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Section S1. Physical Methods

The supercritical drying process used a TousimisTM Samdri PVT-3D critical point drier in which liquid CO2 was 
used to exchange ethanol 4 times over 8 h. The material was then heated above 31 °C (P = 73 atm), the critical 
point of CO2 before the instrument was evacuated at a rate of 0.1 sccm.1–3

All MOF samples were activated by exposure of 20 to 100 mg of material for 12 hours under high vacuum on a 
Micromeritics Smart VacPrep instrument. N2 adsorption and desorption isotherm measurements were performed 
on a Micromeritics Tristar II at 77 K. DFT calculated pore size distributions used the slit geometry and the N2 @ 
77 on carbon slit pores by NLDFT kernel.

Inductively coupled plasma optical emission spectroscopy (ICP-OES) samples of solids were prepared in a 2-5 
mL Biotage microwave vial by dissolving 1-2 mg of sample in 5 drops of H2SO4 and slowly adding 2 mL of HNO3. 
The vial was cringe-capped and heated to 150 °C for 15 min in a SPX microwave reactor. The resulting orange-
yellow solution was made colorless by adding 0.5 mL H2O2 (30 wt% in water) and heating in a sand bath for 10 
min. To the colorless or pale solution, 10 mL of deionized water was added, and the resulting dilution analyzed 
with Thermo iCap7600 ICP-OES spectrometer, equipped with a CCD detector and Ar plasma covering 175-785 
nm range. 

Powder X-ray diffraction (PXRD) patterns were collected on a Stoe STADI-P instrument. Samples were using 
Kα1 Cu radiation, a step size of 2θ = 0.015° over a 2θ range of 1 to 25°. Variable temperature powder X-ray 
diffraction (PXRD) patterns were collected on a Stoe STADI-MP instrument equipped with a furnace using Kα1 
Mo radiation.

Solution NMR spectra were collected on a 400 MHz Agilent DD MR-400 system at IMSERC (Integrated 
Molecular Structure Education and Research Center) at Northwestern University. Solid-state NMR spectra were 
collected on a Bruker 400 MHz NMR system spinning at 10,000 Hz.

Scanning electron microscopy (SEM) images and energy dispersive spectroscopy (EDS) line scans were 
collected using a Hitachi SU8030 FE-SEM microscope at Northwestern University's EPIC/NUANCE facility. All 
samples were coated with ~15 nm of OsO4 immediately prior to imaging.

GC-FID measurements were carried out on an Agilent Technologies 7820A GC system equipped with an 
Agilent J&W GC HP-5 capillary column (30 m × 320 μm × 0.25 μm film thickness). All samples were filtered and 
diluted with dichloromethane prior to injection. Starting temperature: 70 °C, Hold: 0.5 min, Ramp: 30 °C/min, 
Time: 1 min, Ramp: 75 °C/min, End temperature: 250 °C. 

Thermogravimetric analyses (TGA) were performed on a Mettler Toldeo STARe TGA/DSC 1 under a N2 flow at 
a 10 °C/min ramp rate from 25 to 700 °C. For TGA-MS measurements, a Netzsch Simultaneous Thermal 
Analysis (STA 449F3) instrument coupled to a GC-MS was used.

X-ray photoelectron spectroscopy measurements were carried out on a Thermo Scientific ESCALAB 250 Xi 
equipped with an electron flood gun and a scanning ion gun. Analysis used the Thermo Scientific Avantage Data 
System software, and C1s peak (284.8 eV) peak was used as the reference. Oxidation states of Mo and V were 
assigned by comparison to previously published data.4,5
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Section S2. Composite Characterization

Figure S1. SEM images of NU-1000 before (left) and after (right) [PV2Mo10O40]5- incorporation. EDS line scans of 
Mo and Zr compared to baseline Zn. 

 

Figure S2. Gravimetric N2 adsorption (filled) and desorption (unfilled) isotherms for NU-1000 and composites with 
[PV2Mo10O40]5-.
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Figure S3. Volumetric DFT-calculated pore size distributions of NU-1000 and PV2Mo10@NU-1000.

Figure S4. Indexed PXRD patterns of NU-1000, PV2Mo10@NU-1000-scCO2, and PV2Mo10@NU-1000-80°C.
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Figure S5. In situ variable temperature PXRD patterns for PV2Mo10@NU-1000-scCO2. N (y-axis) indicates the 
number of scans taken at 80 °C. Each scan is 1 min apart. The horizontal dotted white line highlights where the 
structural change occurs. 

Figure S6. 31P CPMAS NMR spectra of H5PV2Mo10O40 and PV2Mo10@NU-1000. 
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Figure S7. XPS spectra of PV2Mo10@NU-1000-scCO2 (top) and PV2Mo10@NU-1000-80°C (bottom) for Mo (left) 
and V (right). 
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Section S3. Catalytic Studies

Figure S8. XPS spectra of PV2Mo10@NU-1000-scCO2 (top) and PV2Mo10@NU-1000-80°C (bottom) after 
catalysis for Mo (left) and V (right). Note, that the POMs were not kept rigorously under air-free conditions post-
catalysis and could have partially oxidized V.  
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Figure S9. The kinetic traces with error bars of each material used for reaction (Figure 3A). Catalyst is 
normalized to the number of POM clusters, the reductant is isobutyraldehyde, 1 mL cyclohexane was used as 
solvent. Traces are averages of at least 3 trials. Error bars represent 1 standard deviation.
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Figure S10. Gravimetric N2 adsorption (filled) and desorption (unfilled) isotherms for PMo12@NU-1000 after 
scCO2 activation (BET: 1450 m2/g).

Figure S11. Indexed PXRD pattern for PMo12@NU-1000 after scCO2 activation showing POMs primarily located 
in micropores.
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Table S1. Reaction conditions tuning amount of reductant, temperature, atmosphere, and solvent collected at 45 
min. 

Catalyst Reductan
t

Temperature 
(°C)

Atmosphere Solvent Conversion 
(%)

H5PV2Mo10O40 5 eq 70 O2 Cyclohexane 100
H5PV2Mo10O40 5 eq 70 Air Cyclohexane 23
H5PV2Mo10O40 5 eq 70 N2 Cyclohexane <1
H5PV2Mo10O40 2 eq 70 O2 Cyclohexane 27
H5PV2Mo10O40 1 eq 70 O2 Cyclohexane 3
H5PV2Mo10O40 0 eq 70 O2 Cyclohexane 1
H5PV2Mo10O40 5 eq 22 O2 Cyclohexane 14
H5PV2Mo10O40 5 eq 70 O2 Acetonitrile 9
H3Mo12O40 5 eq 70 O2 Cyclohexane 4
NU-1000 5 eq 70 O2 Cyclohexane <1
PMo12@NU-1000 5 eq 70 O2 Cyclohexane 5
PV2Mo10@NU-1000-scCO2 5 eq 70 O2 Cyclohexane 100
PV2Mo10@NU-1000-80°C 5 eq 70 O2 Cyclohexane 100
Recycled PV2Mo10@NU-1000 5 eq 70 O2 Cyclohexane 100
Recycled H5PV2Mo10O40 5 eq 70 O2 Cyclohexane 5



S11

Section S4. References

(1) Nelson, A. P.; Farha, O. K.; Mulfort, K. L.; Hupp, J. T. Supercritical Processing as a Route to High Internal 
Surface Areas and Permanent Microporosity in Metal - Organic Framework Materials. J. Am. Chem. Soc. 
2009, 131, 458–460.

(2) Farha, O. K.; Shultz, A. M.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. Active-Site-Accessible, Porphyrinic 
Metal À Organic Framework Materials. J. Am. Chem. Soc. 2011, 133, 5652–5655.

(3) Shultz, A. M.; Farha, O. K.; Adhikari, D.; Sarjeant, A. A.; Hupp, J. T.; Nguyen, S. T. Selective Surface and 
Near-Surface Modification of a Noncatenated, Catalytically Active Metal-Organic Framework Material 
Based on Mn(salen) Struts. Inorg. Chem. 2011, 50, 3174–3176.

(4) Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; De Gryse, R. Determination of the V2p XPS binding 
energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectros. Relat. Phenomena 
2004, 135 (2–3), 167–175.

(5) Choi, J.-G.; Thompson, L. T. XPS study of as-prepared and reduced molybdenum oxides. Appl. Surf. Sci. 
1996, 93 (2), 143–149.


