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Figure S1. EPR spectra of the oriented PS II membranes in (solid line) S2 state (dotted line) S1 state 

measured at the angle of (a) 0°, (b) 30°, (c) 60°, and (d) 90° of the external magnetic field B0 relative 

to the membrane normal n.   Experimental conditions: microwave frequency, 9.67 GHz; microwave 

power, 4 mW; modulation frequency, 100 kHz; modulation amplitude, 10 G. 

 

Figure S2. The orientation dependence of the g-values, converted from the resonant fields of the g = 

4.1 signal relative to the angle between the external magnetic field B0 and the membrane normal n.   

The orientation dependence was fitted by a sine function (solid line). The dotted lines show the 

maximum and minimum g-values. Experimental conditions are the same as fig. S1. 
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Figure S3.  (a) The powder pattern of the EPR spectrum for the g = 4.1 signal using the single-spin 

model. (b-d) The energy block diagrams, where the external field B0 is directed along (b) DZ-axis, (c) 

DX-axis and (d) DY-axis. The parameters: microwave frequency, 9.67 GHz; g = 2; S = 5/2; D = -

0.455 cm-1; E/D = 0.25. 
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Figure S4.  The possible orientations of the DX/DY/DZ axes relative to the Mn4 in the crystal 

structures. The Mn4 is located on the origin of the coordinates. The Z-axis is parallel to membrane 

normal n. The XY-plane is parallel to membrane plane. DX and DZ axes are set to the closest 

direction to Mn4-O(W2) and Mn4-O(W1), respectively. Panel A is stereographic figure, projected to 

the arbitrary plane. Panels B-D are the projected figures to (B) XZ-, (C) YZ- and (D) XY-planes, 

respectively. The possible angles for EPR shifts of 70-80 G in the oriented membranes are indicated 

with the blue cross marks, corresponded to the open circles in fig.3. The red, yellow and purple balls 

represent O, Ca and Mn, respectively.  
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Figure S5.  Stereo views of the orientations of the X0/Y0/Z0 axes relative to the ligand fields on Mn1. 

The Mn1 is located on the origin of the coordinates. The axes are set close to Mn1-O3, Mn1-O1 and 

Mn1-O5, respectively. The possible angles for EPR shifts of 70-80 G in the oriented membranes are 

indicated with the blue cross marks, corresponded to the open circles in fig.3. The red, yellow and 

purple balls represent O, Ca and Mn, respectively.  
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Four-spin model 

For the four coupled manganese model, Hamiltonian is written as followings: 

 

 ℋ = ∑ 𝑔𝑖𝛽𝑺𝒊𝑩𝟎
4
𝑖=1  +  ∑ 𝑰𝒊 ∙ 𝑨𝒊 ∙ 𝑺𝒊 + ∑ 𝑺𝒊 ∙ 𝑫𝒊 ∙ 𝑺𝒊

4
𝑖=1 − ∑ 2𝐽𝑖𝑗𝑺𝒊 ∙ 𝑺𝒋𝑖<𝑗    (5a) 

 

 𝑺𝒕𝒐𝒕𝒂𝒍 = ∑ 𝑺𝒊

4

𝑖=1

                                                                                           (5𝑏) 

 

, where Si and Ii are the operators of electron spin and nuclear spin of the i-th Mn ion, respectively, gi 

is the g-factor, and Ai is the effective hyperfine tensor of the i-th ion, Di is the tensor of zero-field 

splittings. Jij is the exchange interaction between the i-th and j-th ions. Total spin Stotal =13/2 for 

1Mn(III)3Mn(IV).  For two-spin model, the coupling Jeff was assumed between S = 9/2 (cubane 

frame) and S = 2 (Mn(III)).  For four-spin model, the spectral simulations were performed by the 

diagonalization of the 320×320 matrix for spin Hamiltonian using basic set of wavefunctions 

(((𝑺1 ⊗ 𝑺2) ⊗ 𝑺3) ⊗ 𝑺4). In the simulations, Mn1-3 were assumed to be Mn(IV) (S = 3/2), and 

Mn4 was assumed to be Mn(III) (S = 2). The zero-field splitting term was replaced as followings1: 

 

 𝑑4 [𝑺𝟒,𝒛
2 −

1

3
𝑆4(𝑆4 + 1)] + 𝑒4(𝑺𝟒,𝒙

2 − 𝑺𝟒,𝒚
2 ).                 (5c) 

 

, where d4 and e4 are onsite zero-field splitting parameters for Mn4. For the weak coupling 

(QM/MM) model, the set of J couplings is following:  J12: 30.5 cm-1, J13: 13.0 cm-1, J14: 0 cm-1, J23: 

35.5 cm-1, J24: 0 cm-1, J34: -7.6 cm-1 2. For the strong coupling models, the set of J couplings is 

following: J12: 200 cm-1, J13: 0 or 200 cm-1, J14: 0 cm-1; J23: 200 cm-1; J24: 0 cm-1. If J14 is non-zero, 

the result is almost the same because the cubane frame is under the strong ferromagnetic couplings. 

Figure S6 shows the comparison of (a) the QM/MM (weak coupling) model, (b, c) two-spin model 

and (d-g) the strong coupling models.   In (a) the QM/MM model, the low field signal was assigned 

to the high spin state as g = 6 and g = 10, and the high field signal was upshifted from the g = 4 by 

mixing of the weakly excited state. In order to simulate the spectrum of the g = 4 signal for the 

strong coupling models, larger |J34|, estimated as > ~30 cm-1, is required. The g = 4 signal was well 

reproduced using the onsite zero-field splitting d4 = -3 to -2 with the strong J34 coupling.  
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Figure S6. The EPR simulations using (a) the weak coupling model (QM/MM), (b, c) two-spin 

model and (d-g) the strong coupling models. The exchange couplings in four-spin models [J12, J13, 

J14, J23, J24, J34]  : (a) [30.5, 13, 0, 35.5, 0, -7.6], (d) [200 ,200, 0, 200 , 0, -200], (e) [200 , 0, 0, 200, 

0, -50], (f) [200 , 0, 0, 200, 0, -200], (g) [200 ,0, 0, 200, 0, -50]. The exchange couplings Jeff in two-

spin model: (b) Jeff = -2.3 cm-1, (c) Jeff = -10 cm-1. (a-c) d4 = -3 cm-1, (d-g) d4 = -2.3 cm-1, e4/d4 = 

0.25. Microwave frequency 9.67 GHz; Gaussian linewidth, 350 G. 
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Figure S7.  (A, B) J dependence of the resonant conditions for the strongly coupled four-spin model.  

The parameters: J12: 200 cm-1, J13: 0 cm-1, J14: 0 cm-1, J23: 200 cm-1, J24: 0 cm-1. (A): d4, -2 cm-1; 

e4/d4 = 0.25. (B): d4, -3 cm-1; e4/d4 = 0.25. The solid lines show the resonant fields along each axis. 

The dotted lines show the resonant condition in the case of the single-spin model for S = 5/2 (Figure 

S3). (C) The simulated spectra for the oriented sample at (red) 0° and (black) 90° using the 

parameters of d4 = -2.3 cm-1, e4/d4 = 0.25 and J34 = -50 cm-1.  The other conditions are the same as 

the simulated spectrum in the single-spin model. (D) The scheme for the set of the exchange 

couplings for the four-spin model. Microwave frequency, 9.67 GHz.  
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     Haddy et al. observed the g = 3.14 and 4.6 signals in Q-band EPR 3.  The g = 3.14 signal was 

assigned to the 3/2 transition along the x-axis for S = 5/2. The g = 4.6 signal was tentatively 

assigned to another transitions within S = 5/23.  The Q-band spectrum was well reproduced using the 

onsite zero-field splitting d4 = -2.3 cm-1 in the strong coupling model (Figure S8). 

 

 

 

 

 

Figure S8.  (A) The simulated J dependence of the resonant fields in the strong coupled model at Q-

band (34 GHz). The parameter set was used as: J12: 200 cm-1, J13: 0 cm-1, J14: 0 cm-1, J23: 200 cm-1, 

J24: 0 cm-1, and e4/d4 = 0.25; (a) d4, -2.0 cm-1; (b) d4, -2.2 cm-1; (c) d4, -2.4 cm-1; (d) d4, -3 cm-1.  

The dotted line indicates g = 3.14 3. (B) The simulated EPR spectrum using d4 = -2.3 cm-1. The 

parameters are the same as (A) except for J34 = -50 cm-1. 
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