SUPPORTING INFORMATION

PDE6D inhibitors with a new design principle selectively block K-Ras activity

\author{
Farid A. Siddiqui ${ }^{1}$, Catharina Alam ${ }^{1}$, Petja Rosenqvist ${ }^{3}$, Mikko Ora ${ }^{3}$, Ahmed Sabt ${ }^{3,4}$, Ganesh babu Manoharan ${ }^{2}$, Lakshman Bindu ${ }^{5}$, Sunday Okutachi ${ }^{2}$, Marie Catillon ${ }^{2}$, Troy Taylor ${ }^{5}$, Omaima M. Abdelhafez ${ }^{4}$, Harri Lönnberg ${ }^{3}$, Andrew G. Stephen ${ }^{5}$, Anastassios C. Papageorgiou ${ }^{1}$, Pasi Virta ${ }^{3}$, Daniel Abankwa ${ }^{1,2 \text { * }}$
 [^0]}

[^1]Supplementary Table 1. Affinity of Deltaflexin compounds and Deltarasin determined in a fluorescence anisotropy assay (data from Figures S1C and S4A)

Compound	FP (PDE6D/F-Rheb)	
	$\mathrm{IC}_{50}(95 \% \mathrm{CI}) / \mu \mathrm{M}$	$\mathrm{K}_{\mathrm{d}} / \mu \mathrm{M}$
Deltarasin	$0.45(0.26-0.9)$	0.13
$\mathbf{1 5}$ (Deltaflexin-1)	$25.4(22-29)$	7.27
$\mathbf{1 9}$	No binding	
$\mathbf{1 4}$	$855(337-19540)$	244.2
$\mathbf{1 7}$	$27.1(22-33)$	7.73
$\mathbf{2 2}$	$234(180-336)$	68.5
$\mathbf{2 3}$ (Deltaflexin-2)	$25.1(17-37)$	7.17

Supplementary Figure S1. Related to Figure 1 - Newly designed inhibitors compete with K-Ras for PDE6D in vitro.

(A) Chemical structures of synthesized and tested linkage derivatives 5, 9, $\mathbf{1 3}$ of the Deltaflexin-series, as compared to $\mathbf{1 5}$ (Delataflexin-1). (B) SPR binding kinetics of PDE6D
with N-terminal avi-tagged K-RasFMe captured on a neutravidin chip (top left) and SPR binding kinetics of compound 19 in competition with PDE6D/ K-RasFMe interaction. $\mathrm{n}=3$ (C) Binding of Deltarasin, Deltaflexin-1 and compounds 14, 17 and 19 to PDE6D determined in the fluorescence anisotropy assay; $\mathrm{n}=1$. The correlation between IC_{50} values of compounds obtained by SPR analysis and fluorescence anisotropy assay is presented (right). (D) Schematic binding mode of compounds 5, 9, $\mathbf{1 3}$ and $\mathbf{1 5}$ to PDE6D based on computational docking results. (E) Comparison of the PDE6D binding mode (left) of the Deltasonamide (compound 8 in Martin-Gago et al. 2017, PDB code 5ML6) and 15 (Deltaflexin-1). (D) Residues involved in interactions similar to those of the depicted Deltasonamide (E) are shown in grey. Hydrogen bonds are depicted with dashed lines. Aromatic stacking interactions are shown with squiggled lines.

Supplemental Figure S2. Related to Figure 2 - Deltaflexin-1 suppresses K-Ras/ PDE6D interaction and selectively K-Ras membrane organization.

(A) K-Ras/ PDE6D interaction by FLIM-FRET. HEK cells were co-transfected with mGFP tagged KRasG12V and mCherry tagged PDE6D and treated with 0.1% DMSO control or $5 \mu \mathrm{M}$ of $\mathbf{5}, \mathbf{9}, \mathbf{1 3}$, Deltarasin or $0.5 \mu \mathrm{M}$ of FTI-277 for $24 \mathrm{~h}, \mathrm{n}=4$. (B) PDE6D-Rheb interaction by FLIM-FRET. HEK
cells were co-transfected with mCitrine tagged Rheb and mCherry tagged PDE6D. Transfected cells were treated with 0.1% DMSO control or $5 \mu \mathrm{M}$ of compounds $\mathbf{5 , 9 , 1 3}$, Deltaflexin-1, 14 (Deltaflexin1 precursor lacking the cell penetration moiety), Deltarasin or $0.5 \mu \mathrm{M}$ FTI- 2628 for $24 \mathrm{~h}, \mathrm{n}=3$. The overall higher FRET of this latter reporter agreed with the higher soluble fraction of Rheb and a more efficient FRET-fluorophore pair. (C) Confocal imaging of MDCK cells expressing mGFP-KRasG12V at $5 \mu \mathrm{M}$ of indicated compounds treatments. Scale bar $=100 \mu \mathrm{~m}, \mathrm{n}=2$. (D) Representative Western blot data showing the knock-down efficacy for PDE6D in siPDE6D-transfected cells, $\mathrm{n} \geq 3$. Cells were treated with 50 nM of siRNA for 48 h . (E,F) Ras membrane organization by nanoclustering-FRET in HEK cells co-expressing mGFP and mCherry tagged K-RasG12V (E) or HRasG12V (F). Cells were co-transfected with siRNA PDE6D for 48 h or treated with 0.1% DMSO control or $5 \mu \mathrm{M}$ of $\mathbf{5 , 9} \mathbf{1 3}$, Deltarasin or $0.5 \mu \mathrm{M}$ FTI- 277 for $24 \mathrm{~h}, \mathrm{n}=3$. (G) K-Ras nanoclusteringFRET in HEK cells co-expressing mGFP or mCherry tagged K-RasG12V. The cells were treated with $2.5 \mu \mathrm{M}$ Deltaflexin-1, 14, 19, or Deltarasin. Freshly thawed compound aliquots were immediately diluted in ice cold medium (ice) and then added to cells or incubated for 1 h at room temperature (RT), or for 30 minutes at $55^{\circ} \mathrm{C}\left(55^{\circ} \mathrm{C}\right)$ before addition to cells, $\mathrm{n}=3$. The latter two conditions led to the premature, thermal deprotection of the compounds from their cell-penetration groups. For all FRET-data the numbers on the bars indicate the number of analysed cells and the bars represent mean values \pm SEM. (A,B,D,F,G) Statistical significance levels are annotated as ns, not significant; *p $<$ $0.05 ;{ }^{* *} \mathrm{p}<0.01 ;{ }^{* * *} \mathrm{p}<0.001 ;{ }^{* * * * \mathrm{p}}<0.0001$; ns, not significant..

Supplemental Figure S3. Related to Figure 3 - Deltaflexin-1 selectively inhibits oncogenic K-Ras driven cell proliferation and mammosphere formation.

(A, B) Cell viability of MDA-MB-231 cells (A) and Hs578T cells (B) in response to Deltaflexin-1; n=3. (C-F) Cell viability of HCT116 (C), HT-29 (D), MDA-MB-231 (E) and Hs578T (F) cells in response to Deltaflexin derivatives. Cell viability curves (A-F) are expressed as $\%$ cell viability relative to 0.1% DMSO-treated control plotted against the log-transformed drug concentrations; $\mathrm{n}=3$. (G) ATARis gene sensitivity profile of indicated cell lines and genes. Gene dependency/sensitivity data wer collected from the Project drive (ATARis) database at https://oncologynibr.shinyapps.io/drive/. The ATARis study is a large-scale RNAi screen in which viability effects of mRNA knockdown were assessed for 7,837 genes using an average of 20 shRNAs per gene in 398 cancer cell lines. The study outlines the classes of cancer dependency genes and their relationships to genetic, expression and lineage features. (H,I,J) Tumorosphere forming efficiency (SFE) after knockdown of PDE6D in HEK cells transiently transfected with K-RasG12V (H), H-

RasG12V (I) with or without 50 nM of scrambled siRNA or siPDE6D for $48 \mathrm{~h}(\mathrm{~J})$. SFE is calculated as percent relative to scrambled siRNA control. Statistical comparison was done against the scrambled siRNA control. (K,L) SFE in MDA-MB-231 (K) and Hs 578T (L) cells in response to treatment with $5 \mu \mathrm{M}$ Deltaflexin derivatives or Deltarasin for 72 h . All values are mean values \pm SEM, $\mathrm{n}=4$. $(\mathbf{H}-\mathrm{L})$ Statistical significance levels are annotated as ns, not significant; *p $<0.05 ;$ **p $<0.01 ;{ }^{* * *} \mathrm{p}<0.001$; ****p <0.0001; ns, not significant.

Supplemental Figures S4. Related to Figure 4 - Partial scaffold hybridization creates second generation inhibitors.

(A) PDE6D binding of compounds 22 and 23 (Deltaflexin-2) as compared to Deltarasin determined in fluorescence anisotropy assay; $\mathrm{n}=1$. (B) Schematic binding mode of compounds 22 and 23 to PDE6D based on computational docking results. New contacts as compared to the Deltasonamide compound 8 (Figure S1E) are shown with white background. Superposition of 23, 23, Deltasonamide compound 8, and $\mathbf{1 5}$ is shown on the right in stick representation. (C) H-Ras membrane organization by nanoclustering-FRET in

[^2]
Supplementary Data S1: Related to "Compound synthesis" in the Methods section. Chemical synthesis and analytical data

Table of Contents
S11-S19 Syntheses
S19-S39 Experimental Section
S40-S59 Copies of ${ }^{13} \mathrm{C}$-NMR spectra of compounds 1-25.
S60-S68 Copies of ${ }^{31} \mathrm{P}$-NMR spectra of compounds 5, 9 13, 15, 17, 19, 20 and 22-25.
S69-S93 Copies of ${ }^{1} \mathrm{H}$-NMR spectra of compounds 1-25.
S94-S95 References to Data S1

SYNTHESES

Seven different coumarin-phosphate derivatives (5, 9, 13, 15, 17, 19 and 20, Figure $S 4$ and Scheme 1) and four terepthalic acid-phosphate derivatives (22, 23, 24 and 25, Figure S4), bearing a bioactivatable and thermolabile phosphate protecting groups (4-acetylthio-2-ethoxycarbonyl-3-oxo-2-methylbutyl, $\mathbf{2 6}^{1}$ or 4-acetylthio-2,2-dimethyl-3-oxobutyl, $\mathbf{2 7}^{1}$), were prepared as outlined in Schemes 2-8. The coumarin or terepthalic acid and phosphate moieties are connected to each other through the O-hexyl oxime (5), N -arylsulfonamide- O-hexyl oxime (9), O-hexyl (13), hexylamide (15, 22 and 23), butylamide (20, 24 and 25) and methyl cyclohexylmethylamide (17) linkers. The 2,2-disubstituted 4-acylthio-3-oxobutyl group is an esterase- and thermolabile phosphate protecting group that enhances cellular uptake of the drug candidates. The enzymatic and nonenzymatic deprotection of 4-acetylthio-2-ethoxycarbonyl-3-oxo-2methylbutyl and 4-acetylthio-2,2-dimethyl-3-oxobutyl group takes place by intramolecular cyclization to give the negatively charged phosphodiester and a substituted tetrahydrothiophenone (deprotection for $\mathbf{1 5}$ given as an example in Scheme 1). ${ }^{1}$ Additionally, the 4,4-disubstituted dihydrothiophen-3(2H)-one byproduct is not markedly alkylating, confirmed by glutathione adduct experiments in our earlier studies. ${ }^{1}$ If the enzymatic reaction becomes retarded, the thermolytic removal takes a place. ${ }^{2}$

5

17

13

15

Figure S5. Structures of protected coumarin-phosphate and terepthalic acid-phosphate derivatives.

Scheme S1

For the synthesis of 3 -substituted coumarin phosphotriester derivatives 5 and 15 (see Scheme S6), compounds $\mathbf{4}$ and 14 were first prepared as depicted in Scheme S2 and S3, respectively. Accordingly, heating of 6-bromohexanol and N-hydroxyphthalimide in DMF in the presence of potassium carbonate ${ }^{3}$, gave N-(6-hydroxyhexyloxy)phthalimide ${ }^{4}$ which was further tritylated to produce 1 (Scheme S2). Deprotection of the phthaloyl group by hydrazine in ethanol and a subsequent conversion of the $O-6$ dimethoxytritylated hexylhydroxylamine ${ }^{3} \mathbf{2}$ with 3-acetyl-2H-chromen-2-one ${ }^{5}$ in a mixture of ethanol and pyridine at $50{ }^{\circ} \mathrm{C}$ gave O-alkyl oxime 3. Finally, DMTr group was removed to give 3-(1-(()6-hydroxyhexyl)oxy)imino)ethyl)-2H-chromen-2-one (4).

Scheme S2

N-(6-hydroxyhexyl)-2-oxo-2H-chromene-3-carboxamide (14) was obtained from 6-aminohexanol and ethyl 2-oxo-2 H -chromene-3-carboxylate (prepared by Knoevenagel condensation of 2^{\prime} hydroxybenzaldehyde with diethylmalonate ${ }^{6}$) in ethanol using piperidine as a base (Scheme S3).

For the synthesis of phosphate protected 3-substituted coumarin derivatives $\mathbf{1 7}$ and $\mathbf{2 0}$ (see Scheme S6), bearing methyl cyclohexylmethylamide and butylamide linker, compounds $\mathbf{1 6}$ and $\mathbf{1 8}$ were first prepared. Accordingly, ethyl 2-oxo-2H-chromene-3-carboxylate ${ }^{6}$ was refluxed with 4-aminobutanol or (4(aminomethyl)cyclohexyl)methanol in ethanol to give N -(4-hydroxybutyl)-2-oxo-2 H -chromene-3carboxamide (18) and N-((4-(hydroxymethyl)cyclohexyl)methyl)-2-oxo-2H-chromene-3-carboxamide (16), respectively.


```
i) 6-aminohexanol, EtOH, piperidine, reflux
ii) (4-(aminomethyl)cyclohexyl)methanol, EtOH, reflux
iii) 4-aminobutanol, EtOH, reflux
```


Scheme S3

To prepare 7 -substituted coumarin phosphotriester derivative 9, 2-oxo-2H-chromen-6-sulfonyl chloride ${ }^{7}$ was first treated with 4-aminoacetophenone in a mixture of pyridine and DCM. After that, sulphonamide 6 was converted to O-alkyl oxime 7 using O-6-dimethoxytritylated hexylhydroxylamine $\mathbf{2}$ in pyridine. ${ }^{8,9}$ Finally, DMTr group was removed to give 8 (Scheme S4).

ii) 2, EtOH , py
iii) $\mathrm{Cl}_{2} \mathrm{CHCOOH}, \mathrm{DCM}$

Scheme S4

For the synthesis of 4 -substituted coumarin phosphotriester derivative 13, 6-bromohexanol was first dimethoxytritylated in pyridine to give 10 (Scheme S5). Alkylation with 4-hydroxycoumarin (11) ${ }^{10}$, followed by DMTr-removal gave $\mathbf{1 2}$.

To prepare the coumarin-phosphate derivatives, compounds 4, 8, 12, 14, $\mathbf{1 6}$ and $\mathbf{1 8}$ were phosphitylated with 1-chloro- N, N-diisopropyl-1-methoxyphosphinamine, ${ }^{1}$ followed by tetrazole promoted displacement
of the diisopropylamino group by 4-acylthio-2-hydroxymethyl-2-methyl-3-oxobutanoate (26) (Scheme S6). Oxidation of the resulting phosphite triester to phosphate triester with iodine in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} / 2,6$ lutidine completed the synthesis to give 5, 9, 13, 15, $\mathbf{1 7}$ and 20, respectively. The unprotected phosphodiester 19 was prepared analogously with that of the phosphotriester 15, by hydrolysis of the phosphoramidite intermediate.

Methyl 2-azido-4-((4-hydroxybutyl)carbamoyl)benzoate (21a) and methyl 2-azido-4-((6hydroxyhexyl)carbamoyl)benzoate (21b) were prepared as described in Scheme S7. The amino group of

2-amino-terepthalic acid methyl ester was first converted to an azido group, and amide coupling with 4aminobutanol or 6-aminohexanol using HATU and DIPEA in DMF afforded 21a and 21b, respectively.

i) $\mathrm{NaNO}_{2}, \mathrm{NaN}_{3}$, Conc. $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$
ii) HATU, DIPEA, DMF, 4-aminobutanol for 21a and 6-aminohexanol for 21b

Scheme S7

To prepare the terepthalic acid-phosphate derivatives 22-25, the 4-acylthio-2-hydroxymethyl-2-methyl-3oxobutanoate (26) and S-(4-hydroxy-3,3-dimethyl-2-oxobutyl)ethanethioate (27) were phosphitylated with $N, N, N^{\prime}, N^{\prime}$-tetraisopropyl-1-methoxyphosphanediamine. The remaining diisopropylamino group was displaced by methyl 2-azido-4-((4-hydroxybutyl)carbamoyl)benzoate (21a) or methyl 2-azido-4-((6hydroxyhexyl)carbamoyl)benzoate (21b) using tetrazole as an activator (Scheme S8). ${ }^{131} \mathrm{P}$ NMR analyses revealed that the phosphite intermediate hydrolyzed partly during this latter step (The signals at $\delta 15.0$-5.0 ppm were observed). In preparation of $\mathbf{2 4}$, shorter reaction time (5 min) was used with replacement of diisopropylamino group compared to that of $\mathbf{2 2}, \mathbf{2 3}$ and $\mathbf{2 5}(10-15 \mathrm{~min})$ to increase the yield. The other side reaction (i.e. Staudinger reaction, in which the azido group was reduced by the phosphite intermediate) could be prevented by adding 21a or 21b together with an excess of tetrazole to the reaction solution. Oxidation of the resulting phosphite triester to phosphate triester with iodine in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} / 2,6-$ lutidine gave IA, IB, IC and ID. IA-ID were used in the next step without further purification. Staudinger reaction with trimethylphosphine completed the synthesis to give 22-25.

Scheme S8

EXPERIMENTAL SECTION

General. The preparation of 2-((6-hydroxyhexyl)oxy)isoindoline-1,3-dione, ${ }^{4}$ 3-acetyl-2H-chromen-2one, ${ }^{5}$ 2-oxo- 2 H -chromene-6-sulfonyl chloride, ${ }^{7}$ 2-oxo- 2 H -chromene-3-carboxylate, ${ }^{6}$ ethyl 4 -(acetylthio)-2-(hydroxymethyl)-2-methyl-3-oxobutanoate ${ }^{1}$ and S-(4-Hydroxy-3,3-dimethyl-2-oxobutyl)ethanethioate, ${ }^{1}$ have been described previously. The synthesis of methyl 2-azido-4-((4-hydroxybutyl)carbamoyl)benzoate (21a), methyl 2-azido-4-((6-hydroxyhexyl)carbamoyl)benzoate (21b) and the large scale synthesis of 4-((6-(((4-(acetylthio)-2,2-dimethyl-3-oxobutoxy)(methoxy)phosphoryl)oxy)hexyl)carbamoyl)-2-
aminobenzoate (23) were outsourced to Piramal Enterprises Ltd. N,N,N, N^{\prime}-tetraisopropyl-1methoxyphosphanediamine, 1-chloro- N, N-diisopropyl-1-methoxyphosphinamine, $0.45 \mathrm{M} 1 H$-tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}, 1 \mathrm{M}$ trimethylphosphine solution in toluene, 3-amino-4-(methoxycarbonyl)benzoic acid and 2,6-lutidine were commercial products of Sigma-Aldrich. 4-Aminobutanol and 6-aminohexanol were commercial products of TCI. (4-(Aminomethyl)cyclohexyl)methanol was commercial products of Carbosynth. Solvents were purchased from Sigma Aldrich, VWR and Thermo Fisher Scientific. Pyridine,

DMF, MeCN, DCM, EtOAc and 0.45 M 1 H -tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}$ were dried over molecular sieves (3 or $4 \AA$). TEA was dried by refluxing over CaH_{2} and distilled before use. Reagents were dried or tested for dryness before use when appropriate. The NMR spectra were recorded with a Bruker Avance 400, 500 or 600 MHz spectrometer. 2D NMR spectra were used for peak assignment. The mass spectra were recorded with a Bruker Daltonics microTOF-Q instrument. RP- HPLC purification of the products was performed with a Merck Hitachi instrument using Phenomenex Oligo-RP C18 (250×10 mm, $5 \mu \mathrm{~m})$ semipreparative column for the compounds 5, 9, 13 and 15 and Thermo Scientific ODS Hypersil ($250 \times$ $10 \mathrm{~mm}, 5 \mu \mathrm{~m}$) semipreparative column for the compounds 17, 20, 22-25 (flow-rate $3.0 \mathrm{~mL} \mathrm{~min}^{-1}$ and wavelength 260 nm).

2-((6-(Bis(4-methoxyphenyl)(phenyl)methoxy)hexyl)oxy)isoindoline-1,3-dione
(1). 2-((6-hydroxyhexyl)oxy)isoindoline-1,3-dione ${ }^{3,4}(1.00 \mathrm{~g}, 3.79 \mathrm{mmol})$ was dissolved in dry pyridine (20 ml). 4,4-Dimethoxytritrylchloride $(1.54 \mathrm{~g}, 4.55 \mathrm{mmol})$ was added and the mixture was stirred at room temperature overnight. The mixture was evaporated to dryness under reduced pressure and the residue was extracted between DCM and 5% aqueous NaHCO_{3}. The organic phase was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by silica gel chromatography by eluting with hexane that contained 20% EtOAc to yield 1 (1.95g, 90%) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83-7.78(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NH}), 7.41-7.07(\mathrm{~m}, 9 \mathrm{H}, \mathrm{DMTr}), 6.86(\mathrm{~d}, 4 \mathrm{H}, J=9.2 \mathrm{~Hz}, \mathrm{DMTr})$, $4.11\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{ON}\right), 3.70\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.99\left(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.64$ and $1.56(\mathrm{~m}$, $\left.4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.40-1.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.7(2 \times \mathrm{C}=\mathrm{O}), 158.5$ (DMTr), 145.8, 136.6 (DMTr), $135.1(\mathrm{NH}), 130.1,129.4,129.0,128.2$ and 126.9 (DMTr), $123.6(\mathrm{NH})$, 113.5, 113.2 (DMTr), 85.9 (quaternary C), $78.1\left(\mathrm{CH}_{2} \mathrm{ON}\right), 63.2\left(\mathrm{OCH}_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right), 29.9,28.1,26.0$, 25.5 and $21.1\left(\mathrm{CH}_{2}\right)$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{NNaO}_{6}{ }^{+}$588.2357; found 588.2386.
\boldsymbol{O}-(6-(bis(4-methoxyphenyl)(phenyl)methoxy)hexyl)hydroxylamine (2). Compound $\mathbf{1}$ (1.90 g, 3.35 mmol) was dissolved in EtOH (25 ml) and hydrazine monohydrate ($0.34 \mathrm{~g}, 6.72 \mathrm{mmol}$) was added. The
solution was stirred at room temperature for 4 h . The reaction mixture was filtered and the filtrate was evaporated to dryness. The residue was purified by silica gel chromatography eluting with a mixture of DCM, MeOH and TEA (98:1:1, $v / v / v)$. Compound 2 was obtained as a white oil in 59% yield $(0.86 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.49-7.20(\mathrm{~m}, 9 \mathrm{H}, \mathrm{DMTr}), 6.83(\mathrm{~d}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{DMTr}), 3.79(\mathrm{~s}, 6 \mathrm{H}, 2 \times$ $\left.\mathrm{OCH}_{3}\right), 3.65\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{ON}\right), 3.08\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.67,1.59,1.42$ and $1.31(\mathrm{~m}$, $8 \mathrm{H}, 4 \times \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.4,145.5,136.8,130.1,128.2,128.2,127.7,126.6$, $113.5(\mathrm{DMTr}), 85.7$ (quaternary C), $76.1(\mathrm{CON}), 63.4\left(\mathrm{CH}_{2} \mathrm{ON}\right), 60.4\left(\mathrm{OCH}_{2}\right), 55.2\left(\mathrm{OCH}_{3}\right), 30.1,29.8$, 28.4, 26.3, $26.0\left(\mathrm{CH}_{2}\right)$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{33} \mathrm{NNaO}_{4}{ }^{+}$458.2302; found 458.2319 .

3-(1-(((6-(bis(4-methoxyphenyl)(phenyl)methoxy)hexyl)oxy)imino)ethyl)-2H-chromen-2-one (3). 3-Acetyl-2H-chromen-2-one (3-acetylcoumarin) $)^{5}(0.31 \mathrm{~g}, 1.65 \mathrm{mmol})$ was dissolved in a mixture of EtOH $(10 \mathrm{ml})$ and pyridine $(1 \mathrm{ml})$. Compound $2(0.72 \mathrm{~g}, 1.65 \mathrm{mmol})$ was added and the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 12 h and evaporated to dryness. The residue was purified by silica gel chromatography eluting with a mixture of hexane, EtOAc and TEA (89:10:1, $v / v / v)$ to yield 3 as a yellow oil ($0.73 \mathrm{~g}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 5$ of coumarin), 7.51 and 7.47 ($\mathrm{m}, 4 \mathrm{H}$, coumarin); 7.38-7.19 (9H, DMTr); $6.91(\mathrm{~d}, 4 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{DMTr}) ; 4.21\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{NOCH}_{2}\right) ; 3.80\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right)$; $3.10\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.76$ and $1.68\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right) ; 1.50-1.40(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.0,158.3,158.0,154.0,157.0,145.5,141.0,136.7$, $132.0,130.0,129.2,128.5,128.2,127.8,127.7,127.0,126.6,125.4,124.6$ (coumarin and DMTr), 85.7(quaternary C), $74.5\left(\mathrm{NOCH}_{2}\right), 63.4\left(\mathrm{OCH}_{2}\right), 55.2\left(\mathrm{OCH}_{3}\right), 30.1,29.2,26.2,25.9,\left(\mathrm{CH}_{2}\right), 14.36$ $\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{NNaO}_{6}{ }^{+}$628.2670; found 628.2678

3-(1-(((6-hydroxyhexyl)oxy)imino)ethyl)-2H-chromen-2-one (4). Compound $\mathbf{3}$ ($0.85 \mathrm{~g}, 2.80 \mathrm{mmol})$ was dissolved in a mixture of dichloroacetic acid $(0.8 \mathrm{ml})$ and $\mathrm{DCM}(24.2 \mathrm{ml})$ and the reaction mixture was stirred at room temperature overnight. The reaction mixture was washed with saturated aq. NaHCO_{3} $(100 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was
purified by silica gel chromatography eluting with a mixture of hexane and EtOAc ($60: 40, v / v$). The product 4 was obtained as a yellow solid $(0.22 \mathrm{~g}, 51 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 5$ of coumarin), 7.49 and $7.27\left(\mathrm{~m}, 4 \mathrm{H}\right.$, coumarin), $4.14\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.59(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}$, $\left.\mathrm{NOCH}_{2}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.68$ and $1.53\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.45-1.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.8$ and $153.9(\mathrm{CN}$ and CO$), 153.2,141.0,132.0,128.5,125.3,124.6,118.9,116.4$ (coumarin), $74.41\left(\mathrm{NOCH}_{2}\right), 62.69\left(\mathrm{OCH}_{2}\right), 36.6,32.6,29.1,25.8$ and $25.57\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{4}{ }^{+}$326.1363, found 326.1359.

Ethyl 4-(acetylthio)-2-(((methoxy ((6-(((1-(2-oxo-2H-chromen-3-yl) ethylidene) amino) oxy)

 hexyl)oxy)phosphoryl)oxy)methyl)-2-methyl-3-oxobutanoate (5). Compound $\mathbf{4}$ ($0.25 \mathrm{~g}, 0.82 \mathrm{mmol}$), dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ overnight, was dissolved in dry $\mathrm{DCM}(2.90 \mathrm{ml})$ under nitrogen. TEA $(0.57 \mathrm{ml}, 4.12$ $\mathrm{mmol})$ and methyl- N, N-diisopropylchlorophosphoramidite $(0.18 \mathrm{ml}, 0.91 \mathrm{mmol})$ were added and the mixture was stirred at room temperature for 40 minutes. The reaction mixture was filtrated through a short silica gel column by eluting with EtOAc that contained 0.5% TEA. The product fractions were combined, evaporated to dryness under reduced pressure, and the residue was co-evaporated three times with dry $\mathrm{CH}_{3} \mathrm{CN}$. The residue was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(1.1 \mathrm{ml}$), and ethyl 4-(acetylthio)-2-(hydroxymethyl)-2-methyl-3-oxobutanoate ${ }^{1}(0.23 \mathrm{~g}, 0.91 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(1.1 \mathrm{ml})$ and 0.45 M 1 H tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}(2.93 \mathrm{ml}, 1.32 \mathrm{mmol})$ were added under nitrogen. The mixture was stirred at room temperature for 3 h . The phosphite ester was oxidized with $\mathrm{I}_{2}(0.30 \mathrm{~g})$ in a mixture of THF (6 ml), $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ and 2,6-lutidine $(1.5 \mathrm{ml})$ by stirring at room temperature overnight. The mixture was evaporated to dryness and the residue was dissolved in DCM and washed with 5% aq $\mathrm{NaHSO}_{3}(100 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by RP-HPLC (LichroCHART 250×10 Hypersil ODS $5 \mu \mathrm{~m}$, flow rate $3 \mathrm{ml} / \mathrm{min}$) by isocratic elution with a mixture of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{H}_{2} \mathrm{O}(70: 30, v / v)$ to yield 5 as a yellow oil (200 mg, 38%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 5$ of coumarin), $7.54-7.50(\mathrm{~m}, 2 \mathrm{H}$, coumarin $), 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}$, coumarin $)$, 4.42-4.33 (m, 2H, POCH_{2}), $4.25\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.16\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.05-$ $4.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.01-3.88\left(\mathrm{~m}, 2 \mathrm{H} \mathrm{SCH}_{2}\right), 3.75$ and $3.72\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{POCH}_{3}\right), 2.34(\mathrm{~s}, 3 \mathrm{H}$,AcS), $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CCH}_{3}\right), 1.75-1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.45-1.38(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.27\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.6(\mathrm{CO}), 193.6$ (SCO), 169.5 (OCO), 159.7, 154.0 (CN and CO of coumarin), 153.2, 141.0, 132.3, 128.5, 125.3, 124.6, 119.0 and 116.5 (coumarin), $74.3\left(\mathrm{NOCH}_{2}\right), 69.0,68.2$, and $68.1\left(\mathrm{OCH}_{2}\right), 62.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.2$ and 60.1 (quaternary C), 54.4 and $54.4\left(\mathrm{OCH}_{3}\right), 36.7\left(\mathrm{CH}_{2} \mathrm{~S}\right), 30.2,30.1$ and $30.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CO}\right)$, 29.0, 25.5 and $25.2\left(\mathrm{CH}_{2}\right)$, 17. $6\left(\mathrm{CH}_{3}\right)$, $14.3\left(\mathrm{NCCH}_{3}\right)$, $13.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=-0.34 \mathrm{ppm}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{11} \mathrm{PS}^{+}$628.1976, found 628.1984.
\mathbf{N}-(4-acetylphenyl)-2-oxo-2H-chromene-6-sulfonamide (6). 2-Oxo-2H-chromene-6-sulfonyl chloride ${ }^{7}$ $(1.00 \mathrm{~g}, 4.08 \mathrm{mmol})$ was dissolved in a mixture of dry DCM (20 ml) and pyridine (1 ml). 4Aminoacetophenone $(0.55 \mathrm{~g}, 4.08 \mathrm{mmol})$ was added and the reaction mixture was stirred at room temperature for 24 h . The reaction mixture was poured to ice and acidified with HCl . The precipitate was filtrated and crystallized from ethanol to yield $\mathbf{6}$ as pale yellow needle crystals $(0.86,61 \%) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.30(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{H} 5$ of coumarin), $8.17(\mathrm{~d}, 1 \mathrm{H}, J=9.6, \mathrm{H} 4$ of coumarin), 7.97 (dd, $1 \mathrm{H}, J=8.8$ and $2.4 \mathrm{~Hz}, \mathrm{H} 7$ of coumarin), $7.83(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 7.56(\mathrm{~d}$, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H} 8$ of coumarin), $7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.60(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, \mathrm{H} 3$ of coumarin), $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=196.90(\mathrm{CO}), 159.5(\mathrm{C} 2$ of coumarin), 156.5 (C 9 of coumarin), 143.8 (C 4 of coumarin), 142.4, 135.7, 132.6 and 130.3 (Ar and coumarin), 130.0 (C7 of coumarin), 128.3 (C 5 of coumarin), 119.5, 118.6 and 118.4 (Ar and C 8 and C 3 of coumarin), $26.9\left(\mathrm{CH}_{3}\right)$; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NNaO}_{5} \mathrm{~S}^{+} 366.0407$; found 366.0409. reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 h . Volatiles were removed under reduced pressure. The crude product was purified by a silica gel chromatography using gradient elution from 5% to $15 \% \mathrm{EtOAc}$ in
hexane that contained 1% TEA. Compound 7 was obtained as a white oil in 50% yield $(0.56 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=8.48(\mathrm{~s}, \mathrm{NH}), 7.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 5$ of coumarin), $7.62(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 4 \mathrm{H})$, 7.36-17.17 (m, 11H), $6.84\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{DMTr}\right.$ and H 3 of coumarin), $4.18\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{ON}\right), 3.76(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.08\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.75$ and $1.67\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.49-1.39$ ($\mathrm{m}, 4 \mathrm{H} \mathrm{CH}_{2} \mathrm{CH}_{2}$). To remove the $4,4^{\prime}$-dimethoxy trityl protecting group, $7(0.95 \mathrm{~g}, 1.25 \mathrm{mmol})$ was dissolved in a mixture dichloroacetic acid $(0.8 \mathrm{ml})$ and $\mathrm{DCM}(24.2 \mathrm{ml})$ and the reaction mixture was stirred at room temperature overnight. The reaction mixture was washed with saturated aq. $\mathrm{NaHCO}_{3}(100$ $\mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by a silica gel chromatography eluting with a mixture of hexane and EtOAc ($60: 40, v / v$). The product (8) was obtained as a yellow oil $(0.50 \mathrm{~g}, 87 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.98(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{H} 5$ of coumarin), $7.90(\mathrm{dd}, 1 \mathrm{H}, J=8.8$ and $2.4 \mathrm{~Hz}, \mathrm{H} 7$ of coumarin), $7.82(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.6 \mathrm{~Hz}, \mathrm{H} 4$ of coumarin), $7.52(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 7.33(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H} 8$ of coumarin), $7.10(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.49\left(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{H} 3\right.$ of coumarin), $4.13\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.65(\mathrm{t}$, $\left.2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.83($ br. $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.69$ and $1.58\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.43-$ $1.38\left(\mathrm{~m}, 4 \mathrm{H} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.5,156.4$ and $153.2(\mathrm{C} 2, \mathrm{C} 9$ of coumarin and $\mathrm{C}=\mathrm{N}$), $142.6(\mathrm{C} 4$ of coumarin), 136.7, 135.4 and 134.1 (Ar and coumarin), 130.1 (C 7 of coumarin), 127.7 (C5 of coumarin),127.1, 121.1, 118.9 (Ar and coumarin), 118.3 and 118.0 (C8 and C3 of coumarin), $74.18(\mathrm{CON}), 62.87(\mathrm{COH}), 32.6,29.2,25.8,25.6\left(\mathrm{CH}_{2}\right), 12.5\left(\mathrm{CH}_{3}\right)$; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}^{+} 459.1584$; found 459.1582.

Ethyl
 (E)-4-(acetylthio)-2-(((methoxy)((6-(()-(4-((2-oxo-2H-chromene)-6-sulfonamido)

phenyl)ethylidene)amino)oxy)hexyl)oxy)phosphoryl)oxy)methyl)-2-methyl-3-oxobutanoate
Compound 8 ($0.27 \mathrm{~g}, 0.59 \mathrm{mmol}$), dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ overnight, was dissolved in dry $\mathrm{DCM}(2.1 \mathrm{ml})$ under nitrogen. TEA ($0.41 \mathrm{ml}, 2.94 \mathrm{mmol}$) and methyl- N, N-diisopropylchlorophosphoramidite $(0.13 \mathrm{ml}, 0.65$ mmol) were added and the mixture was stirred at room temperature for 40 minutes. The reaction mixture was filtrated through a short silica gel column by eluting with EtOAc that contained 0.5% TEA. The product fractions were combined, evaporated to dryness under reduced pressure, and the residue was co-
evaporated three times with dry $\mathrm{CH}_{3} \mathrm{CN}$. The residue was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(0.77 \mathrm{ml})$, and ethyl 4-(acetylthio)-2-(hydroxymethyl)-2-methyl-3-oxobutanoate ${ }^{1}$ ($0.16 \mathrm{~g}, 0.65 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(0.77 \mathrm{ml})$ and 0.45 M 1 H -tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}(2.09 \mathrm{ml}, 0.94 \mathrm{mmol})$ were added under nitrogen. The mixture was stirred at room temperature for 3 h . The phosphite triester was mixed with $\mathrm{I}_{2}(0.30 \mathrm{~g})$ in a mixture of THF $(6 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ and 2,6-lutidine $(1.5 \mathrm{ml})$ and the mixture was stirred at room temperature overnight. The mixture was evaporated to dryness and the residue was dissolved in DCM and washed with 5% aq $\mathrm{NaHSO}_{3}(100 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by RP-HPLC (LichroCHART 250×10 Hypersil ODS $5 \mu \mathrm{~m}$, flow rate $3 \mathrm{ml} / \mathrm{min}$) using an isocratic elution with a mixture of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{H}_{2} \mathrm{O}(70: 30$, v/v) to yield 9 as a yellow oil ($104 \mathrm{mg}, 22 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.93(\mathrm{~d}, 1 \mathrm{H}, J=2.4$ Hz , coumarin), $7.93-7.88$ (dd, $1 \mathrm{H}, J=8.8$ and 6.4 Hz , coumarin), 7.70 (d, $1 \mathrm{H}, J=9.6 \mathrm{~Hz}$, coumarin), 7.50 (d, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 7.33(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}$, coumarin), $7.13(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}), 6.49(\mathrm{~d}, 1 \mathrm{H}, J=$ 9.6 Hz , coumarin), 4.44-4.37(m, 2H, $\left.\mathrm{POCH}_{2}\right), 4.25\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.12(\mathrm{t}, 2 \mathrm{H}, J=6.4$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 4.07-4.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.03-3.90\left(\mathrm{~m}, 2 \mathrm{H} \mathrm{SCH}_{2}\right), 3.77$ and $3.74(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{POCH}_{3}\right), 2.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AcS}), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CCH}_{3}\right), 1.70-1.66\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right)$, 1.43-1.38 (m, 4H, CH2 CH_{2}), $1.28\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 198.7 (CO), 193.8 (SCO), 169.5 (OCO), 159.4 and 156.4 (CN and CO of coumarin), 153.2, 142.6, 137.0, 135.6, 133.8, 130.2, 127.7, 127.0, 121.1, 118.8, 118.2 and 117.9 (coumarin and $\operatorname{Ar}), 74.0\left(\mathrm{NOCH}_{2}\right) ; 69.2$, 68.3, and $68.3\left(\mathrm{OCH}_{2}\right), 62.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.2$ and 60.1 (quaternary C), 54.6 and $54.5\left(\mathrm{OCH}_{3}\right), 36.7$ $\left(\mathrm{CH}_{2} \mathrm{~S}\right), 30.2,30.1,29.0,25.6,25.2\left(\mathrm{CH}_{3} \mathrm{CO}\right.$ and $\left.\mathrm{CH}_{2}\right), 17.6\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 12.4\left(\mathrm{NCCH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=-0.50 \mathrm{ppm}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}: \quad[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{PS}_{2}{ }^{+}$783.2017; found 783.2023.

4,4'-(((6-bromohexyl)oxy)(phenyl)methylene)bis(methoxybenzene) (10). 6-Bromohexanol (1.00 g, 5.52 mmol) was dissolved in dry pyridine (15 ml) and 4,4-dimethoxytritrylchloride ($2.25 \mathrm{~g}, 6.62 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature overnight and evaporated to dryness under reduced pressure. The residue was dissolved in DCM and washed with aq $5 \% \mathrm{NaHCO}_{3}$. The
organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by silica gel column chromatography by eluting with a mixture of hexane, EtOAc and TEA (85:15:1, v/v/v) to yield 10 as a yellow oil $(2.10 \mathrm{~g}, 79 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.49-7.18$ (9H, DMTr), 6.87 (d, $4 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{DMTr}), 3.82\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.56\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 3.11(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 1.79$ and $1.67\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.46-1.42\left(\mathrm{~m}, 4 \mathrm{H} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 158.4, 145.5, 136.7, 130.06, 128.2, 127.8, 126.6, 113.0 (MMTr), 85.7 (quaternary C), $63.2\left(\mathrm{OCH}_{2}\right), 55.2$ $\left(\mathrm{OCH}_{3}\right), 45.1\left(\mathrm{CH}_{2} \mathrm{Br}\right), 32.6,30.0,26.8,25.7\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{BrNaO}_{3}{ }^{+}$505.1349; found 505.1331.

4-((6-(bis(4-methoxyphenyl)(phenyl)methoxy)hexyl)oxy)-2H-chromen-2-one (11). Compound $\mathbf{1 0}$ ($3.60 \mathrm{~g}, 7.45 \mathrm{mmol}$) was dissolved in dry DMF, and 4-hydroxy-2H-chromen-2-one ($1.24 \mathrm{~g}, 7.45 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.11 \mathrm{~g}, 15.29 \mathrm{mmol})$ were added. The reaction mixture was stirred overnight at $80^{\circ} \mathrm{C}$ under argon, filtered and evaporated to dryness. The residue was dissolved in EtOAc and washed with 0.1 N NaOH and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness under reduced pressure. The crude product was purified by silica gel chromatography eluting with a mixture of EtOAc, hexane and TEA (25:74:1, $v / v / v)$, to obtain 11 as a yellow oil ($1.30 \mathrm{~g}, 32 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81(\mathrm{dd}, 1 \mathrm{H}, J=7.8$ and $1.8 \mathrm{~Hz}, \mathrm{H} 5$ of coumarin), $7.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 7$ of coumarin), 7.47-7.16 (m, 11H, DMTr and coumarin), $6.84(\mathrm{~d}, 4 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{DMTr}), 5.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3$ of coumarin), $4.12(\mathrm{t}, 2 \mathrm{H}, J=6.0$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 3.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.10\left(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.91$ and $1.69\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.51-$ $1.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.7$ and $163.0(\mathrm{CO}), 158.4$ (DMTr), 153.4, 145.4, 136.7, 132.3, 130.0, 128.2, 127.7, 126.6, 123.8, $123.0116 .8,115,8,113.0$ (DMTr and coumarin), $90.4\left(\mathrm{C} 3\right.$ of coumarin); 85.7 (quaternary C), $69.4,63.2\left(\mathrm{OCH}_{2}\right), 55.2\left(\mathrm{OCH}_{3}\right), 29.9,28.46,26.02,21.03$ $\left(\mathrm{CH}_{2}\right)$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{NaO}_{6}{ }^{+}$587.2404; found 587.2399.

4-((6-hydroxyhexyl)oxy)-2H-chromen-2-one (12). Compound 11 ($1.30 \mathrm{~g}, 2.40 \mathrm{mmol}$) was dissolved in a mixture dichloroacetic acid $(0.9 \mathrm{ml})$ and $\mathrm{DCM}(29.1 \mathrm{ml})$ and the reaction mixture was stirred at room temperature overnight. The reaction mixture was washed with saturated aq. $\mathrm{NaHCO}_{3}(100 \mathrm{ml})$. The
organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by silica gel chromatography, eluting with a mixture of hexane and EtOAc $(60: 40, v / v)$. The product $\mathbf{1 2}$ was obtained as a white solid ($0.40 \mathrm{~g}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.75(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H} 5$ of coumarin), $7.63(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{H} 7$ of coumarin), $7.37-7.31(\mathrm{~m}, 2 \mathrm{H}$, coumarin), $5.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3$ of coumarin), $4.36(\mathrm{t}, 2 \mathrm{H}, J=5.2 \mathrm{~Hz}, \mathrm{OH}), 4.17\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 1.80(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.46-1.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.4(\mathrm{C} 4$ of coumarin), 162.1 (CO of coumarin), 133.1, 124.6, 123.2, 116.9 and 115.7 (coumarin), 90.9 (H3 of coumarin), $69.9\left(\mathrm{OCH}_{2}\right), 61.1\left(\mathrm{CH}_{2} \mathrm{OH}\right), 32.9,28.5,25.8$ and $25.64\left(\mathrm{CH}_{2}\right)$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{4}{ }^{+}$285.1097; found 285.1096.

Ethyl 4-(acetylthio)-2-(((methoxy((6-((2-oxo-2H-chromen-4-yl) oxy) hexyl) oxy) phosphoryl) oxy) methyl)-2-methyl-3-oxobutanoate (13). Compound $\mathbf{1 2}$ ($0.25 \mathrm{~g}, 0.95 \mathrm{mmol}$), dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ overnight, was dissolved in dry DCM (3.36 ml) under nitrogen. TEA ($0.66 \mathrm{ml}, 4.76 \mathrm{mmol}$) and methyl $-\mathrm{N}, \mathrm{N}$ diisopropylchlorophosphoramidite $(0.20 \mathrm{ml}, 1.05 \mathrm{mmol})$ were added and the mixture was stirred at room temperature for 40 minutes. The reaction mixture was filtrated through a short silica gel column by eluting with EtOAc that contained 0.5% TEA. The product fractions were combined and evaporated to dryness under reduced pressure and the residue was co-evaporated three times with dry $\mathrm{CH}_{3} \mathrm{CN}$. The residue was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(1.24 \mathrm{ml})$, and ethyl 4-(acetylthio)-2-(hydroxymethyl)-2-methyl-3oxobutanoate ${ }^{1}(0.26 \mathrm{~g}, 1.05 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(1.24 \mathrm{ml})$ and $0.45 \mathrm{M} 1 H$-tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}$ $(3.39 \mathrm{ml}, 1.52 \mathrm{mmol})$ were added under nitrogen. The mixture was stirred at room temperature for 3 h . The phosphite triester was mixed with $\mathrm{I}_{2}(0.30 \mathrm{~g})$ in THF $(6 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ and 2,6-lutidine $(1.5 \mathrm{ml})$ and the mixture was stirred at room temperature overnight. The mixture was evaporated to dryness and the residue was dissolved in DCM and washed with $5 \% \mathrm{aq}_{\mathrm{NaHSO}}^{3}$ (100 ml). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by RP-HPLC (LichroCHART 250×10 Hypersil ODS $5 \mu \mathrm{~m}$, flow rate $3 \mathrm{ml} / \mathrm{min}$) by using an isocratic elution with a mixture of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{H}_{2} \mathrm{O}(50: 50, v / v)$ to yield 13 as a yellow oil $(0.11 \mathrm{~g}, 19 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta=7.88(\mathrm{~m}$, H5 of coumarin), 7.63 ($\mathrm{m}, \mathrm{H} 7$ of coumarin), $7.36-7.33$ ($\mathrm{m}, \mathrm{H} 4$ and H 6 of coumarin), 5.72 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 3$ of
coumarin), 4.38-4.34 (m, 2H, POCH_{2}), $4.22\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.20(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 4.06-4.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.06-3.96\left(\mathrm{~m}, 2 \mathrm{H} \mathrm{SCH}_{2}\right), 3.72$, and $3.70\left(\mathrm{~d}, J=11.2 . \mathrm{Hz}, 3 \mathrm{H}, \mathrm{POCH}_{3}\right)$, 2.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{AcS}$), 1.95-1.87 (m, 2H, CH2), 1.75-1.70 (m, 2H, CH2 $), 1.62-1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.52(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CCH}_{3}\right), 1.55-1.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.27\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 198.6 (CO), 193.6 (SCO), 169.5 (OCO), 165.7 (C4 of coumarin), 162.9 (CO of coumarin), 153.4, 132.3, 123.9, 123.0, 116.8, 115.8, (coumarin), $90.4\left(\mathrm{C} 3\right.$ of coumarin), $69.2,69.1,68.0$ and $67.9\left(\mathrm{OCH}_{2}\right), 62.3$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.2$ (quaternary C), $54.4\left(\mathrm{OCH}_{3}\right), 36.69\left(\mathrm{CH}_{2} \mathrm{~S}\right), 30.1,30.1,28.4,25.6$ and $25.1\left(\mathrm{CH}_{2}\right.$ and $C \mathrm{H}_{3} \mathrm{CO}$), $17.57\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.52 \mathrm{ppm}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{PS}_{2}{ }^{+}$587.1710; found 587.1739.
N-(6-hydroxyhexyl)-2-oxo-2H-chromene-3-carboxamide
(14). Ethyl 2-oxo-2H-chromene-3carboxylate ${ }^{6}(0.88 \mathrm{~g}, 4.07 \mathrm{mmol})$ was dissolved in EtOH (20 ml), and four drops of piperidine and 6aminohexanol were added. The mixture was refluxed overnight. The mixture was concentrated and purified by silica gel chromatography eluting with a mixture of hexane and EtOAc (60:40, v/v) to give $\mathbf{1 4}$ as a white solid ($0.46 \mathrm{~g}, 39 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4$ of coumarin), 8.81 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.78-7.63 (m, 2H, coumarin), 7.42-7.35 (m, 2H, coumarin), $3.63\left(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, $3.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}\right), 2.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.64$ and $1.55\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.42-1.38\left(\mathrm{~m}, 4 \mathrm{H} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.4$ (CO of coumarin and CO of amide), 154.4, 133.9, 129.8, 125.3, 118.7, 118.5 and 116.6 (coumarin), $62.6\left(\mathrm{OCH}_{2}\right), 39.7\left(\mathrm{NHCH}_{2}\right), 32.6,29.3,26.6$ and $25.3\left(\mathrm{CH}_{2}\right)$. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{4}{ }^{+}$312.1206; found 312.1204.

Ethyl 4-(acetylthio)-2-(((methoxy((6-(2-oxo-2H-chromene-3-carboxamido) hexyl) oxy) phosphoryl)oxy)methyl)-2-methyl-3-oxobutanoate (15). Compound 14 ($0.25 \mathrm{~g}, 0.86 \mathrm{mmol}$), dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ overnight, was dissolved in dry $\mathrm{DCM}(3.05 \mathrm{ml})$ under nitrogen. TEA $(0.60 \mathrm{ml}, 4.32 \mathrm{mmol})$ and methyl- N, N-diisopropylchlorophosphoramidite $(0.185 \mathrm{ml}, 0.95 \mathrm{mmol})$ were added and the mixture was stirred at room temperature for 40 minutes. The reaction mixture was filtrated through a short silica gel column by eluting with a mixture of 0.5% TEA in EtOAc. The product fractions were combined and
evaporated to dryness under reduced pressure and the residue was co-evaporated three times with dry $\mathrm{CH}_{3} \mathrm{CN}$. The residue was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(1.12 \mathrm{ml})$ and mixed with ethyl 4-(acetylthio)-2-(hydroxymethyl)-2-methyl-3-oxobutanoate ${ }^{1}(0.24 \mathrm{~g}, 0.95 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(1.12 \mathrm{ml})$. 1 H -tetrazole solution $(0.45 \mathrm{M})$ in $\mathrm{CH}_{3} \mathrm{CN}(3.07 \mathrm{ml}, 1.38 \mathrm{mmol})$ was added under nitrogen and the mixture was stirred at room temperature for 3 h . The phosphite ester was oxidized with $\mathrm{I}_{2}(0.30 \mathrm{~g})$ in a mixture of THF (6 ml), $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ and 2,6 -lutidine $(1.5 \mathrm{ml})$ by stirring at room temperature overnight. The mixture was evaporated to dryness and the residue was dissolved in DCM and washed with 5% aq $\mathrm{NaHSO}_{3}(100 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by RP-HPLC (LichroCHART 250×10 Hypersil ODS $5 \mu \mathrm{~m}$, flow rate $3 \mathrm{ml} / \mathrm{min}$) by using an isocratic elution with a mixture of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{H}_{2} \mathrm{O}(50: 50, v / v)$ to yield $\mathbf{1 5}$ as a yellow oil (200 mg, 37\%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4$ of coumarin), $8.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.67-7.57(\mathrm{~m}, 2 \mathrm{H}$, coumarin), 7.37$7.32\left(\mathrm{~m}, 2 \mathrm{H}\right.$, coumarin), 4.38-4.31(m,2H, $\left.\mathrm{POCH}_{2}\right), 4.19\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.00(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 3.99-3.87\left(\mathrm{~m}, 2 \mathrm{H} \mathrm{SCH}_{2}\right), 3.75$ and $3.70\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{POCH}_{3}\right), 3.44-3.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, $2.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AcS}), 1.67-1.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.41-1.36\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.25(\mathrm{t}$, $3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.6(\mathrm{CO}), 193.6(\mathrm{SCO}), 169.5(\mathrm{OCO})$, 161.4 and 161.4 (CO of coumarin and CO of amide), 154.4, 148.1, 133.9, 129.7, 125.2, 111.6, 118.5 and 116.5 (coumarin), $69.0,68.1$, and $68.0\left(\mathrm{POCH}_{2}\right.$ and $\left.\mathrm{OCH}_{2}\right), 62.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.2$ and 60.1 (quaternary C), 54.4 and $54.3\left(\mathrm{OCH}_{3}\right), 39.68\left(\mathrm{NCH}_{2}\right), 36.66\left(\mathrm{CH}_{2} \mathrm{~S}\right), 30.1,30.0,29.3,26.5$ and $25.1\left(\mathrm{CH}_{2}\right.$ and $\left.C \mathrm{H}_{3} \mathrm{CO}\right), 17.53\left(\mathrm{CH}_{3}\right), 13.92\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.34 \mathrm{ppm}$.; HRMS (ESITOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NO}_{11} \mathrm{PSNa}^{+}$636.1639; found 636.1685.
N-((4-(Hydroxymethyl)cyclohexyl)methyl)-2-oxo-2H-chromene-3-carboxamide (16). Ethyl 2-oxo$2 H$-chromene-3-carboxylate ${ }^{6}(0.60 \mathrm{~g}, 2.75 \mathrm{mmol})$ was dissolved in EtOH (10 ml), and (4(aminomethyl)cyclohexyl)methanol ($0.39 \mathrm{~g}, 2.75 \mathrm{mmol}$) was added. The mixture was refluxed overnight. The solvent was evaporated and the residue was purified by silica gel chromatography eluting with a mixture of hexane and EtOAc (80:20, v / v) to give 16 as a white solid ($0.80 \mathrm{~g}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz ,
$\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta=8.84$ (s, $1 \mathrm{H}, \mathrm{H} 4$ of coumarin), $8.67(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{NH}), 7.97(\mathrm{~m}, 1 \mathrm{H}$, coumarin), 7.74 (m, 1H, coumarin), 7.49 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, coumarin), $7.42(\mathrm{~m}, 2 \mathrm{H}$, coumarin), $4.34(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}$, $\mathrm{OH})$, 3.21-3.18 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{OCH}_{2}$ and NCH_{2}), $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.48-1.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.31-1.28(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 0.99-0.84\left(\mathrm{~m}, 4 \mathrm{H} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.5$ and $161.0(\mathrm{CO}$ of coumarin and CO of amide), 154.3, 147.7, 134.5, 130.7, 125.6, 118.7, 119.6, 119.0 and 116.6 (coumarin), 67.0 $\left(\mathrm{OCH}_{2}\right), 45.7\left(\mathrm{NHCH}_{2}\right), 40.8$ and $38.2(\mathrm{CH}), 30.4$ and $29.3\left(\mathrm{CH}_{2}\right)$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}^{+}$338.1363; found 338.1382.

Ethyl

4-(acetylthio)-2-(((methoxy)(4-((2-oxo-2H-chromene-3-
carboxamido)methyl)cyclohexyl)methoxy)phosphoryl)oxy)methyl)-2-methyl-3-oxobutanoate (17).
Compound $16(0.15 \mathrm{~g}, 0.48 \mathrm{mmol})$ was dissolved in DCM (1.70 ml) under nitrogen and TEA (0.33 ml , 2.37 mmol) was added. To increase the solubility of $\mathbf{1 6}$, the reaction solution was heated 5 min at $37^{\circ} \mathrm{C}$. Methyl- N, N-diisopropylchlorophosphoramidite $(0.102 \mathrm{ml}, 0.52 \mathrm{mmol})$ were added and the mixture was stirred at room temperature for 40 minutes. The reaction mixture was filtrated through a short silica gel column by eluting with a mixture of 0.5% TEA in EtOAc. The mixture was evaporated to dryness under reduced pressure and the residue was co-evaporated three times from dry $\mathrm{CH}_{3} \mathrm{CN}$. The residue was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(2.70 \mathrm{ml})$, and the reaction solution was hetead 5 min at $37{ }^{\circ} \mathrm{C}$. Ethyl 4-(acetylthio)-2-(hydroxymethyl)-2-methyl-3-oxobutanoate (26) ${ }^{1}(0.13 \mathrm{~g}, 0.52 \mathrm{mmol})$ in dry 0.45 M 1 H tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}(2.00 \mathrm{ml}, 0.90 \mathrm{mmol})$ was added under nitrogen. The mixture was stirred at room temperature for 3 h . The phosphite ester was oxidized with $\mathrm{I}_{2}(0.30 \mathrm{~g})$ in a mixture of THF (6 ml), $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ and 2,6 -lutidine $(1.5 \mathrm{ml})$ by stirring at room temperature overnight. The mixture_was evaporated to dryness and the residue was dissolved in DCM and washed with 5% aq $\mathrm{NaHSO}_{3}(100 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified twice by RP-HPLC (Thermo Scientific 250×10 Hypersil ODS $5 \mu \mathrm{~m}$, flow rate $3 \mathrm{ml} / \mathrm{min}$) by eluting with a mixture of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{H}_{2} \mathrm{O}(40: 60, v / v)$ to yield 17 as a white solid ($57 \mathrm{mg}, 19 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.91$ ($2 \mathrm{x} \mathrm{s}, 1 \mathrm{H}, \mathrm{H} 4$ of coumarin); $8.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) ; 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}$, coumarin), 7.44$7.39\left(\mathrm{~m}, 2 \mathrm{H}\right.$, coumarin), 4.47-4.27 (m, $\left.2 \mathrm{H}, \mathrm{POCH}_{2} \mathrm{C}_{\mathrm{q}}\right), 4.27\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.07-3.92$
$\left(\mathrm{m}, 2 \mathrm{H} \mathrm{SCH}_{2}\right), 3.88-3.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.77\left(2 \mathrm{x} \mathrm{d}, 3 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 3.37-3.35(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 2.39(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AcS}), 1.92-1.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.70-1.59(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}), 1.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right)$; $1.32\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.15-0.99\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $198.6(\mathrm{CO}), 193.6(\mathrm{SCO}), 169.5(\mathrm{OCO}), 161.6$ and 161.5 (CO of coumarin and CO of amide); 154.4, 148.3, 134.0, 129.8, 125.3, 118.7, 118.6 and 116.6 (coumarin), 72.9 and $72.8\left(\mathrm{POCH}_{2}\right), 69.1\left(\mathrm{POCH}_{2} \mathrm{C}_{\mathrm{q}}\right)$, $62.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.2$ (quaternary C), 54.5 and $54.4\left(\mathrm{OCH}_{3}\right), 45.9\left(\mathrm{NCH}_{2}\right), 38.3,38.2,37.8(\mathrm{CH}), 36.7$ $\left(\mathrm{CH}_{2} \mathrm{~S}\right), 30.1,29.9$ and $28.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and $\left.C \mathrm{H}_{3} \mathrm{CO}\right), 17.6\left(\mathrm{CH}_{3}\right) ; 14.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{31} \mathrm{P}$ NMR (202 MHz , CDCl_{3}): $\delta=-0.37 \mathrm{ppm}$. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{NO}_{11} \mathrm{PSNa}^{+} 662.1795$; found 662.1767.

N -(4-hydroxybutyl)-2-oxo-2H-chromene-3-carboxamide
 (18). Ethyl 2-oxo-2H-chromene-3-

 carboxylate ${ }^{6}(1.09 \mathrm{~g}, 5.00 \mathrm{mmol})$ was dissolved in EtOH (20 ml) and 4-amino-1-butanol $(0.45 \mathrm{~g}, 5 \mathrm{mmol})$ was added. The mixture was refluxed overnight. The solvent was evaporated and the residue was purified by silica gel chromatography eluting first with a mixture of hexane and EtOAc $(35: 65, v / v)$ and then with a mixture of hexane and EtOAc (20:80, v/v) to give $\mathbf{1 8}$ as white solid $(0.91 \mathrm{~g}, 69 \%) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=8.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4$ of coumarin), $8.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.72-7.66(\mathrm{~m}, 2 \mathrm{H}$, coumarin), 7.42-7.37 (m, 2 H , coumarin), $3.73\left(\mathrm{t}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$), $3.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}\right) ; 2.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.76$ and $1.69\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.6$ and $161.5(\mathrm{CO}$ of coumarin and CO of amide), $154.4,148.3,134.0,129.8,125.3,118.7,118.5$ and 116.6 (coumarin), $62.4\left(\mathrm{OCH}_{2}\right), 39.6$ $\left(\mathrm{NHCH}_{2}\right), 29.9$ and $26.0\left(\mathrm{CH}_{2}\right)$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NNaO}_{4}{ }^{+}$284.0893; found 284.0886.Methyl (6-(2-oxo-2H-chromene-3-carboxamido)hexyl) phosphate (19). Compound 14 (26.3 mg, 0.09 mmol), dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ overnight, was dissolved in dry DCM (0.5 ml) under nitrogen. TEA ($63 \mu \mathrm{l}, 0.45$ mmol) and methyl- N, N-diisopropylchlorophosphoramidite ($19 \mu \mathrm{l}, 0.1 \mathrm{mmol}$) were added and the mixture was stirred at room temperature for 40 minutes. The reaction mixture was filtrated through a short silica gel column by eluting with a mixture of 0.5% TEA in EtOAc. The product fractions were combined and
evaporated to dryness under reduced pressure. The residue was co-evaporated three times with dry $\mathrm{CH}_{3} \mathrm{CN}$. A solution of 0.45 M 1 H -tetrazole in $\mathrm{CH}_{3} \mathrm{CN}(3.02 \mathrm{ml}, 1.36 \mathrm{mmol})$ and water ($200 \mu \mathrm{l}, 5.55$ mmol) were added, and the mixture was stirred at room temperature for 3 h . The phosphite triester was oxidized with $\mathrm{I}_{2}(0.15 \mathrm{~g})$ in a mixture of THF $(3 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{ml})$ and 2,6-lutidine $(0.75 \mathrm{ml})$ by stirring at room temperature overnight. The mixture was evaporated to dryness and the residue was dissolved in DCM and washed twice with $5 \% \mathrm{aq} \mathrm{NaHSO}_{3}(4.5 \mathrm{ml})$. The crude product was purified by RP-HPLC (SunFire 250×10 Prep C18 $5 \mu \mathrm{~m}$, flow rate $3 \mathrm{ml} / \mathrm{min}$) using a gradient elution (25 mM TEAA and MeCN (from 14% to $63 \% \mathrm{MeCN}$). The product was desalted on the same column by eluting with a mixture of $\mathrm{H}_{2} \mathrm{O}$ and MeCN . Finally, the product was passed through a Na^{+}- form Dowex 50WX8 (100-200 mesh) cation exchange column to give compound 19 ($3.4 \mathrm{mg}, 9.2 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta=9.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 8.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4$ of coumarin), $7.87(\mathrm{~m}, 1 \mathrm{H}$, coumarin), $7.76(\mathrm{~m}, 1 \mathrm{H}$, coumarin), 7.48-7.44 (m, 2 H , coumarin), 3.89 (q, $2 \mathrm{H}, J=6.4 \mathrm{~Hz}^{2} \mathrm{OCH}_{2}$), $3.60(\mathrm{~d}, 3 \mathrm{H}, J=10.8 \mathrm{~Hz}$, $\left.\mathrm{POCH}_{3}\right), 3.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.33(\mathrm{MeOH}), 1.64-1.72\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.42-1.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=162.3$ and 161.1 (CO of coumarin and CO of amide), 154.5 (coumarin), $147.8\left(\mathrm{C} 4\right.$ of coumarin), $134.0,129.9,125.1,118.6,118.3$ and 116.1 (coumarin), 65.3 and $65.2\left(\mathrm{OCH}_{2}\right)$, 51.7 and $51.7\left(\mathrm{OCH}_{3}\right), 39.5$ and $39.4\left(\mathrm{NCH}_{2}\right), 30.3,30.3,28.9,30.3,26.4,25.2\left(4 \times \mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}$ NMR (202 $\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=1.73 \mathrm{ppm}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NNaO}_{7} \mathrm{P}^{+} 406.1026$; found 406.1018 .

Ethyl 4-(acetylthio)-2-(((methoxy)((4-(2-oxo-2H-chromene-3-carboxamido)
butoxy)
phosphoryl)oxy)methyl)-2-methyl-3-oxobutanoate (20). Compound 18 ($0.30 \mathrm{~g}, 1.15 \mathrm{mmol}$) was dissolved in DCM (3.40 ml) under nitrogen and TEA ($0.80 \mathrm{ml}, 5.74 \mathrm{mmol}$) and methyl $-\mathrm{N}, \mathrm{N}$ diisopropylchlorophosphoramidite $(0.245 \mathrm{ml}, 1.26 \mathrm{mmol})$ were added. The mixture was stirred at room temperature for 40 minutes and then filtrated through a short silica gel $(3 \mathrm{~cm})$ column by eluting with a mixture of 0.5% TEA in EtOAc. The solvent was evaporated under reduced pressure and the residue was co-evaporated three times from dry $\mathrm{CH}_{3} \mathrm{CN}$. The residue was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(2.04 \mathrm{ml})$, and ethyl 4-(acetylthio)-2-(hydroxymethyl)-2-methyl-3-oxobutanoate (26) ${ }^{1}\left(0.31 \mathrm{~g}, 1.26 \mathrm{mmol}\right.$) in dry $\mathrm{CH}_{3} \mathrm{CN}(2.04$
$\mathrm{ml})$ and 0.45 M 1 H -tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}(4.08 \mathrm{ml}, 1.84 \mathrm{mmol})$ were added under nitrogen. The mixture was stirred at room temperature for 3 h . The phosphite ester was oxidized with $\mathrm{I}_{2}(0.30 \mathrm{~g})$ in a mixture of THF $(6 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ and 2,6-lutidine $(1.5 \mathrm{ml})$ by stirring at room temperature overnight. The mixture was evaporated to dryness and the residue was dissolved in DCM and washed with $5 \% \mathrm{aq}$ $\mathrm{NaHSO}_{3}(100 \mathrm{ml})$. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated to dryness. The crude product was purified twice by RP-HPLC (Thermo Scientific 250×10 Hypersil ODS $5 \mu \mathrm{~m}$, flow rate $3 \mathrm{ml} / \mathrm{min}$) by using first elution with a mixture of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{H}_{2} \mathrm{O}(40: 60$, $\mathrm{v} / \mathrm{v})$ and then elution with a mixture of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{H}_{2} \mathrm{O}\left(50: 50\right.$, v / v) to yield $\mathbf{2 0}$ as yellow oil ($81 \mathrm{mg}, 12 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4$ of coumarin), $8.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.72-7.66(\mathrm{~m}, 2 \mathrm{H}$, coumarin), 7.42-7.38 (m, 2 H , coumarin), 4.47-4.37 (m, $2 \mathrm{H}, \mathrm{POCH}_{2}$), $4.26\left(\mathrm{q}, 2 \mathrm{H}, J=7.00 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 4.17-4.08 (m, 2 H , $\left.\mathrm{OCH}_{2}\right), 4.04-3.93\left(\mathrm{~m}, 2 \mathrm{H} \mathrm{SCH}_{2}\right), 3.78$ and $3.76\left(\mathrm{~d}, 3 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 3.53-3.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, $2.37(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AcS}), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.83-1.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.29\left(\mathrm{t}, 3 \mathrm{H}, J=7.00 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.6$ (CO), 193.7 (SCO), 169.5 (OCO), 161.6 and $161.46(\mathrm{CO}$ of coumarin and CO of amide), 154.41, 148.33, 134.04, 129.81, 125.30, 118.65, 118.44 and 116.6 (coumarin), 69.1, 69.1, 69.0, 69.1, 67.7, and $67.6\left(\mathrm{POCH}_{2}\right.$ and $\left.\mathrm{OCH}_{2}\right), 62.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.2$ and 60.1 (quaternary C), 54.5 and $54.4\left(\mathrm{OCH}_{3}\right), 39.2\left(\mathrm{NCH}_{2}\right), 36.7\left(\mathrm{CH}_{2} \mathrm{~S}\right), 30.1,27.7,27.6$ and $25.6\left(\mathrm{CH}_{2}\right.$ and $\mathrm{CH}_{3} \mathrm{CO}$), $17.6\left(\mathrm{CH}_{3}\right), 13.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$; ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.47 \mathrm{ppm}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{11} \mathrm{PS}^{+} 586.1506$; found 586.1511.

Methyl 2-azido-4-((4-hydroxybutyl)carbamoyl)benzoate (21a). 3-Amino-4-(methoxycarbonyl)benzoic acid $(5.0 \mathrm{~g}, 25.6 \mathrm{mmol})$ was dissolved in a mixture of $\mathrm{H}_{2} \mathrm{O}(35.7 \mathrm{ml})$ and concentrated $\mathrm{HCl}(43 \mathrm{ml})$ at 0 ${ }^{\circ} \mathrm{C}$ and a solution of sodium nitrite $(2.00 \mathrm{~g}, 29.4 \mathrm{mmol})$ was added. the mixture was stirred for 20 min , and sodium azide ($5.13 \mathrm{~g}, 78.9 \mathrm{mmol}$) was added dropwise upon 1 h . The mixture was allowed to warm up and stirred overnight at room temperature. The reaction mixture was diluted in water and extracted with ethyl acetate. The organic phase was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated to dryness to obtain $5.0 \mathrm{~g}(88 \%)$ of the crude azide. To a solution of the crude azide (3-azido-4(methoxycarbonyl)benzoic acid) ($5.00 \mathrm{~g}, 22.6 \mathrm{mmol}$) and HATU ($12.9 \mathrm{~g}, 33.6 \mathrm{mmol}$) in DMF (50 ml),

DIPEA ($11.8 \mathrm{ml}, 67.8 \mathrm{mmol}$) was added. After 5 min , a solution of 4 -aminobuthanol ($3.02 \mathrm{~g}, 33.9 \mathrm{mmol}$) in DMF (10 ml) was added and the reaction solution was stirred for 1 h at $60^{\circ} \mathrm{C}$. The mixture was evaporated to dryness and the residue was purified by silica gel chromatography eluting with a mixture of DCM and $\mathrm{MeOH}(98: 1, v / v)$. Compound 21a was obtained as a white solid in 48% yield (3.2 g). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=7.83(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, \mathrm{Ar}), 7.62-7.59(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{Ar}), 7.39(\mathrm{br} \mathrm{s}, \mathrm{NH}), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH})$, $1.69-1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.60-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta=165.2(\mathrm{OCO})$, $165.1(\mathrm{NCO}), 139.8,139.2,131.4,125.0,123.0$ and $119.2(\mathrm{Ar}), 61.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 52.1\left(\mathrm{OCH}_{3}\right), 39.6$ $\left(\mathrm{NCH}_{2}\right)$, 29.9 and $25.8\left(2 \times \mathrm{CH}_{2}\right)$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}^{+} 315,1064$; found 315,1063 .

Methyl 2-azido-4-((6-hydroxyhexyl)carbamoyl)benzoate (21b). To a solution of 3-azido-4(methoxycarbonyl)benzoic acid (5.00 g, 22.6 mmol) and HATU ($12.9 \mathrm{~g}, 33.6 \mathrm{mmol}$) in DMF (50 ml), DIPEA ($11.0 \mathrm{ml}, 67.8 \mathrm{mmol}$) was added. After 5 min , a solution of 6 -aminohexanol $(3.97 \mathrm{~g}, 33.9 \mathrm{mmol})$ in DMF (10 ml) was added and the reaction mixture was stirred for 1 h at $60^{\circ} \mathrm{C}$. The mixture was evaporated to dryness and the residue was purified by silica gel chromatography by eluting with a mixture of DCM and $\mathrm{MeOH}(98: 1, v / v)$. Compound 21b was obtained as a white solid in 51% yield $(3.0 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=7.86(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}), 7.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.23(\mathrm{br}$ $\mathrm{s}, \mathrm{NH}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 1.66-1.58$ (m, 2H, CH2), $1.54-1.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.43-1.37\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): δ $=165.3(\mathrm{OCO}), 165.1(\mathrm{NCO}), 139.8,139.3,131.3,125.1,123.1$, and $119.2(\mathrm{Ar}), 61.5\left(\mathrm{CH}_{2} \mathrm{OH}\right), 52.1$ $\left(\mathrm{OCH}_{3}\right), 39.6\left(\mathrm{NCH}_{2}\right), 32.5,29.1,26.5,25.3\left(4 \mathrm{x} \mathrm{CH}_{2}\right)$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}^{+} 343,1377$; found 343,1374 .

Methyl

under nitrogen. N, N, N, N^{\prime}-tetraisopropyl-1-methoxyphosphanediamine ($0.23 \mathrm{ml}, 0.79 \mathrm{mmol}$) and 0.45 M 1 H -tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}(1.49 \mathrm{ml}, 0.67 \mathrm{mmol})$ were added and the mixture was stirred at room temperature for 30 minutes. The course of the phosphitylation was followed by ${ }^{31} \mathrm{P}$ NMR spectroscopy (126 MHz, $\mathrm{CD}_{3} \mathrm{CN}$, the product: $\delta=149.4$ and 149.2 ppm$)$. Methyl 2-azido-4-($(6-$ hydroxyhexyl)carbamoyl)benzoate (21b) ($0.30 \mathrm{~g}, 0.93 \mathrm{mmol})$ together with 0.45 M solution of 1 H tetrazole in $\mathrm{CH}_{3} \mathrm{CN}(4.15 \mathrm{ml}, 1.86 \mathrm{mmol})$ was then added to the reaction mixture under nitrogen $\left({ }^{31} \mathrm{P}\right.$ NMR: $\delta=139.9 \mathrm{ppm}$ for the phosphite trimester). The mixture was stirred for 15 min and the phosphite ester was oxidized with $\mathrm{I}_{2}(0.20 \mathrm{~g}, 0.79 \mathrm{mmol})$ in a mixture of THF $(3.0 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{ml})$ and 2,6lutidine (0.75 ml) by stirring overnight at room temperature. The mixture was evaporated to dryness and the residue was dissolved in DCM and washed with 5% aq $\mathrm{NaHSO}_{3}(100 \mathrm{ml})$. The organic phase was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. To reduce N_{3} to NH_{2} group, the crude product (IA) was dissolved in a mixture of THF $(6.0 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1.2 \mathrm{ml}) .1 \mathrm{M}$ trimethylphosphine solution $(0.76 \mathrm{ml})$ in toluene was added and the mixture was stirred for 15 min . The residue was dissolved in DCM and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by RP-HPLC (Phenomenex 250×10, Synenergi $4 \mu \mathrm{~m}$ Fusion-RP $80 \AA$, flow rate $3 \mathrm{ml} / \mathrm{min}$) by using an isocratic elution with $46 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ and then a gradient elution from 46% to $80 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ over 5 min . The product fractions were combined and lyophilized to yield 22 as a viscous oil ($46 \mathrm{mg}, 11 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.89(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}, \operatorname{Ar}), 7.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{Ar}), 6.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 6.43\left(\mathrm{br} \mathrm{m}, \mathrm{NH}_{2}\right), 4.48-4.37(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{POCH}_{2} \mathrm{C}_{\mathrm{q}}\right), 4.27\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{POCH}_{2}\right), 4.04-3.93\left(\mathrm{~m}, 2 \mathrm{H}\right.$, and $\left.\mathrm{SCH}_{2}\right), 3.90$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77\left(2 \mathrm{x} \mathrm{d}, 3 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 3.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.37(2 \mathrm{x} \mathrm{s}, 3 \mathrm{H}, \mathrm{AcS}), 1.71$ (quintet, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.64 (quintet, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.47-1.43(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.30\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.8(\mathrm{CO}), 193.7$ (SCO), 169.6 and 169.5 (COOEt), 168.0 (COOMe), 167.0 (NCO), 150.5, 139.8, 131.7, 115.6, 113.7 and $112.5(\mathrm{Ar}), 69.1$ and $69.0\left(\mathrm{POCH}_{2}\right), 67.9$ and $67.9\left(\mathrm{POCH}_{2}\right), 62.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.2$ and 60.1 (quaternary C), 54.5 and $54.4\left(\mathrm{POCH}_{3}\right), 51.7\left(\mathrm{OCH}_{3}\right), 39.7\left(\mathrm{NCH}_{2}\right), 36.7\left(\mathrm{CH}_{2} \mathrm{~S}\right), 30.1\left(\mathrm{CH}_{3} \mathrm{CO}\right), 30.0,29.9$ and 29.3
$\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 17.6\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta=-0.38$ ppm; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{PSNa}^{+}$641.1904; found 641.1897.

Methyl

4-((6-(()4-(acetylthio)-2,2-dimethyl-3-
oxobutoxy)(methoxy)phosphoryl)oxy)hexyl)carbamoyl)-2-aminobenzoate (23). S-(4-hydroxy-3,3-dimethyl-2-oxobutyl)ethanethioate (27) ($0.13 \mathrm{~g}, 0.70 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(3.0 \mathrm{ml})$ under nitrogen. N, N, N, N - ${ }^{\prime}$-tetraisopropyl-1-methoxyphosphanediamine ($0.22 \mathrm{ml}, 0.78 \mathrm{mmol}$) and $0.45 \mathrm{M} \mathrm{1H-}$ tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}(1.56 \mathrm{ml}, 0.70 \mathrm{mmol})$ were added and the mixture was stirred at room temperature for 30 minutes. The course of the phosphitylation was followed by ${ }^{31} \mathrm{P}$ NMR spectroscopy (126 MHz, $\mathrm{CD}_{3} \mathrm{CN}: \delta=148.5 \mathrm{ppm}$). Methyl 2-azido-4-((6-hydroxyhexyl)carbamoyl)benzoate (21b) (0.30 $\mathrm{g}, 0.94 \mathrm{mmol})$ was added together with a $0.45 \mathrm{M} 1 H$-tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}(4.16 \mathrm{ml}, 1.87 \mathrm{mmol})$ under nitrogen (${ }^{31} \mathrm{P}$ NMR: $\delta=139.5 \mathrm{ppm}$ for the phosphite trimester). The mixture was stirred for 15 min , and the resulted phosphite ester was oxidized with $\mathrm{I}_{2}(0.20 \mathrm{~g}, 0.78 \mathrm{mmol})$ in a mixture of THF (3.0 ml), $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{ml})$ and $2,6-\mathrm{lutidine}(0.75 \mathrm{ml})$ by stirring at room temperature overnight. The solvent was evaporated to dryness and the residue was dissolved in DCM and washed with 5% aq $\mathrm{NaHSO}_{3}(100 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. To reduce N_{3} to NH_{2} group, the crude product (IB) was dissolved in a mixture of THF $(4.0 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(0.8 \mathrm{ml}) .1 \mathrm{M}$ trimethylphosphine solution $(0.46 \mathrm{ml})$ in toluene was added and the mixture was stirred for 15 min . The residue was dissolved in DCM and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by RP-HPLC (Phenomenex 250×10, Synenergi $4 \mu \mathrm{~m}$ Fusion-RP $80 \AA$, flow rate $3 \mathrm{ml} / \mathrm{min}$) by using an isocratic elution with $46 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ and then a gradient elution from 46% to $80 \% \mathrm{CH}_{3} \mathrm{CN}$ over 5 min . Compound $\mathbf{2 3}$ was obtained as a viscous oil ($22 \mathrm{mg}, 6 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.85(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.17(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, \mathrm{Ar}), 7.04(\mathrm{br} \mathrm{s}$, $\mathrm{NH}), 6.93(\mathrm{dd}, 1 \mathrm{H}, J=8.0$, and $1.5 \mathrm{~Hz}, \mathrm{Ar}), 6.17\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 4.07\left(\mathrm{~d}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{POCH}_{2} \mathrm{C}_{\mathrm{q}}\right), 4.04-$ $4.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{POCH}_{2}\right.$ and $\left.\mathrm{SCH}_{2}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71\left(\mathrm{~d}, 3 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 3.44(\mathrm{~m}, 2 \mathrm{H}$, NCH_{2}), 2.35 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{AcS}$), 1.68 (quintet, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.59 (quintet, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.45$1.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.24\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.6(\mathrm{CO}), 194.4$
(SCO), 167.9 (COOMe), 166.4 (NCO), 151.0, 140.3, 131.2, 115.4, 113.4 and 111.6 (Ar), 72.3 and 72.2 $\left(\mathrm{POCH}_{2}\right), 67.7$ and $67.6\left(\mathrm{POCH}_{2}\right), 54.0$ and $53.9\left(\mathrm{POCH}_{3}\right), 51.3\left(\mathrm{OCH}_{3}\right), 48.5$ (quaternary C), 39.2 $\left(\mathrm{NCH}_{2}\right), 36.1\left(\mathrm{CH}_{2} \mathrm{~S}\right), 29.8$ and $29.7\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{3} \mathrm{CO}\right), 29.0\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 20.7$ $\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR (202 MHz, $\left.\mathrm{CD}_{3} \mathrm{Cl}\right): \delta=-0.43 \mathrm{ppm}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{PSNa}^{+} 583.1850$; found 583.1825 . The synthesis of $\mathbf{2 3}$ was repeated by the company of Piramal Enterprises Ltd with a similar procedure, but with slightly different reagent ratios. S-(4-Hydroxy-3,3-dimethyl-2-oxobutyl)ethanethioate (27) ($1.0 \mathrm{~g}, 5.26 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(10.0 \mathrm{ml})$ under nitrogen. N, N, N^{\prime}, N^{N}-tetraisopropyl-1-methoxyphosphanediamine ($1.52 \mathrm{~g}, 1.66 \mathrm{ml}, 5.79 \mathrm{mmol}$) and 1 H tetrazole $(0.37 \mathrm{~g}, 5.26 \mathrm{mmol})$ were added and the mixture was stirred at room temperature for 30 minutes. Methyl 2-azido-4-((6-hydroxyhexyl)carbamoyl)benzoate (21b) ($0.84 \mathrm{~g}, 2.63 \mathrm{mmol})$ was added together with a $0.45 \mathrm{M} 1 H$-tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}(11.7 \mathrm{ml}, 5.26 \mathrm{mmol})$ under nitrogen. The mixture was stirred for 15 min ., and the resulted phosphite ester was oxidized with $\mathrm{I}_{2}(3.0 \mathrm{~g}, 6.3 \mathrm{mmol})$ in a mixture of THF (11.4 ml), $\mathrm{H}_{2} \mathrm{O}(5.6 \mathrm{ml})$ and 2,6-lutidine $(6.5 \mathrm{ml})$ by stirring at room temperature for 1 h . LCMS analysis showed 33% product conversion. The solvent was evaporated to dryness and the residue was dissolved in DCM and washed with 5% aq $\mathrm{NaHSO}_{3}(100 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was passed through a silica column eluting with a 7:3 (v/v) mixture of hexane and ethylacetate and used in a next step without further purification. To reduce N_{3} to NH_{2} group, the crude product $\mathbf{I B}(1.0 \mathrm{~g}, 1.70 \mathrm{mmol})$ was dissolved in a mixture of THF $(10.0 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(6.0 \mathrm{ml})$. Trimethylphosphine $(0.16 \mathrm{~g}, 2.04 \mathrm{mmol})$ (1 M solution in toluene) was added and the mixture was stirred for 15 min . The residue was dissolved in DCM and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated to dryness. The crude product was purified by RP-HPLC by using an isocratic elution with $46 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$. Compound 23 was obtained as a viscous oil ($0.4 \mathrm{~g}, 42 \%$). The synthesis was repeated to yield compound $232.7 \mathrm{~g} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=7.85(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{Ar}), 7.17(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{Ar}), 7.06(\mathrm{br} \mathrm{s}, \mathrm{NH}), 6.93$ $(\mathrm{dd}, 1 \mathrm{H}, J=8.2$, and $1.6 \mathrm{~Hz}, \mathrm{Ar}), 6.17\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 4.07\left(\mathrm{~d}, 2 \mathrm{H}, J=4.7 \mathrm{~Hz}, \mathrm{POCH}_{2} \mathrm{C}_{\mathrm{q}}\right), 4.04-4.00(\mathrm{~m}, 4 \mathrm{H}$, POCH_{2} and $\left.\mathrm{SCH}_{2}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71\left(\mathrm{~d}, 3 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 3.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.35(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{AcS}$), 1.68 (quintet, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.59 (quintet, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.44-1.39 (m, 4H,
$\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.24\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.6\left(\mathrm{COC}_{\mathrm{q}}\right), 194.4(\mathrm{SCO}), 167.9$ (COOMe), $166.4(\mathrm{NCO}), 151.0,140.3,131.2,115.4,113.4$ and $111.6(\mathrm{Ar}), 72.4$ and $72.3\left(\mathrm{POCH}_{2} \mathrm{C}_{\mathrm{q}}\right)$, 67.7 and $67.6\left(\mathrm{POCH}_{2}\right), 54.0$ and $53.9\left(\mathrm{POCH}_{3}\right), 51.3\left(\mathrm{OCH}_{3}\right), 48.5$ (quaternary C), $39.3\left(\mathrm{NCH}_{2}\right), 36.1$ $\left(\mathrm{CH}_{2} \mathrm{~S}\right), 29.9$ and $29.8\left(\mathrm{CH}_{2}\right)$, $29.4\left(\mathrm{CH}_{3} \mathrm{CO}\right)$, $29.0\left(\mathrm{CH}_{2}\right)$, $26.0\left(\mathrm{CH}_{2}\right)$, $24.8\left(\mathrm{CH}_{2}\right), 20.7\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CD}_{3} \mathrm{Cl}$): $\delta=-0.43 \mathrm{ppm}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{PS}^{+}$561.2030; found 561.2032.

Methyl

4-((4-(((4-(acetylthio)-2-(ethoxycarbonyl)-2-methyl-3-

 oxobutoxy)(methoxy)phosphoryl)oxy)butyl)carbamoyl)-2-aminobenzoate (24). Ethyl 4-(acetylthio)-2-(hydroxymethyl)-2-methyl-3-oxobutanoate (26) ($0.18 \mathrm{~g}, 0.73 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(3.0 \mathrm{ml})$ under nitrogen. N, N, N, N^{\prime}-tetraisopropyl-1-methoxyphosphanediamine ($0.24 \mathrm{ml}, 0.84 \mathrm{mmol}$) and 0.45 M 1 H -tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}(1.61 \mathrm{ml}, 0.73 \mathrm{mmol})$ were added and the mixture was stirred at room temperature for 30 minutes. The course of the phosphitylation was followed by ${ }^{31} \mathrm{P}$ NMR spectroscopy ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}: \delta=149.4$ and 149.2 ppm for the product). Methyl 2-azido-4-((4hydroxybutyl)carbamoyl)benzoate (21a) ($0.28 \mathrm{~g}, 0.96 \mathrm{mmol})$ was added in $0.45 \mathrm{M} 1 H$-tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}(4.27 \mathrm{ml}, 1.92 \mathrm{mmol})$ under nitrogen (${ }^{31} \mathrm{P}$ NMR: $\delta=139.9 \mathrm{ppm}$ for the phosphite trimester). The mixture was stirred for 5 min , and the resulted phosphite ester was oxidized with $\mathrm{I}_{2}(0.21 \mathrm{~g}, 0.84$ $\mathrm{mmol})$ in a mixture of THF $(3.0 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{ml})$ and 2,6 -lutidine $(0.75 \mathrm{ml})$ by stirring at room temperature overnight. The mixture was evaporated to dryness and the residue was dissolved in DCM and washed with 5% aq $\mathrm{NaHSO}_{3}(100 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. To reduce N_{3} to NH_{2} group, the crude product (IC) was dissolved in a mixture of THF (6.0 ml) and $\mathrm{H}_{2} \mathrm{O}(1.2 \mathrm{ml}) .1 \mathrm{M}$ trimethylphosphine solution $(0.70 \mathrm{ml})$ in toluene was added and the mixture was stirred for 15 min . The residue was dissolved in DCM and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by RP-HPLC (Thermo Scientific 250×10 Hypersil ODS $5 \mu \mathrm{~m}$, flow rate $3 \mathrm{ml} / \mathrm{min}$) by using an isocratic elution with 35% $\mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ to yield 24 as a viscous oil ($60 \mathrm{mg}, 18 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.91(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.4 \mathrm{~Hz}, \mathrm{Ar}), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.00(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 6.60(\mathrm{br} \mathrm{s}, \mathrm{NH}), 4.50-4.37(\mathrm{~m}$,$2 \mathrm{H}, \mathrm{POCH}_{2} \mathrm{C}_{\mathrm{q}}$), 4.27 (quartet, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{POCH}_{2}\right), 4.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right)$, $3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{dd}, 3 \mathrm{H}, J=11.2\right.$ and $\left.1.0 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 3.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.36(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AcS})$, $1.83-1.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.58\left(\mathrm{~d}, 3 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}_{\mathrm{q}}\right), 1.31\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.9$ (CO), 193.9 (SCO), 169.6 (COOEt), 168.0 (COOMe), 166.9 (NCO), 150.0, 139.6, 131.7, 115.9, 114.3 and $112.9(\mathrm{Ar}), 69.2$ and $69.1\left(\mathrm{POCH}_{2} \mathrm{C}_{\mathrm{q}}\right), 68.0$ and $67.9\left(\mathrm{POCH}_{2}\right), 62.4$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.2$ and 60.1 (quaternary C), 54.6 and $54.5\left(\mathrm{POCH}_{3}\right), 51.8\left(\mathrm{OCH}_{3}\right), 39.5\left(\mathrm{NCH}_{2}\right), 36.8$ and $36.7\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $30.1\left(\mathrm{CH}_{3} \mathrm{COS}\right)$, 27.6 and $25.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $17.6\left(\mathrm{CH}_{3} \mathrm{C}_{\mathrm{q}}\right), 14.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) .{ }^{31} \mathrm{P}$ NMR (202 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.46$ and -0.50 ppm ; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{PSNa}^{+}$ 613.1591; found 613.1579.

Methyl
4-((4-(()4-(acetylthio)-2,2-dimethyl-3-
oxobutoxy)(methoxy)phosphoryl)oxy)butyl)carbamoyl)-2-aminobenzoate (25). S-(4-hydroxy-3,3-dimethyl-2-oxobutyl)ethanethioate (27) ($0.136 \mathrm{~g}, 0.71 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(3.0 \mathrm{ml})$ under nitrogen. $N, N, N^{\prime}, N^{\prime}$-tetraisopropyl-1-methoxyphosphanediamine ($0.24 \mathrm{ml}, 0.83 \mathrm{mmol}$) and 0.45 M 1 H tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}(1.59 \mathrm{ml}, 0.72 \mathrm{mmol})$ were added and the mixture was stirred at room temperature for 30 minutes. The course of the phosphitylation was followed by ${ }^{31} \mathrm{P}$ NMR spectroscopy (126 $\mathrm{MHz}, \quad \mathrm{CD}_{3} \mathrm{CN}: \delta=149.2 \mathrm{ppm}$ for the product). Methyl 2-azido-4-((4hydroxybutyl)carbamoyl)benzoate (21a) ($0.29 \mathrm{~g}, 0.94 \mathrm{mmol}$) was added together with a 0.45 M 1 H tetrazole solution in $\mathrm{CH}_{3} \mathrm{CN}(4.17 \mathrm{ml}, 1.88 \mathrm{mmol})$ under nitrogen $\left({ }^{31} \mathrm{P}\right.$ NMR: $\delta=139.9 \mathrm{ppm}$ for the phosphite trimester). After 10 min stirring, the phosphite ester was oxidized with $\mathrm{I}_{2}(0.21 \mathrm{~g}, 0.83 \mathrm{mmol})$ in a mixture of THF $(3.0 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{ml})$ and 2,6-lutidine $(0.75 \mathrm{ml})$ by stirring at room temperature overnight. The solvent was evaporated and the residue was dissolved in DCM and washed with 5% aq $\mathrm{NaHSO}_{3}(100 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. To reduce N_{3} to NH_{2} group, the crude product (ID) was dissolved in a mixture of THF (6.0 ml) and $\mathrm{H}_{2} \mathrm{O}(1.2 \mathrm{ml}) .1 \mathrm{M}$ trimethylphosphine solution $(0.70 \mathrm{ml})$ in toluene was added and the mixture was stirred for 15 min . The residue was dissolved in DCM and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic phase was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by RP-HPLC (Thermo Scientific
250×10 Hypersil ODS $5 \mu \mathrm{~m}$, flow rate $3 \mathrm{ml} / \mathrm{min}$) by using an isocratic elution with $34 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ to yield 25 as a viscous oil ($23 \mathrm{mg}, 6 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.90(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{Ar})$, $7.17(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, \mathrm{Ar}), 6.98(\mathrm{dd}, 1 \mathrm{H}, J=8.5$, and $1.5 \mathrm{~Hz}, \mathrm{Ar}), 6.63(\mathrm{br} \mathrm{s}, \mathrm{NH}), 5.92\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$, 4.14-4.07 (m, 4H, $\left.\mathrm{POCH}_{2} \mathrm{C}_{\mathrm{q}}, \mathrm{POCH}_{2}\right), 3.99\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}$, $\left.\mathrm{POCH}_{3}\right), 3.55-3.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AcS}), 1.87-1.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.30$ and $1.29(2 \times \mathrm{s}$, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.7(\mathrm{CO}), 194.5(\mathrm{SCO}), 168.0(\mathrm{COOMe}), 167.0$ (NCO), 150.5, 139.6, 131.7, 115.7, 113.8 and $112.5(\mathrm{Ar}), 72.9$ and $72.8\left(\mathrm{POCH}_{2}\right), 67.8$ and 67.7 $\left(\mathrm{POCH}_{2}\right), 54.5$ and $54.4\left(\mathrm{POCH}_{3}\right), 51.7\left(\mathrm{OCH}_{3}\right), 48.8$ and 48.7 (quaternary C), $39.5\left(\mathrm{NCH}_{2}\right), 36.5\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $30.2\left(\mathrm{CH}_{3} \mathrm{CO}\right)$, 27.7, 27.6 and $25.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 21.5 and $21.5\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-$ 0.35 ppm ; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{PSNa}^{+} 555.1537$; found 555.1520 . Copies of the ${ }^{13} \mathrm{C}$ spectra of compounds 1-25.

Figure S6. $101 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 1.

Figure S7. $126 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2}$.

Figure S8. $151 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3}$.

Figure S9. $101 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 4.

Figure S10. $101 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5}$.

Figure S11. $101 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 6 .

Figure S12. $101 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 7 .

Figure S13. $101 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{8}$.

Figure S14. $101 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{9}$.

Figure S15. $151 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 0}$.

Figure S16. $101 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 11.

12

Figure S17. $101 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 12.

Figure S18. $101 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 13 .

14

Figure S19. $101 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 14.

Figure S20. $101 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right)^{13} \mathrm{C}$ NMR spectra of compound 15.

Figure S21. $126 \mathrm{MHz}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 16.

Figure S22. $126 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 17.

Figure S23. $126 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right)^{13} \mathrm{C}$ NMR spectra of compound 18.

Figure S24. $125 \mathrm{MHz}\left(\mathrm{D}_{2} \mathrm{O}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 19.

Figure S25. $126 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 0}$.

Figure S26. $151 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{CN}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 21a.

Figure S27. $126 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{CN}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 21b.

Figure S28. $126 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 22.

Figure S29. $126 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{CN}\right){ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 3}$.

Figure S30. $126 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound 24.

Figure S31. $126 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 5}$.

Copies of the ${ }^{31} \mathrm{P}$ NMR spectra of compounds 5, $9,13,15,17,19,20$ and 22-25.

Figure S32. $162 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{31} \mathrm{P}$ NMR spectra of compound $\mathbf{5}$.

Figure S33. $162 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{31} \mathrm{P}$ NMR spectra of compound $\mathbf{9}$.

PPM	${ }_{110.0}$	100.0	90.0	80.0	70.0	60.0	50.0	40.0	30.0	20.0	10.0	0.0		10 10.0

Figure S34. $202 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{CN}\right){ }^{31} \mathrm{P}$ NMR spectra of compound 13 .

Figure S35. $162 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{31} \mathrm{P}$ NMR spectra of compound 15.

	1	1						1	,	1	
PPM	160	140	120	100	80	60	40	20	0	-20	-40

Figure S36. $202 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{CN}\right){ }^{31} \mathrm{P}$ NMR spectra of compound 17.

Figure S37. $202 \mathrm{MHz}\left(\mathrm{D}_{2} \mathrm{O}\right){ }^{31} \mathrm{P}$ NMR spectra of compound 19.

Figure S38. $202 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{31} \mathrm{P}$ NMR spectra of compound 20.

Figure S39. $202 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{31} \mathrm{P}$ NMR spectra of compound $\mathbf{2 2}$.

Figure S40. $202 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{CN}\right){ }^{31} \mathrm{P}$ NMR spectra of compound $\mathbf{2 3}$.

Figure S41. $202 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right)^{31} \mathrm{P}$ NMR spectra of compound 24.

Figure S42. $202 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{31} \mathrm{P}$ NMR spectra of compound $\mathbf{2 5}$.

Copies of the ${ }^{\mathbf{1}} \mathbf{H}$ spectra of compounds $\mathbf{1 - 2 5}$.

10	9	8	7	6	5	4	3	2	1	0	-1	-2	ppm

Figure S43. $400 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1}$.

Figure S44. $400 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 2.

10	9	8	7	6	5	4	3	2	1	0	-1

Figure S45. $400 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3}$.

Figure S46. $400 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR spectra of compound 4.

Figure S47. $400 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 5.

Figure S48. $400 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 6 .

Figure S49. $400 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 7.

Figure S50. $400 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{8}$.

Figure S51. $400 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 9 .

Figure S52. $600 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1 0}$.

Figure S53. $600 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 11.

Figure S54. $400 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1 2}$.

Figure S55. $500 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{CN}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 13 .

Figure S56. $400 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 14.

Figure S57. $400 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1 5}$.

Figure S58. $500 \mathrm{MHz}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 16.

Figure S59. $500 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 17 .

18

Figure S60. $500 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR spectra of compound 18.

Figure S61. $500 \mathrm{MHz}\left(\mathrm{D}_{2} \mathrm{O}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 19.

Figure S62. $500 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{2 0}$.

Figure S63. $600 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{CN}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 21a.

Figure S64. $500 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{CN}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 21b.

Figure S65. $500 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{2 2}$.

Figure S66. $500 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{CN}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 23.

Figure S67. $500 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR spectra of compound 24.

Figure S68. $500 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR spectra of compound 25.

REFERENCES

1. Kiuru, E., Ahmed, Z., Lönnberg, H., Beigelman, L. \& Ora, M. 2,2-Disubstituted 4-acylthio-3-oxobutyl groups as esterase- and thermo-labile protecting groups of phosphodiesters. J. Org. Chem. 78, 950-959 (2013).
2. Leisvuori, A. Lönnberg, H. \& Ora, M. Acetylthio-2,2-dimethyl-3-oxobutyl group as an esterase- and thermo-labile protecting group for oligomeric phosphodiesters Eur. J. Org. Chem. 5816-5826 (2014).
3. Defrancq, E \& Lhomme, J. Use of an aminooxy linker for the functionalization of oligodeoxyribonucleotides. Bioorg. Med. Chem. Lett. 11, 931-933 (2001).
4. Cebon, B., Lambert, J. N., Leung, D., Mackie, H., McCluskey, K. L., Nguyen, X. \& Tassone, C. New DNA modification strategies involving oxime formation. Aust. J. Chem. 53, 333-339 (2000).
5. Siddiqui, N., Arshad, M. F. \& Khan, S. A. Synthesis of some new coumarin incorporated thiazolyl semicarbazones as anticonvulsants. Acta Pol. Pharm. Drug Res. 66, 161-167 (2009).
6. Abdel-Wahab B. F., Mohamed, H. A. \& Farhat, A. A. Ethyl coumarin-3-carboxylate: synthesis and chemical properties. Org. Commun. 7, 1-27 (2014).
7. Al-Kindy, S. M. Z. \& Miller, J. N. Coumarin-6-sulphonyl chloride: A novel label in fluorimetry and phosphorimetry. Anal. Chim. Acta 227, 145-153 (1989).
8. Bahekar, S. P., Sarode, P. B. Agrawal, N. R. \& Chandak, H. S. Synthesis of some sulfonamide chalcones of biological interest. IJCPS 2015, 4, 99-104.
9. Kolaczek, A., Fusiarz, I., Lawecka, J. \& Branowska, D. Biological activity and synthesis of sulfonamide derivatives: a brief review. CHEMIK 68, 620-628 (2014).
10. Joshi, P., Tripathi, M. \& Rawat, D. S. Synthesis and characterization of novel 1,2,3-triazole-linked theophylline and coumarin s-triazines. Ind. J. Chem. 53B, 311-318 (2014).

[^0]: ${ }^{1}$ Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland; ${ }^{2}$ Cancer Cell Biology and Drug Discovery Group, Life Sciences Research Unit, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; ${ }^{3}$ Department of Chemistry, University of Turku, 20014 Turku, Finland; ${ }^{4}$ Chemistry of Natural Compounds Department, National Research Centre, Dokki, 12622 Giza, Egypt; ${ }^{5}$ NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA

[^1]: * Corresponding author: daniel.abankwa@uni.lu

[^2]: HEK cells co-expressing mGFP or mCherry tagged H-RasG12V. After 24 h of transfection, cells were treated with $5 \mu \mathrm{M}$ of indicated compounds, $\mathrm{n}=2$. (D,E) Sphere formation efficiency (SFE) of MDA-MB-231 cells (D), $n \geq 4$, and Hs 578T cells (E) $n \geq 4$, cultured in suspension culture followed by a 72 h incubation with $5 \mu \mathrm{M}$ of indicated compounds. (F,G) SFE of MDA-MB-231 cells (F) and Hs 578T cells (G) either untreated or transfected with 50 nM of scrambled siRNA, siPDE6D, siKRAS or siHRAS. (H,I) RT-qPCR analysis of knockdown efficiency of siKRAS and siHRAS in MDA-MB-231 cells (H) and Hs578T cells (I); $\mathrm{n}=1$. The figures represent mean values \pm SEM. Statistical significance levels are annotated as ns, not significant; ${ }^{*} \mathrm{p}<0.05 ; * * \mathrm{p}<0.01 ;{ }^{* * *} \mathrm{p}<0.001 ; * * * * \mathrm{p}<0.0001$; ns, not significant.

