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1. Interlayer potential (ILP) fitting parameters 

 

In this work, all reference data were obtained using dispersion-augmented density functional theory (DFT) 

calculations, which are based on the screened-exchange hybrid functional of Heyd, Scuseria, and Ernzerhof 

(HSE).1-4 We employ both many-body dispersion (MBD)5, 6 and Tkatchenko-Scheffler (TS) corrections7, 8 to 

augment the HSE functional. In previous studies, the former scheme (HSE + MBD) was shown to provide a 

good balance between accuracy and computational burden for calculating binding energy curves and sliding 

energy landscapes for bilayer graphene, h-BN, and their heterojunctions.9, 10 In recent work, we refined the 

ILP parameters to fit against the MBD corrected DFT reference for bilayer systems and improved the 

performance of the potential at the sub-equilibrium regime.11 In the present study, to evaluate the properties 

of bulk materials, we performed DFT calculations for a fully periodic system (bulk configuration) with the 

same method. The resulting binding energy curves and sliding energy surfaces appear in Figures 1-3 of the 

main text. By using the fitting procedure introduced in ref 11, two sets of parameters, fitted against the HSE 

+ MBD and HSE + TS DFT reference data, are given in Table S1 and Table S2. 
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Table S1. List of ILP parameter values for bulk graphene and bulk h-BN based systems that are periodic in 

all directions. The training set includes all HSE + MBD binding energy curves and sliding potential surfaces 

appearing in Figs. 1-3 of the main text. A value of 𝑅𝑐𝑢𝑡 = 16 Å is used throughout. 

 βij (Å) αij ij (Å) εij (meV) Cij (meV) dij sR,ij reff,ij (Å) C6,ij (eV•Å6) λij (Å-1) 

C-C 3.1894 8.2113 1.2600 0.0106 38.9821 10.9736 0.7869 3.4579 25.2496 -- 

B-B 3.2147 7.1652 1.7459 11.0736 15.4819 15.4815 0.8550 3.4424 49.4984 0.70 

N-N 3.3006 6.9226 1.4845 7.9908 46.6115 16.9081 0.7585 3.3266 14.8106 0.69 

B-N 3.1709 8.5168 2.8657 5.4561 2.5548 13.5321 0.8863 3.4553 24.6708 0.694982 

C-B 3.1007 5.1146 3.8387 18.2345 1.1902 10.2155 0.7686 3.5030 39.2629 -- 

C-N 3.3173 10.3497 1.3793 16.3163 19.5691 15.7748 0.5645 3.2659 19.9631 -- 

 

 

 

Table S2. List of ILP parameter values for bulk graphene and bulk h-BN based systems that are periodic in 

all directions. The training set includes all HSE + TS binding energy curves and sliding potential surfaces 

appearing in Figs. 1-3 of the main text. A value of 𝑅𝑐𝑢𝑡 = 16 Å is used throughout. 

 βij (Å) αij ij (Å) εij (meV) Cij (meV) dij sR,ij reff,ij (Å) C6,ij (eV•Å6) λij (Å-1) 

C-C 3.1912 8.8423 1.1312 0.0863 33.4354 10.0196 0.9251 3.4842 32.4025 -- 

B-B 3.5386 5.1268 2.2006 12.8753 27.5894 13.3600 0.8414 3.6431 99.5133 0.70 

N-N 3.5915 3.2218 1.4354 6.6766 73.1026 13.0710 0.7466 3.3083 74.8236 0.69 

B-N 3.9929 7.8553 2.5853 4.5785 2.3284 16.2665 0.8669 3.9824 84.7000 0.694982 

C-B 3.0183 9.8126 3.6974 22.1591 0.8265 11.1783 0.9510 3.8465 40.1653 -- 

C-N 3.4896 10.1614 1.1615 4.2615 11.1811 11.0391 0.9257 3.2512 29.0669 -- 
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2. Sensitivity test of the ILP parameters 

In this section we investigate in some details the effects of the choice of the reference datasets (HSE + TS and 

HSE + MBD) on the ILP parametrization. For the sake of the discussion, we report here the analytical 

expression of the ILP: 

𝑉(r𝑖𝑗 , n𝑖 , n𝑗) = Tap(𝑟𝑖𝑗)[𝑉att(𝑟𝑖𝑗) + 𝑉rep(r𝑖𝑗 , n𝑖 , n𝑗) + 𝑉Coul(𝑟𝑖𝑗)], 

where 

Tap(𝑟𝑖𝑗) = 20 (
𝑟𝑖𝑗

𝑅cut 
)

7

− 70 (
𝑟𝑖𝑗

𝑅cut
)

6

+ 84 (
𝑟𝑖𝑗

𝑅cut 
)

5

− 35 (
𝑟𝑖𝑗

𝑅cut 
)

4

+ 1 

provides a continuous long-range cutoff (up to third derivative) that dampens the various interactions at 

interatomic separations larger than 𝑅cut = 16 Å, and  

𝑉Coul(𝑟𝑖𝑗) = 𝑘𝑞𝑖𝑞𝑗 √𝑟𝑖𝑗
3 + 𝜆𝑖𝑗

−33
⁄  

is the monopolar electrostatic interaction between atoms 𝑖 and 𝑗. We note that the parameters, 𝜆𝑖𝑗, and the 

atomic charges, 𝑞𝑖 , are the same for both the HSE + TS and HSE + MBD parametrizations. Hence, to 

understand the effects of the chosen model on the ILP, we can consider only the terms 𝑉att  and 𝑉rep , 

corresponding to the long-range van der Waals attraction and short-range Pauli repulsion, respectively: 

𝑉att(𝑟𝑖𝑗) = −
1

1 + 𝑒−𝑑𝑖𝑗[𝑟𝑖𝑗 (𝑠𝑅,𝑖𝑗∙𝑟𝑖𝑗
eff)−1⁄ ]

𝐶6,𝑖𝑗

𝑟𝑖𝑗
6  

𝑉rep(r𝑖𝑗 , n𝑖 , n𝑗) = 𝑒
𝛼𝑖𝑗(1−

𝑟𝑖𝑗

𝛽𝑖𝑗
)

{𝜀𝑖𝑗 + 𝐶𝑖𝑗 [𝑒−(𝜌𝑖𝑗/𝛾𝑖𝑗)
2

+ 𝑒−(𝜌𝑗𝑖/𝛾𝑖𝑗)
2

]} 

Here, 𝑟𝑖𝑗 is the Euclidean distance between the two atoms involved, 𝑛𝑖 is the surface normal at the position 

of atom 𝑖 and 𝜌𝑖𝑗 is the lateral distance between the normal vectors at the positions of atoms 𝑖 and 𝑗. 

To study the effects of the chosen model on the ILP, in the first row of Figure S1 we compare the ILP-TS-

bulk and ILP-MBD-bulk binding energy curves computed for three periodic systems: graphite, bulk h-BN and 

alternating graphene/h-BN. For all cases considered, the minimum of the ILP-TS-bulk curve (dashed blue 

lines in Figure S1) is ≲ 50 meV/atom lower than the value predicted by the ILP-MBD-bulk parametrization 

(continuous red lines). This is accompanied by only minor changes in the equilibrium interlayer distance 

(differences ≲ 3%, as reported also in Table 1 and Table 2 of the main text). Differences between the HSE + 

TS and HSE + MBD parameterized ILP curves become negligible at interlayer distances 𝑑 ≳ 6 Å. 
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Figure S1. Comparison between HSE + TS and HSE + MBD parametrized ILP binding energy curves for 

graphite (left column), bulk h-BN (middle column), and bulk alternating graphene/h-BN. The first row reports 

the comparison between the binding energy curve corresponding to the MBD (solid red line) and TS (blue 

dashed line) parametrization of the ILP, for three systems: graphite (left panel), bulk h-BN (middle panel), 

and alternating graphene/h-BN (right panel). The second row reports the corresponding differences between 

the ILP-TS-bulk and ILP-MBD-bulk binding energy curves (solid red lines), between the MBD and TS Pauli 

repulsion components (blue dashed line) and between the ILP-MBD-bulk and ILP-TS-bulk van der Waals 

attractive components (dotted-dash black line). 

 

To better understand the origin of the observed variations, in the second row of Figure S1 we report the 

difference between the ILP-MBD-bulk and ILP-TS-bulk binding energy curves (red continuous lines), 

together with the difference computed considering only the repulsive (dashed blue lines) or the attractive 

(dash-dotted black lines) terms. For the case of graphite, the TS parametrization predicts larger attraction at 

interlayer distances 𝑑 ≲ 3 Å , which becomes smaller than the MBD prediction between 3 ≲ 𝑑 ≲ 6 Å .   

detailed analysis of the effects of each single parameter on the ILP reveals that these two outcomes are due to 

the changes of the 𝐶6,𝑖𝑗 and 𝑠𝑅,𝑖𝑗 parameters, respectively (see first row of Table S3, and last row of Figure 

S2). The Pauli repulsion predicted by the TS parametrization is instead always smaller than the one predicted 

the MBD parametrization. This is mainly caused by the variation of the 𝐶𝑖𝑗 and 𝛾𝑖𝑗 parameters (see first two 
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rows of Figure S2). For the case of bulk h-BN (middle panels in Figure S1), the repulsive and attractive parts 

computed via the TS parametrization are respectively larger and smaller than the corresponding MBD values. 

The origin of these differences are mainly due to the changes of the 𝛽𝑖𝑗, 𝐶𝑖𝑗, and 𝛼𝑖𝑗 parameters for the 

repulsive part, and to the changes of the 𝐶6,𝑖𝑗 parameter for the attractive part (see Table S3 and Figure S3). 

Finally, for the case of the alternating graphene/h-BN system, we observe an opposite behavior, where the 

repulsive and attractive interactions predicted by the TS parametrization are respectively smaller and larger 

than the corresponding MBD values (see bottom right panel in Figure S1). The detailed analysis reported in 

Figure S4 demonstrates that this behavior arises from the interplay of several parameters. 

 

 

Figure S2. Sensitivity of the ILP to changes in parameter values for bulk graphite. In each panel, the red solid 

line and blue dashed line are binding energy curves computed using the MBD and TS parameterizations, 

respectively. The black dash-dotted line is the binding energy curve calculated using the MBD values for all 

parameters except one (labeled in each panel), which is changed to the corresponding TS values, for each 

distinct pair of atoms, as reported in Table S3. 
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Figure S3. Sensitivity of the ILP to changes in the parameter values for bulk h-BN. In each panel, the red 

solid line and blue dashed line are binding energy curves computed using the MBD and TS parameterizations, 

respectively. The black dash-dotted line is the binding energy curve calculated using the MBD values for all 

parameters except one (labeled in each panel), which is changed to the corresponding TS values, for each 

distinct pair of atoms, as reported in Table S3. 

 

Table S3. For each pair of atom, we report the change, 𝛥𝑋 = (𝑋𝑇𝑆 − 𝑋𝑀𝐵𝐷)/𝑋𝑀𝐵𝐷 , of the various ILP 

parameters obtained from the HSE + TS parametrization, relative to the value obtained from the HSE + MBD 

parametrization. 

 Δβij (%) Δαij (%) Δij (%) Δεij (%) ΔCij (%) Δdij (%) ΔsR,ij (%) Δreff,ij (%) ΔC6,ij (%) Δ𝝀𝒊𝒋 (%) 

C-C 0.06  7.7  -10  714  -14  -8.8  18  0.76  28  -- 

B-B 10.0  -28  26  16  78  -14  -1.6  5.8  101  0 

N-N 8.8  -53  -3.3  -16  57  -23  -1.6  -0.55  405  0 

B-N 26  -7.8  -9.8  -16  -8.9  20  -2.2  15  243  0 

C-B -2.7  92  -3.7  22  -31  9.4  24  9.8  2.3  -- 

C-N 5.2  -1.8  -16  -74  -43  -30  64  -0.45  46  -- 
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Figure S4. Sensitivity of the ILP to changes in parameter values for bulk alternating graphene/h-BN 

configuration. In each panel, the red solid line and blue dashed line are binding energy curves computed using 

the MBD and TS parameterizations, respectively. The black dash-dotted line is the binding energy curve 

calculated using the MBD values for all parameters except one (labeled in each panel), which is changed to 

the corresponding TS values, for each distinct pair of atoms, as reported in Table S3. 

 

Overall, the above analysis that focused on binding energy curves suggests that changing the reference model 

affects different parameters in different ways, depending on the material considered. The combined effects of 

such changes on the ILP determines the final shape of the binding energy curves. This, of course, is a general 

feature of force-field parameterizations. While all parameter values are kept within reasonable physical ranges 

during the optimization procedure, discussing separately the specific value of each parameter goes beyond the 

accuracy limits of the method and only their combined behavior should be considered. Nevertheless, from a 

careful inspection of Figure S2-Figure S4 it becomes clearly evident that the binding energy curve can be 

very sensitive to the value of some parameters, especially the isotropic long-range attraction 𝐶6,𝑖𝑗 coefficients 

and the anisotropic repulsion 𝐶𝑖𝑗 coefficients. Therefore, extra care should be taken when fitting their values. 
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3. Bulk modulus of graphite and hexagonal boron nitride 

Figure S5 shows the normalized volume V/V0 (V0 being the volume at zero pressure) of bulk graphite and 

bulk h-BN, as a function of pressure. The open symbols represent equilibrium molecular dynamics (EMD) 

simulation results obtained with different ILP and Kolmogorov-Crespi (KC) potential parameterizations.9-12 

The solid lines are the fitted Murnaghan equation (eq 1 in the main text) results.13 The fitted parameters (bulk 

modulus and its pressure derivative) are listed in Tables 1-2 in the main text for bulk graphite and bulk h-BN, 

respectively. 

 

 

Figure S5. Pressure dependence of the normalized volume V/V0 of bulk graphite and bulk h-BN. The open 

points are the NPT simulations results for different parameterizations of the ILP and KC potentials. The solid 

lines are fitted curves generated by eq 1 in the main text. 

 

It should be noted that apart from the Murnaghan equation, two other equations of state (EOS) are also 

commonly used to fit the P-V curve: (i) The Birch-Murnaghan equation (eq S1)14, 15 and (ii) The Vinet equation 

(eq S2),16, 17 which take the following forms: 

 𝑃 = 3𝐵𝑉
0𝜉(1 + 2𝜉)5/2 [1 −

3

2
(4 − 𝐵𝑉

′ )𝜉] ,   𝜉 =
1

2
[(

𝑉

𝑉0
)

−
2

3
− 1], (S1) 

 𝑃 = 3𝐵𝑉
0 (1−𝑋)

𝑋2 exp [
3

2
(𝐵𝑉

′ − 1)(1 − 𝑋)] ,    𝑋 = (
𝑉

𝑉0
)

1

3
. (S2) 

 s in the Murnaghan equation, these two EOS also assume that 𝐵𝑉 varies with pressure (hence the inclusion 

of 𝐵𝑉
′ ). Nonetheless, they differ in their description of the dependence of 𝐵𝑉 on the pressure, by assuming 

that it is linear, polynomial, and exponential for the Murnaghan, Birch–Murnaghan, and Vinet EOS, 

respectively. 
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Table S4 lists the fitting EMD results for the bulk modulus of graphite and bulk h-BN with the three commonly 

used EOS. Unlike the observations from a previous study,18 where the bulk modulus was found to be very 

sensitive to the choice of EOS, here we find that all three EOS yield comparable values for the bulk modulus. 

This suggests that the differences between the experimental values of the bulk modulus arise from the different 

measuring techniques adopted in different studies rather than from the choice of the EOS used for the fitting 

procedure. 

 

Table S4. Bulk moduli obtained by fitting our EMD data with different equations of state for graphite and 

bulk h-BN. Experimental values are presented for comparison. 

M
a
te

ri
a
l 

Methods 

Murnaghan Birch-Murnaghan Vinet 

𝐵𝑉
0 (GPa) 𝐵𝑉

′  𝐵𝑉
0 (GPa) 𝐵𝑉

′  𝐵𝑉
0 (GPa) 𝐵𝑉

′  

G
ra

p
h

it
e 

Experiments 

33±2a 12.3±0.7a -- -- -- -- 

33.8±0.3b 8.9±0.1b -- -- -- -- 

-- -- -- -- 30.8±2c -- 

ILP-MBD-bulk 34±1 8.1±0.3 27±1 14.2±0.7 31.5±0.8 10.2±0.2 

ILP-TS-bulk 55±2 6.2±0.3 53±0.9 7.5±0.2 53.4±0.9 7.4±0.2 

ILP-MBD-bilayer-refined, ref 11 36±3 8.1±0.6 33±2 12.2±0.9 36±2 9.6±0.5 

ILP-MBD-bilayer-original, ref 10 33±1 8.5±0.3 25.5±0.8 16.3±0.7 30.7±0.3 10.8±0.1 

KC-MBD-bilayer-refined, ref 11 35±2 7.7±0.3 30.5±0.5 12.0±0.3 33.5±0.7 9.5±0.2 

KC-original, ref 12 37±2 8.9±0.4 29.3±0.6 16.7±0.4 35.1±0.7 11.1±0.2 

B
u

lk
 h

-B
N

 

Experiments 

22±4a 18±3a -- -- -- -- 

36.7±0.5d 5.6±0.2d -- -- -- -- 

-- -- 17.6±0.8e 19.5±3.4e -- -- 

-- -- 27.6±0.5f 10.5±0.5f -- -- 

ILP-MBD-bulk 33±2 7.8±0.6 31±1 10.2±0.8 32±1 9.0±0.5 

ILP-TS-bulk 35±2 8.7±0.6 33±1 12.0±0.7 34±1 10.0±0.5 

ILP-MBD-bilayer-refined, ref 11 35±2 8.0±0.6 33±1 10.5±0.7 34±1 9.2±0.5 

ILP-MBD-bilayer-original, ref 10 38±3 8.7±0.9 36±2 11±1 38±2 9.7±0.9 

aref 19, bref 20, cref 21,  dref 22, eref 23, fref 24.  
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4. Sliding potential energy surfaces for bilayer configurations at sub-equilibrium 

interlayer distances 

Because the repulsive walls of the binding energy curves are very steep at the sub-equilibrium interlayer 

distance regime, the differences between energy and forces calculated using different methods are expected to 

increase in absolute value in this range. To demonstrate this, we present in Figure S6-Figure S8 the sliding 

potential energy surfaces for periodic bilayer graphene and bilayer h-BN, calculated using the refined ILP and 

KC potential11 as well as the original ILP10 and KC potentials,12 at three sub-equilibrium interlayer distances. 

The first and second rows in Figure S6 present the sliding energy surfaces of periodic bilayer graphene with 

interlayer distances of 3.35 Å (left column), 3.0 Å (middle column) and 2.8 Å (right column), calculated using 

the refined11 and original ILP,10 respectively. The differences between the two are presented in the third row 

of the figure. Clearly, the differences between the sliding energy surfaces obtained using the two 

parameterizations increase in both magnitude and relative value as the interlayer distance decreases. 

Specifically, the maximal absolute differences obtained are 0.4 (~2%), 2 (~13%), and 8 meV/atom (~20%) for 

interlayer distances of 3.35 Å, 3.0 Å, and 2.8 Å, respectively. 

 

 

Figure S6. Sliding energy surfaces of periodic bilayer graphene for three different interlayer distances. The 

first and second rows present the sliding energy surfaces obtained at interlayer distances of 3.35 Å (left 

column), 3.0 Å (middle column), and 2.8 Å (right column) calculated using the refined 11 and original 

graphene ILP,10 respectively. The third row presents the differences between the results obtained using the 

two ILP parameterizations. 
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The first and second rows in Figure S7 present the sliding energy surfaces of periodic bilayer graphene with 

interlayer distances of 3.35 Å (left column), 3.0 Å (middle column) and 2.8 Å (right column) calculated using 

the refined and original KC potential, respectively. The differences between the two are presented in the third 

row of the figure. Clearly, the differences between the sliding energy surfaces obtained using the two 

parameterizations increase in both magnitude and relative value as the interlayer distance decreases. 

Specifically, the maximal absolute differences obtained are 2.2 (~10%), 5.3 (~20%), and 16.4 meV/atom 

(~40%), for interlayer distances of 3.35 Å, 3.0 Å, and 2.8 Å, respectively. 

 

 

Figure S7. Sliding energy surfaces of periodic bilayer graphene for three different interlayer distances. The 

first and second rows present the sliding energy surfaces obtained at interlayer distances of 3.35 Å (left 

column), 3.0 Å (middle column), and 2.8 Å (right column) calculated using the refined 11 and original KC,12 

respectively. The third row presents the differences between the results obtained using the two KC 

parameterizations. 

 

The first and second rows in Figure S8 present the sliding energy surfaces of periodic bilayer h-BN with 

interlayer distances of 3.3 Å (left column), 3.0 Å (middle column), and 2.8 Å (right column) calculated using 

the refined and original ILP, respectively. The differences between the two are presented in the third row of 

the figure. Clearly, the differences between the sliding energy surfaces obtained using the two 

parameterizations increase in both magnitude and relative value as the interlayer distance decreases. 
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Specifically, the maximal absolute differences obtained are 0.49 (~4%), 1.8 (~10%), and 4.3 meV/atom 

(~40%), for interlayer distances of 3.3 Å, 3.0 Å, and 2.8 Å, respectively. 

 

 

Figure S8. Sliding energy surfaces of periodic bilayer h-BN for three different interlayer distances. The first 

and second rows present the sliding energy surfaces obtained at interlayer distances of 3.3 Å (left column), 

3.0 Å (middle column), and 2.8 Å (right column) calculated using the refined 11 and original h-BN ILP,10 

respectively. The third row presents the differences between the results obtained using the two ILP 

parameterizations. 
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5. Dispersive component of the sliding energy surfaces. 

To evaluate the ability of the ILP to capture the dispersive component contribution to the sliding energy surface 

corrugation we plot in the second row of Figure S9 the differences between the HSE + MBD results and the 

HSE only results (see first row of the figure) for the bulk graphite (left column), bulk h-BN (middle column), 

and alternating graphene/h-BN (left column) systems. Similar results for the TS dispersive component appear 

in the third row of the figure. Both the MBD and TS dispersive components are found to be typically lower 

than 2 meV/atom (apart from the TS component of the h-BN system that shows a corrugation of ~4 

meV/atom), which is below the accuracy of the ILP fitting to the full HSE + MBD and HSE + TS reference 

data for these systems (see lower rows of Figures 2 and 3 of the main text). This indicates that the ILP cannot 

be expected to capture the dispersive component contribution to the sliding energy surface alone for the 

systems considered. We note in passing that, while the HSE contribution (first row of Figure S9) does not 

quantitatively capture the sliding energy surface, it is able to capture its overall symmetry obtained by the 

dispersion augmented methods. 

 

 

Figure S9. Dispersive component contribution to the sliding energy surfaces of the periodic structures 

considered, calculated at an interlayer distance of 3.3 Å. The first row presents the sliding energy surface of 

bulk graphite (left panels), bulk h-BN (middle panels), and an alternating graphene/h-BN stack (right panels) 

systems, calculated using HSE. The MBD and TS dispersion contributions to the sliding energy surfaces are 

presented in the second and third rows, respectively. These are obtained by subtracting the HSE surface from 

either the HSE + MBD or the HSE + TS results. The reported energies are measured relative to the value 

obtained for the infinitely separated layers and are normalized by the total number of atoms in the unit-cell.  
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6. Sliding energy barriers under different normal loads 

To rationalize the differences in the friction forces obtained using the different ILP parameterizations (see Fig. 

8 of the main text), we plot the energy barriers encountered during the sliding process as a function of the 

applied normal load for the four-layer graphene (Figure S10a) and h-BN (Figure S10b) model systems. For 

each stick-slip event, the energy barrier is evaluated from the ILP energy difference between the pre-slip and 

post-slip states. Figure S10 presents the overall energy barrier, Usl, obtained by averaging the results over 

several stick-slip events during steady-state sliding. The error bars represent the corresponding standard 

deviation resulting from thermal fluctuations.  s can be seen, the friction force dependence on the normal 

load, presented in Figure 8 of the main text, follows the trends exhibited by the sliding energy barriers for the 

different ILP parameterizations. 

 

 

Figure S10. Normal load dependence of the sliding potential energy barriers obtained for model systems 

consisting of four layers of (a) graphene and (b) h-BN. The simulations are performed at a temperature of 

300 K for three different ILP parameterizations as listed in the figure. 
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