Assembling Ni-Fe Layered Double Hydroxide 2D

Thin Films for Oxygen Evolution Electrodes

- Supporting information -

Massimo Rosa,^{1,*} Victor Costa Bassetto,² Hubert H.Girault,² Andreas Lesch,^{3,*} Vincenzo Esposito^{1,*}

¹ DTU Energy, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, 4000, Roskilde, Denmark

² Laboratory of Physical and Analytical Electrochemistry, École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, Rue de l'Industrie 17, CH-1950 Sion, Switzerland.

³ Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy.

* CORRESPONDING AUTHORS FOOTNOTE

EMAILS: andreas.lesch@unibo.it, vies@dtu.dk, massimo.rosa@ymail.com

Table of content

- SI-1. TEM image of Ni-Fe LDH
- SI-2. Design of printed patterns
- SI-3. Scotch tape test
- SI-4. Ultra-low LDH loadings on GC

SI-5. Comparison of the OER activity of the inkjet printed Ni-Fe LDH electrode with other recently reported Ni-Fe LDH materials

SI-6. Polarization curves

SI-7. Durability test of the inkjet printed Ni-Fe LDH/GC electrode

SI-1. TEM image of Ni-Fe LDH

Figure S1 reports an additional TEM image of the Ni-Fe LDH. The low contrast of the platelets at 300 kV highlights the reduced thickness of the particles. The dark elongated particles are Ni-Fe LDH particles oriented perpendicular to the TEM grid.

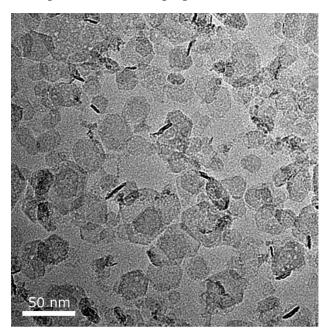
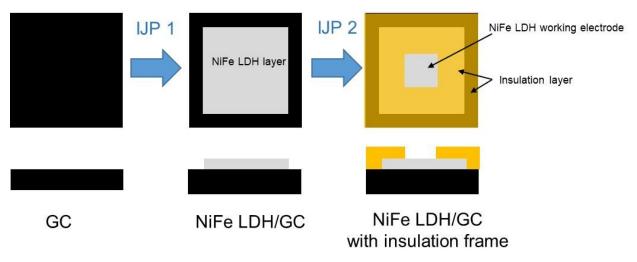
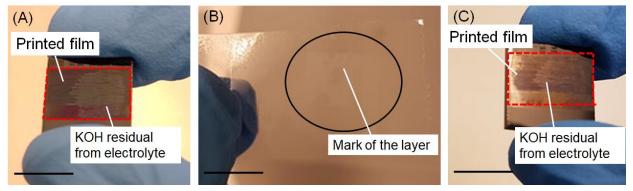
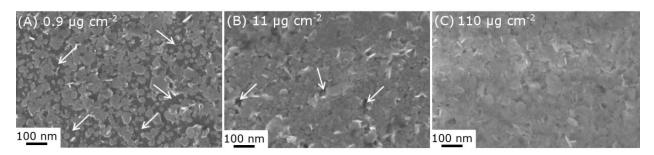


Figure S1: BF-TEM image of the NiFe LDH particles.

SI-2. Design of printed patterns

Figure S2 shows schematically the fabrication process of the electrode shown in **Fig. 4a** by using inkjet printing.


Figure S2. Schematic representation of the test electrode structure from Fig. 4a using multi-layer inkjet printing. Top: top view. Bottom: side view.

SI-3. Scotch tape test

Figure S3. Result of the scotch tape test for estimating the adhesion of a Ni-Fe LDH inkjet printed film on GC. (A) Printed film before the tape test. The red dotted line indicates the printed area on GC. The image also shows the presence of a KOH residual formed after drying of the supporting electrolyte used in the electrochemical tests of this sample. (B) Photo of the tape after testing. The black circle indicates a very weak mark left by a slight detachment of material. (C) The printed film after the tape test, showing the presence of material adhered on the substrate.

SI-4. Ultra-low LDH loadings on GC

Figure S4. SEM of LDH layers with different loadings. (A) 0.9 μ g cm⁻², (B) 11 μ g·cm⁻² and (C) 110 μ g·cm⁻². White arrows indicate uncovered substrate spots.

SI-5. Comparison of the OER activity of the inkjet printed Ni-Fe LDH electrode with other

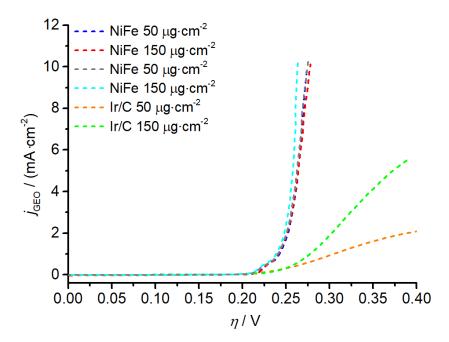

recently reported Ni-Fe LDH materials

Table S1. List of Ni-Fe LDH from the literature with material support, synthesis method, concentration of electrolyte solution, onset potential, overpotential, Tafel slope and nominal Ni:Fe ratio.

Electrocatalyst	Support/ composite material	Synthesis	Concentration of KOH Electrolyte	Onset potential / mV vs. <i>E</i> ° (O ₂ ,H ₂ O) = 1.23 V	Overpotential @ 10 mA/cm ⁻² current density / mV vs. <i>E</i> ° (O ₂ ,H ₂ O) = 1.23 V	Tafel slope / mV· dec ⁻¹	Nominal Ni:Fe ratio	Ref.
NiFe LDH	GC	CHFS	0.1 M	-	280	32	3:1	This work
Ni-Fe-LDH	sandblasted Ni plates, Ni foam	Batch Hydrothermal	1 M	-	280	37	optimum 7:3/3:2	1
NiFe-LDH/Fe-N- carbon nanofibers	GC	Batch Hydrothermal	1 M	-	263	81	3:1	2
NiFe-LDH	GC	Batch Hydrothermal	1 M	420 (vs MOE)	197	100	2.9:1	3
NiFe-LDH/oxygen- decorated graphene/single- walled CNT hybrids	GC	Urea assisted co-precipitation with oGSHs as the substrate	0.1 M	240	350	54	3:1	4
NiFe-LDH/CNT	GC and carbon fiber paper	Batch Solvothermal	0.1 M 1 M	270 220	290 250	35 31	5:1	5
NiFe-LDH/Ni foam	Ni foam	Potentiostatic deposition	1 M	-	269	48	1:1	6
NiFe-LDH platelets	GC	Batch Hydrothermal	1 M	-	350	65	3:1	7
Exfoliated nanosheets					300	40	3:1	
NiFe-LDH intercalated with SDS	Carbon fiber paper	Batch Hydrothermal	1 M	-	289	39	2:1	8
NiFe LDH/ Graphene oxide Best: rGO	Ni Foam	Batch Hydrothermal	1 M	190	205	39	3:1	9
NiFe LDH/Carbon Dot	GC	Batch Solvothermal	1 M	210	230	30	5:1	10
NiFe LDH	Ni Foam	Batch Hydrothermal	0.1 M	230	240	50	3:1	11

SI-6. Polarization curves

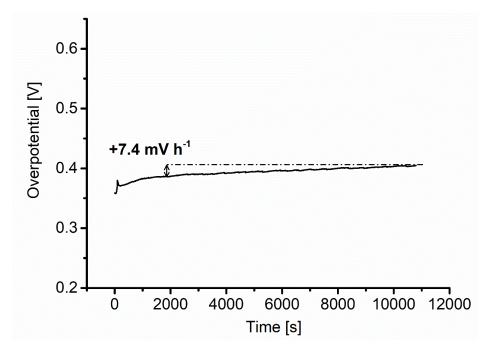

Polarization curves of four Ni-Fe LDH samples printed with loadings of 50 and 150 μ g· cm⁻² are shown (two curves from **Fig. 5(b)**). For clarity, only voltammograms recorded before the aging step are reported.

Figure S5: Additional polarization curves of samples printed with loadings of 50 (grey) and 150 (blue) μ g·cm⁻². The remaining curves correspond to the voltammograms in **Fig. 5(b)**.

SI-7. Durability test of the inkjet printed Ni-Fe LDH/GC electrode

Chronopotentiometric experiment with the RDE were carried out for 3h with a current density of 10 mA cm^{-2} and rotating speed of 1600 rpm.

Figure S6. Chronopotentiometric durability test at 10 mA cm⁻² performed in RDE configuration of a Ni-Fe LDH sample printed on a glassy carbon rod with a loading of 60 μ g cm⁻² previously cycled 50 times. The overpotential is not *iR*-corrected.

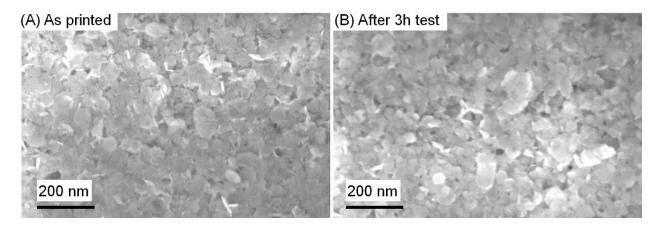


Figure S7. SEM of the Ni-Fe LDH/GC electrode before (A) and after (B) the durability test.

References

- Lee, S.; Cho, H.-S.; Cho, W.-C.; Kim, S.-K.; Cho, Y.; Kim, C.-H. Operational Durability of Three-Dimensional Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. *Electrochim. Acta* 2019. https://doi.org/10.1016/j.electacta.2019.05.088.
- Sun, W.; Du, L.; Du, C.; Gao, Y.; Yin, G. Three-Dimensional Layered Double Hydroxides on Carbon Nanofibers: The Engineered Mass Transfer Channels and Active Sites towards Oxygen Evolution Reaction. *Appl. Surf. Sci.* 2019, *485*, 41–47. https://doi.org/10.1016/j.apsusc.2019.03.335.
- Zhang, H.; Li, H.; Akram, B.; Wang, X. Fabrication of NiFe Layered Double Hydroxide with Well-Defined Laminar Superstructure as Highly Efficient Oxygen Evolution Electrocatalysts. *Nano Res.* 2019. https://doi.org/10.1007/s12274-019-2284-0.
- Zhu, X.; Tang, C.; Wang, H. F.; Zhang, Q.; Yang, C.; Wei, F. Dual-Sized NiFe Layered Double Hydroxides in Situ Grown on Oxygen-Decorated Self-Dispersal Nanocarbon as Enhanced Water Oxidation Catalysts. *J. Mater. Chem. A* 2015, *3* (48), 24540–24546. https://doi.org/10.1039/c5ta08019c.
- Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. *J. Am. Chem. Soc.* 2013, *135* (23), 8452–8455. https://doi.org/10.1021/ja4027715.
- Liu, Y.; Liang, X.; Gu, L.; Zhang, Y.; Li, G. D.; Zou, X.; Chen, J. S. Corrosion Engineering towards Efficient Oxygen Evolution Electrodes with Stable Catalytic Activity for over 6000 Hours. *Nat. Commun.* 2018, 9 (1), 1–10. https://doi.org/10.1038/s41467-018-05019-5.
- Song, F.; Hu, X. Exfoliation of Layered Double Hydroxides for Enhanced Oxygen Evolution
 Catalysis. *Nat. Commun.* 2014, *5*, 1–9. https://doi.org/10.1038/ncomms5477.
- (8) Zhong, H.; Cheng, X.; Xu, H.; Li, L.; Li, D.; Tang, P.; Alonso-Vante, N.; Feng, Y. Carbon Fiber Paper Supported Interlayer Space Enlarged Ni2Fe-LDHs Improved OER Electrocatalytic Activity. *Electrochim. Acta* **2017**, *258*, 554–560. https://doi.org/10.1016/j.electacta.2017.11.098.
- (9) Long, X.; Li, J.; Xiao, S.; Yan, K.; Wang, Z.; Chen, H.; Yang, S. A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction.

Angew. Chemie - Int. Ed. 2014, 53 (29), 7584–7588. https://doi.org/10.1002/anie.201402822.

- (10) Tang, D.; Liu, J.; Wu, X.; Liu, R.; Han, X.; Han, Y.; Huang, H.; Liu, Y.; Kang, Z. Carbon Quantum Dot/NiFe Layered Double-Hydroxide Composite as a Highly Efficient Electrocatalyst for Water Oxidation. ACS Appl. Mater. Interfaces 2014, 6 (10), 7918–7925.
 https://doi.org/10.1021/am501256x.
- (11) Lu, Z.; Xu, W.; Zhu, W.; Yang, Q.; Lei, X.; Liu, J.; Li, Y.; Sun, X.; Duan, X. Three-Dimensional NiFe Layered Double Hydroxide Film for High-Efficiency Oxygen Evolution Reaction. *Chem. Commun.* 2014, *50* (49), 6479–6482. https://doi.org/10.1039/c4cc01625d.