
Dietary supplementation of n-3 long chain LCPUFAs prevents salmonellosis in a murine model

Running title: n-3 LCPUFAs prevent Salmonella infection

Junsheng Liu^{a,b,c,d*}, Hongxuan Huang^{b,c*}, Qin Yang^{b,c,e}, Jianxin Zhao^{b,c,d}, Hao Zhang^{b,c,d}, Wei Chen^{b,c,d,f}, Xichun Peng^{a#}, Zhennan Gu^{b,c#}

- ^a Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, P. R. China
- ^b State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- ^c School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- d National Engineering Research Center for Functional Food, Jiangnan University,
 Wuxi, Jiangsu 214122, P. R. China
- ^e Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China ^f Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, P. R. China
- * These authors contributed equally to this study
- # Corresponding author: Dr. Xichun Peng, tpxchun@jnu.edu.cn, Tel +86-20-85226630; Dr. Zhennan Gu, zhennangu@jiangnan.edu.cn, Tel +86-0510-85197703.

Supporting Information

Figure 1 Effects of n-3 and n-6 LCPUFAs on the expression of tight junction proteins. Mice were pretreated with regular diet (control and model), n-3 LCPUFAs-enriched diet (n-3), and n-6 LCPUFAs-enriched diet (n-6) for 7 d. Mice from model, n-3, and n-6 groups were infected with *Salmonella*. When sacrificed at 2 d post-infection, mice colon was dissected, and the mRNA expression of tight junction proteins (β-actin, ZO-1, Occludin, and Claudin-1) were determined by PCR.

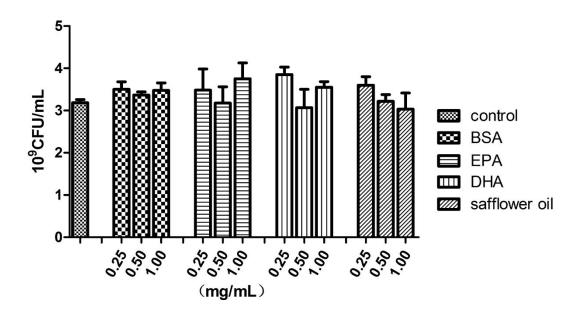
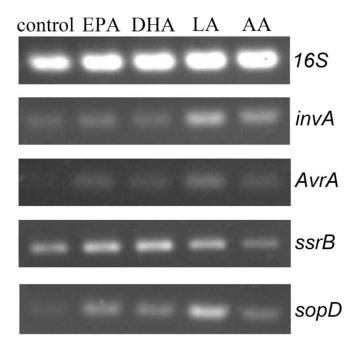



Figure 2 LCPUFAs did not exert antibacterial effects against Salmonella growth.

EPA, DHA, and safflower oil (LA) were added into culture media broth with final concentrations of 0.25 mg/ml, 0.50 mg/ml, and 1.00 mg/ml. *S.* Typhimurium SL1344 was inoculated in these media and incubated for 12 h. Control: LB broth; BSA: BSA-modified LB broth; EPA: BSA-modified LB broth with EPA supplement; DHA: BSA-modified LB broth with DHA supplement; safflower oil: BSA-modified LB broth with safflower oil supplement.

Figure 3 LCPUFAs did not influence the gene expression of virulence effectors of Salmonella. EPA, DHA, safflower oil (LA), and arachidonic acid (AA) were added to the culture medium of HT-29 cells, and cells were cultured in these modified media overnight. HT-29 cells were infected with *S.* Typhimurium SL1344 for 60 min. Then, the transcription of *invA*, *AvrA*, *ssrB*, and *sopD* was determined by PCR.

Table 1 Fatty acid composition of different diets

Fatty acids	control	n-3	n-6
C14:0	1.69 ± 0.09	1.08 ± 0.00	1.30 ± 0.11
C16:0	18.15 ± 0.20	10.79 ± 0.07	14.80 ± 0.06
C16:1	2.21 ± 0.16	1.37 ± 0.01	1.57 ± 0.30
C18:0	4.11 ± 0.34	2.71 ± 0.04	4.42 ± 0.19
C18:1	25.77 ± 0.08	16.42 ± 0.15	22.99 ± 0.25
C18:2 (LA, n-6)	37.17 ± 0.24	22.81 ± 0.61	48.98 ± 0.86
C18:3	2.93 ± 0.10	1.77 ± 0.07	2.59 ± 0.55
C21:4	ND	0.65 ± 0.03	ND
C22:4	ND	1.88 ± 0.04	ND
C21:4	ND	0.94 ± 0.01	ND
C20:5 (EPA, n-3)	3.28 ± 0.18	18.27 ± 0.06	2.53 ± 0.22
C22:6 (DHA, n-3)	3.83 ± 0.30	21.33 ± 0.67	2.71 ± 0.11

ND: not detected.

Table 2 Gene primers of mouse tight junction proteins and cytokines

genes	Forward primer (3'-5')	Reverse primer (3'-5')
β-actin	GGCTGTATTCCCCTCCATCG	CCAGTTGGTAACAATGCCATGT
ZO-1	TGAGTGAAGAACTGTCAGGCATTG	CCCCATTTACTGGCTGGTATTTT
Claudin-1	TGAGTGGCTGTGCTAACC	TTGACAGATGGGAAAACGAGGTA
Occuludin	AGAGGATGGTGGGAGATTATGACA	CAATACTGGAGATAGGAAACTGATGG
		A
TNF-α	AGGGTCTGGGCCATAGAACT	CCACCACGCTCTTCTGTCTAC
IL-1β	CTGAACTCAACTGTGAAATGC	TGATGTGCTGCGAGA
<i>IL-6</i>	CTCTGCAAGAGACTTCCATCCAGT	GAAGTAGGGAAGGCCGTGG
IL-10	CCCTTTGCTATGGTGTCCTT	TGGTTTCTCTTCCCAAGACC
IFN-γ	TTTGAGGTCAACAACCCACAGG	ACAACCCCGCAATCACAGTCT

Table 3 Gene primers of Salmonella virulence effectors

genes	Forward primer (3'-5')	Reverse primer (3'-5')
16S	CGATGTCTACTTGGAGGTTGTG	CTCTGGAAAGTTCTGTGGATGTC
ssrB	AACCTCATTCTTCGGGCACAG	ACGAGCCTGACATACTTATCCTTGA
AvrA	AAACACCGAAGCATTGACCTGT	CCGATGTCTTTCCGTCCATAACT
invA	GAAATGGCAGAACAGCGTCG	CAACCAGATAGGTAGGTAATGGAATG
		A
sopD	TCGAAGATGACCTGGCACCC	TGAGTCGTAGGCTCAAAGTTACCG