 mg	ZSM-5, Al-SBA-15;	with Desilicated ZSM-5;	SBA-15. No synergy was observed with parent ZSM-5.
		pyrolyzer		(total)	Catalyst to feed ratio -	24.62 wt% using parent	Increase in temperature from 400 to 600°C favoured
					10.	ZSM-5; 7.38 wt% with Al-	higher aromatic yields. Desilicated ZSM-5 performed
						SBA	better in terms of aromatic yields and deoxygenation
							reactions.
4	Zhao et al.	Microwave oven	200-350°C	Bamboo and	HZSM-5	~ 30-70 wt%	The optimum conditions for maximum bio-oil yield from
	[25]			Polypropylene -10 g			jet fuel perspective were identified as 250°C, bamboo/PP
				(total)			ratio of 1:2, and feedstock/catalyst ratio of 2:1. It is also
							reported that significant deoxygenation reactions occurred
							at high catalyst loading, and excess PP addition increased
							the aliphatic content in the bio-oil.
5	Qi et al. [26]	Bench-scale fixed	500-900°C	Microalgae and	HZSM-5	~ 30-70 wt.%	i. At constant biomass/PP ratio of 1:1, and sample to
		bed reactor		Polypropylene – 10 g			catalyst ratio of 1:1, the bio-oil yield was maximum
				(total)			(~70 wt.%) at 500°C and aromatic formation (~77%)
							was maximum at 800°C.
							ii. At constant biomass/PP ratio of 1:1, and 800°C, the
							aromatic yield was 93.29% at feed/catalyst ratio of
							1:10.

6	Suriapparao et	Microwave oven	600°C	Groundnut shell, bagasse,	None	Bio-oil yield from PS	Co-pyrolysis with PS had more energy yield than PP. PS
	al. [27]			rice husk,		blends –51 to 60 wt.%, and	promoted the aromatic production while PP co-pyrolysis
				prosopisjuliflora, mixed		from PP blends – 25 to 41	bio-oil had more aliphatic hydrocarbons.
				saw dust and		wt.%.	
				polypropylene,			
				polystyrene – 20 g			
				(total); Biomass/plastic			
				ratio - 1:1			
7	Chi et al. [28]	Thermogravimetry	650°C	Cellulose and	MCM-41 and Al-MCM-	Aromatic yield -	Al-MCM-41 had a better deoxygenation and cracking
		analysis (TGA)		polypropylene - 0.1 mg	41	~15 wt.% with MCM-41	effect than MCM-41 in minimizing the oxygenate yields.
				(total); Cellulose/PP ratio		and ~30 wt.% with Al-	The yield of furans increased with MCM-41, and the
				- 3:1		MCM-41	olefin and aromatic yield increased with Al-MCM-41.
8	Parejo et al.	Fixed-bed reactor	550°C	Grape seeds and	None	40-60 wt%	The organic phase yield of the bio-oil increased up to
	[29]			polystyrene – 35 g (total)			80% with addition of PS. There was an increase in
							aromatic content and decrease in phenols with addition of
							PS. PS addition favoured oligomerization, cyclization and
							hydrodeoxygenation reactions.
9.	Nguyen et al.	Bubbling fluidized	500°C	Pine saw dust and waste	None	~50-80 wt%	The calorific value of bio-oil increased with increase in
	[30]	bed reactor		polystyrene foam – 200			PS proportion. The water content and acetic acid
				g/hr			concentration decreased with increasing PS ratio.

10	Shadangi et	Semi-batch	500-600°C	Karanja and Niger seeds,	None	Bio-oil yield from karanja	Co-pyrolysis experiments were carried out at biomass/PS
	al. [31]	reactor		polystyrene – 40 g (total)		and PS blends- ~ 46 to 60	ratios of 1:1, 2:1, 4:1, and 8:1. It was reported that the
						wt%; and from Niger and	feed ratio of 2:1 was suitable to produce high calorific
						PS blend - 46 to 61wt%	value bio-oil with low carbon residue.
11	Rutkowski et	Vertical pyrex	500°C	Cellulose and	None	~ 45-94 wt%	Bio-oil obtained from cellulose-polystyrene mixtures had
	al. [32]	reactor		polystyrene – 5 g (total)			less acid number, pour point, and density compared to
							bio-oil obtained from cellulose. Hydrocarbon content
							increased with decrease of cellulose to polystyrene ratio.
12	Hassan et al.	Quartz tube	500-650°C	Torrefied wood (TW)	HZSM-5	Aromatic yield varied	In catalytic co-pyrolysis of TW with PS, the aromatic
	[33]			and polystyrene – 3 mg		between ~5 to 75 wt% for	yield decreased with increase in temperature. The amount
				(total)		samples of pure biomass,	of phenolics dropped from ~53% at 550°C to ~35% at
						plastic and their mixtures.	650°C when HZSM-5 was used as a catalyst. It was
							reported that the thermal stability of PS was more than
							TW.

	Groundnut shell biomass (LB) ^a	PP ^b	PSc
Volatile matter	77.9	~100	~99.8
Fixed carbon	19.8	0	0
Ash content	2.3	0	0.2

	Table S2.	Proximate	analysis	of feed com	ponents (%	Dry basis)
--	-----------	-----------	----------	-------------	------------	------------

Refs: a. https://biomasspower.gov.in/biomass-info-asa-fuel-resources.php

b. D Supramono, Julianto, Haqqyana, H Setiadi, and M Nasikin, Phase separation of bio-oil produced by co-pyrolysis of corncobs and polypropylene, Earth and Environmental Science 93 (2017) 012072

c. Piotr Rutkowski, Andrzej Kubacki, Influence of polystyrene addition to cellulose on chemical structure and properties of bio-oil obtained during pyrolysis, Energy Convers. Manag., 47 (2006), pp. 716-731

LB/PP ratio	Thermal co-p	oyrolysis (TCP)	Catalytic co-pyrolysis (CCP)		
	Organic layer (wt.%)	Aqueous layer (wt.%)	Organic layer (wt.%)	Aqueous layer (wt.%)	
0.5	71	29	72	28	
1	66	34	53	47	
2	31	69	39	61	
LB/PS ratio					
0.5	88	12	93	7	
1	76	24	75	25	
2	63	37	67	33	

Table S3.Percentage weight distribution of organic and aqueous phase in the bio-oil

Table S4. Percentage yields of products in catalytic pyrolysis of LB, PS and PP

Feed	Liquid (wt%)		Char (wt%)	Gases (wt%)
Groundnut shell biomass (LB)	30.45		37.82	31.73
	Organic phase	Aqueous phase		
	19.7%	80.3%		
Polypropylene (PP)	54.72		0	45.28
Polystyrene (PS)	80.02		5.26	14.73