Supporting Information

Palladium-Catalyzed Three-Component Tandem
Coupling-Carboannulation Reaction Leading to Polysubstituted
[60]Fullerene-Fused Cyclopentanes

Qingfeng Liu, Tong-Xin Liu,* Jinliang Ma, and Guisheng Zhang*

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

E-mail: liutongxin_0912@126.com and zgs6668@yahoo.com

Table of Contents

1. General Information	S2
2. Experimental Procedures	S3-S4
3. UV-vis Spectra of Representative Compounds	S5-S13
4. CVs of Selected Compounds	S14-S17
5. Synthesis and Spectral Data for Compounds 4 and 6	S18-S33
6. ¹ H NMR and ¹³ C NMR Spectra of Compounds 4 and 6	S34-S69

1. General Information

Unless otherwise specified, all reagents were purchased as reagent grade and used without further purification. Pd(PPh₃)₄ and (hetero)aryliodides were purchased from Innochem. Rb₂CO₃ purchased from Chemical. was Energy 2-(buta-2,3-dien-1-yl)malonates **2a**, ¹ **2b**, ¹ **2c**, ² **2d**, ³ **2e**, ^{1b,4} **2f**, ^{1b} and aryliodide **3o**⁵ was prepared by following the literature procedure. 1,2-Dichlorobenzene (ODCB) were treated with CaH₂. ¹H NMR (400 and 600 MHz) and ¹³C NMR (100 and 150 MHz) were registered on Bruker 400 and 600 M spectrometers with tetramethylsilane (TMS) as internal standard. UV-vis Spectra were recorded on Shimadzu UV-1700. CVs were recorded on CHI660E. FT-IR was registered on Thermo Nicolet NEXUS 670 FTIR. HRMS were measured on Bruker Ultraflextreme MALDI-TOF/TOF using E-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as a matrix.

References:

- (1) (a) Naidu, V. R.; Posevins, D.; Volla, C. M. R.; Bäckvall, J.-E. Angew. Chem. Int. Ed. **2017**, 56, 1590. (b) Tsukamoto, H.; Ito, K.; Doi, T. Chem. Commun. **2018**, 54, 5102.
- (2) C érat, P.; Gritsch, P. J.; Goudreau, S. R.; Charette, A. B. Org. Lett. 2016, 18, 1410.
- (3) Meguro, M.; Yamamoto, Y. J. Org. Chem. 1999, 64, 694.
- (4) Ahmar, M.; Cazes, B.; Gore, J. Tetrahedron, 1987, 43, 3453.
- (5) Deng, R.; Huang, Y.; Ma, X.; Li, G.; Zhu, R.; Wang, B.; Kang, Y.-B.; Zhenhua Gu,Z. J. Am. Chem. Soc. 2014, 136, 4472.

2. Experimental Procedures

General Procedure for the Synthesis of Products 4: A dry 15-mL tube equipped with a magnetic stirrer was charged with C_{60} (36.0 mg, 0.05 mmol), 2a (0.1 mmol), 3a (0.1 mmol), $Pd(PPh_3)_4$ (5.8 mg, 0.005 mmol). After dissolving the solids in anhydrous ODCB (4 mL) and MeCN (1 mL) by sonication, the sealed tube was stirred in an oil bath preset at a designated temperature for a desired time (monitored by TLC) in air. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS_2 as the eluent to recover unreacted C_{60} , and then the eluent was switched to CS_2/DCM to give product 4.

Typical Procedure for the Synthesis of Product 4aa from $Pd(PPh_3)_4$ —catalyzed Reaction of C_{60} with Substrates 2a and 3a at a minimum 1 mmol scale: A dry 200-mL tube equipped with a magnetic stirrer was charged with C_{60} (720.0 mg, 1.0 mmol), 2a (0.368 g, 2.0 mmol) and 3a (0.408 g, 2.0 mmol) and $Pd(PPh_3)_4$ (0.116 g, 0.10 mmol). After dissolving the solids in anhydrous ODCB (80 mL) and MeCN (20 mL) by sonication, the sealed tube was stirred in an oil bath at 100 °C for 4 h in air. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS_2 as the eluent to recover unreacted C_{60} (0.360 g), and then the eluent was switched to CS_2/DCM (v/v = 8:1) to give product 4aa: (0.303 g, 31%).

Transformations of C_{60} -Fused Cyclopentane **4aa**: A 50-mL tube equipped with a magnetic stirrer was charged with **4aa** (49.0 mg, 0.05 mmol) and NaOH (20.0 mg, 0.50 mmol). After dissolving the solids in CB (16 mL) and MeOH (4 mL) by sonication, the sealed tube was stirred in an oil bath at 80 °C for 18 h in air, and then

acidified with 0.4 mL of acetic acid. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with $CS_2/DCM/EtOAc$ (v/v/v = 10:5:2) as the eluent to give product 6 (30.0 mg, 66%).

Procedures for UV-Vis Spectra Recording: A dry 100-mL volumetric flask was charged with the product $4 (1.4 \times 10^{-3} \sim 1.6 \times 10^{-3} \text{ mmol})$. After dissolving the solid with 100 mL of CHCl₃ by sonication, a small amount of sample solution is added to a cuvette and then placed in the UV-vis spectrophotometer to record the UV-vis spectrum of product 4.

Procedures for Electrochemical Characterization Recording: In dry 15-mL electrolytic cup, 2.0×10⁻³ mmol of product **4**, 2 mL of the solution of (*n*-Bu)₄NClO₄ in ODCB (0.1 M), and 18 μL of the solution of ferrocene in ODCB (0.054 M) was added, respectively. After sonication, three different electrodes (reference electrode: SCE; working electrode: Pt; auxiliary electrode: Pt wire) were placed in the sample solution, then running electrochemical workstation recorded the cyclic voltammogram (CV) of product **4** under argon atmosphere.

3. UV-vis Spectra of Compounds

Figure S1. UV-vis spectrum of compound 4aa in CHCl₃

Figure S2. UV-vis spectrum of compound 4ab in CHCl₃

Figure S3. UV-vis spectrum of compound 4ac in CHCl₃

Figure S4. UV-vis spectrum of compound 4ad in CHCl₃

Figure S5. UV-vis spectrum of compound 4ae in CHCl₃

Figure S6. UV-vis spectrum of compound 4af in CHCl₃

Figure S7. UV-vis spectrum of compound 4ag in CHCl₃

Figure S8. UV-vis spectrum of compound 4ah in CHCl₃

Figure S9. UV-vis spectrum of compound 4ai in CHCl₃

Figure S10. UV-vis spectrum of compound 4aj in CHCl₃

Figure S11. UV-vis spectrum of compound 4ak in CHCl₃

Figure S12. UV-vis spectrum of compound 4al in CHCl₃

Figure S13. UV-vis spectrum of compound 4am in CHCl₃

Figure S14. UV-vis spectrum of compound 4an in CHCl₃

Figure S15. UV-vis spectrum of compound 4ao in CHCl₃

Figure S16. UV-vis spectrum of compound 4ap in CHCl₃

Figure S17. UV-vis spectrum of compound 4ba in CHCl₃

Figure S18. UV-vis spectrum of compound 6 in CHCl₃

4. CVs of Selected Compounds

Cyclic voltammogram of compound **4aa** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound 4ac (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound 4ag (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound 4ah (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound 4aj (scanning rate: 20 mV s^{-1})

Cyclic voltammogram of compound 4ak (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound 4am (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound 4ao (scanning rate: 20 mV s⁻¹)

5. Synthesis and Spectral Data for Compounds 4 and 6

Compound 4aa: the product mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS_2/DCM (v/v = 8:1) as the eluent to give 4aa (16.7 mg, 34%), amorphous brown solid; ¹H NMR (600 MHz, CDCl₃) δ 7.45–7.44 (m, 2H), 7.20–7.18 (m, 3H), 5.71 (s, 1H), 5.70 (s, 1H), 5.32 (dd, J = 14.4, 3.6 Hz, 1H), 4.16 (t, J = 14.4Hz, 1H), 4.10 (s, 3H), 3.80 (s, 3H), 3.19 (dd, J = 13.2, 4.2 Hz, 1H); ${}^{13}C\{{}^{1}H\}$ NMR $(150 \text{ MHz}, \text{ CDCl}_3/\text{CS}_2) \ \delta \ 171.1, \ 168.9, \ 154.7, \ 154.1, \ 152.1, \ 151.2, \ 147.3, \ 147.2,$ 146.9, 146.6, 146.5, 146.4, 146.39, 146.3, 146.2, 146.1, 146.0, 145.93, 145.91, 145.9, 145.8, 145.7, 145.6, 145.33, 145.3, 145.27, 145.24, 145.2, 145.1, 145.0, 144.7, 144.6, 144.5, 144.2, 143.1, 143.0, 142.7, 142.66, 142.5, 142.3, 142.2, 142.1, 141.9, 141.8, 141.7, 141.66, 141.53, 141.5, 141.2, 141.15, 141.1, 139.7, 138.9, 138.8, 138.7, 138.3, 137.0, 136.4, 134.7, 128.3, 128.2, 127.7, 117.3, 74.6, 74.0, 68.9, 53.6, 53.4, 52.9, 51.9, 37.6; FT-IR v/cm⁻¹ (KBr) 2946, 1735, 1430, 1266, 1243, 1192, 1173, 1138, 1113, 1080, 903, 775, 697, 527; UV-vis (CHCl₃) λ_{max} /nm 255, 313, 430, 590, 633, 697; MALDI-TOF MS m/z calcd for $C_{75}H_{16}O_4$ [M] 980.1054, found 980.1052.

Compound 4ab: the product mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS_2/DCM (v/v = 8:1) to give **4ab** (13.4 mg, 27%), amorphous brown solid; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 5.69 (s, 1H), 5.66 (s, 1H), 5.31 (dd, J = 14.4, 3.6 Hz, 1H), 4.17 (t, J = 14.4 Hz, 1H), 4.10 (s, 3H), 3.81 (s, 3H), 3.21 (dd, J = 13.6, 4.0 Hz, 1H), 2.26 (s, 3H); ${}^{13}C\{{}^{1}H\}$ NMR (150 MHz, CDCl₃) δ 171.6, 169.4, 155.0, 154.4, 152.3, 151.4, 147.5, 147.4, 147.1, 146.9, 146.6, 146.5, 146.4, 146.3, 146.26, 146.2, 146.1, 146.08, 146.05, 146.0, 145.9, 145.89, 145.8, 145.7, 145.44, 145.42, 145.4, 145.38, 145.3, 145.2, 145.1, 144.8, 144.7, 144.6, 144.3, 143.2, 143.1, 142.9, 142.8, 142.76, 142.7, 142.5, 142.45, 142.3, 142.2, 142.1, 141.9, 141.8, 141.7, 141.3, 141.28, 139.7, 139.1, 138.9, 138.8, 138.4, 138.1, 137.1, 136.4, 134.7, 129.1, 127.7, 116.8, 74.8, 74.2, 69.1, 53.8, 53.3, 52.1, 37.7, 21.3; FT-IR v/cm⁻¹ (KBr) 2946, 1739, 1430, 1262, 1189, 1170, 1137, 1078, 900, 821, 735, 526; UV-vis (CHCl₃) λ_{max} /nm 256, 312, 431, 590, 697; MALDI-TOF MS m/z calcd for C₇₆H₁₈O₄ [M] 994.1211, found 994.1209.

Compound 4ac: the product mixture was separated and purified by silica gel column

chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 6:1) to give **4ac** (9.9 mg, 20%), amorphous brown solid; 1 H NMR (400 MHz, CDCl₃) δ 7.41–7.38 (m, 2H), 6.76–6.72 (m, 2H), 5.64 (s, 1H), 5.63 (s, 1H), 5.29 (dd, J = 14.4, 3.6 Hz, 1H), 4.17 (t, J = 14.0 Hz, 1H), 4.10 (s, 3H), 3.81 (s, 3H), 3.73 (s, 3H), 3.20 (dd, J = 13.6, 3.6 Hz, 1H); 13 C{ 1 H} NMR (150 MHz, CDCl₃) δ 171.6, 169.4, 159.7, 155.0, 154.4, 152.4, 151.4, 147.5, 147.4, 147.1, 146.9, 146.6, 146.5, 146.4, 146.35, 146.2, 146.15, 146.1, 146.05, 145.9, 145.86, 145.7, 145.5, 145.44, 145.4, 145.3, 145.25, 145.2, 144.9, 144.7, 144.6, 144.4, 143.2, 143.17, 142.9, 142.86, 142.8, 142.6, 142.5, 142.48, 142.4, 142.2, 142.1, 142.0, 141.84, 141.8, 141.7, 141.32, 141.3, 139.8, 139.1, 138.9, 138.8, 138.5, 137.1, 136.4, 134.8, 133.9, 129.0, 116.0, 113.8, 74.8, 74.2, 69.2, 55.5, 53.8, 53.3, 52.1, 37.7; FT-IR ν /cm⁻¹ (KBr) 2947, 2831, 1735, 1605, 1509, 1452, 1430, 1247, 1177, 1138, 1114, 1078, 1031, 904, 833, 730, 526; UV-vis (CHCl₃) λ _{max}/nm 256, 312, 431, 590, 697; MALDI-TOF MS m/z calcd for C₇₆H₁₈O₅ [M] 1010.1160, found 1010.1156.

Compound **4ad**: the product mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 8:1) to give **4ad** (21.7 mg, 41%), amorphous brown solid; ¹H NMR (600 MHz, CDCl₃) δ 7.34 (s, 4H), 5.73 (s, 1H), 5.71 (s, 1H), 5.27 (dd, J = 14.4, 3.6 Hz, 1H), 4.16 (t, J = 14.4 Hz, 1H), 4.10 (s, 3H), 3.81 (s, 3H), 3.20 (dd, J = 14.4, 3.6 Hz, 1H), 4.16 (t, J = 14.4 Hz, 1H), 4.10 (s, 3H), 3.81 (s, 3H), 3.20 (dd, J = 14.4, 3.6 Hz, 1H), 4.16 (t, J = 14.4 Hz, 1H), 4.10 (s, 3H), 3.81 (s, 3H), 3.20 (dd, J = 14.4, 3.6 Hz, 1H), 4.16 (t, J = 14.4 Hz, 1H), 4.10 (s, 3H), 3.81 (s, 3H), 3.20 (dd, J = 14.4

= 13.2, 4.2 Hz, 1H); 13 C{ 1 H} NMR (150 MHz, CDCl₃) δ 171.5, 169.3, 154.6, 154.1, 152.2, 151.2, 147.5, 147.4, 147.0, 146.7, 146.6, 146.56, 146.5, 146.4, 146.23, 146.2, 146.12, 146.1, 145.9, 145.88, 145.85, 145.8, 145.75, 145.7, 145.6, 145.5, 145.48, 145.47, 145.4, 145.3, 145.29, 145.28, 144.9, 144.7, 144.6, 144.4, 143.3, 143.2, 142.9, 142.9, 142.8, 142.6, 142.5, 142.3, 142.25, 142.1, 142.06, 141.84, 141.8, 141.7, 141.4, 141.3, 140.3, 139.7, 139.2, 139.1, 138.8, 138.6, 137.1, 136.7, 134.9, 131.5, 129.4, 122.3, 118.3, 74.8, 74.2, 69.2, 53.8, 53.3, 52.1, 37.6; FT-IR ν /cm $^{-1}$ (KBr) 2945, 1735, 1486, 1430, 1264, 1243, 1190, 1173, 1078, 1007, 907, 830, 764, 734, 575, 526; UV-vis (CHCl₃) λ max/nm 254, 312, 430, 590, 633, 697; MALDI-TOF MS m/z calcd for C₇₅H₁₅BrO₄ [M] $^{-}$ 1058.0159, found 1058.0155.

Compound **4ae**: the product mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 8:1) to give **4ae** (31.2 mg, 62%), amorphous brown solid; 1 H NMR (400 MHz, CDCl₃) δ 9.23 (s, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 5.86 (s, 1H), 5.84 (s, 1H), 5.28 (dd, J = 14.4, 3.6 Hz, 1H), 4.19 (t, J = 14.0 Hz, 1H), 4.12 (s, 3H), 3.81 (s, 3H), 3.23 (d, J = 13.2, 4.0 Hz, 1H); 13 C{ 1 H} NMR (150 MHz, CDCl₃) δ 191.8, 171.5, 169.3, 154.4, 153.9, 152.14, 151.1, 147.53, 147.5, 147.4, 146.9, 146.6, 146.56, 146.5, 146.4, 146.2, 146.18, 146.1, 145.9, 145.8, 145.7, 145.6, 145.5, 145.48, 145.46, 145.4, 145.36, 145.3, 145.2, 144.8, 144.6, 144.4, 143.3,

143.2, 142.9, 142.85, 142.7, 142.5, 142.4, 142.3, 142.26, 142.1, 142.0, 141.84, 141.8, 141.7, 141.4, 141.3, 139.6, 139.2, 139.1, 138.8, 138.6, 137.0, 136.7, 135.8, 135.0, 129.8, 128.4, 120.0, 74.8, 74.1, 69.1, 53.9, 53.4, 52.0, 37.6; FT-IR ν /cm⁻¹ (KBr) 2947, 2834, 2728, 1735, 1702, 1602, 1430, 1267, 1243, 1172, 1079, 909, 837, 730, 527; UV-vis (CHCl₃) λ _{max}/nm 257, 312, 430, 590, 633, 697; MALDI-TOF MS m/z calcd for $C_{76}H_{16}O_{5}$ [M]⁻ 1008.1003, found 1008.1001.

Compound **4af**: the product mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 6:1) to give **4af** (17.6 mg, 34%), amorphous brown solid; 1 H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.8 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 5.76 (s, 1H), 5.72 (s, 1H), 5.29 (dd, J = 14.4, 4.0 Hz, 1H), 4.17 (t, J = 14.0 Hz, 1H), 4.11 (s, 3H), 3.81 (s, 3H), 3.19 (dd, J = 13.6, 4.0 Hz, 1H); 13 C{ 1 H} NMR (150 MHz, CDCl₃) δ 171.5, 169.3, 154.5, 154.0, 152.2, 151.2, 147.5, 147.4, 147.0, 146.6, 146.58, 146.56, 146.5, 146.4, 146.2, 146.19, 146.12, 146.1, 145.9, 145.85, 145.8, 145.7, 145.6, 145.5, 145.47, 145.43, 145.4, 145.3, 145.28, 144.8, 144.7, 144.6, 144.4, 143.3, 143.2, 142.93, 142.9, 142.85, 142.7, 142.5, 142.49, 142.3, 142.26, 142.1, 141.84, 141.8, 141.71, 141.7, 141.4, 141.3, 140.5, 139.7, 139.2, 139.1, 138.8, 138.6, 137.0, 136.7, 135.8, 134.9, 130.9, 128.9, 125.8, 118.6, 74.8, 74.1, 69.1, 53.9, 53.3, 51.9, 37.5; FT-IR ν /cm $^{-1}$ (KBr) 2946, 2032, 1734, 1502, 1430, 1266, 1242, 1193, 1173, 1163,

1137, 1113, 1078, 906, 838, 730, 527; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ 256, 430, 590, 697; MALDI-TOF MS m/z calcd for $C_{76}H_{15}NO_4S$ [M]⁻ 1037.0727, found 1037.0729.

Compound 4ag: the product mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS_2/DCM (v/v = 6:1) to give **4ag** (23.6 mg, 47%), amorphous brown solid; ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, J = 7.8 Hz, 2H), 7.51 (d, J = 7.8 Hz, 2H), 5.86 (s, 1H), 5.80 (s, 1H), 5.30 (dd, J = 14.4, 3.0 Hz, 1H), 4.17 (t, J = 13.8 Hz, 1H), 4.11 (s, 3H), 3.81 (s, 3H), 3.20 (dd, J = 13.8, 3.6 Hz, 1H); ${}^{13}C\{{}^{1}H\}$ NMR (150 MHz, CDCl₃) δ 171.5, 169.2, 154.2, 153.8, 152.1, 151.0, 147.6, 147.4, 146.9, 146.6, 146.58, 146.5, 146.45, 146.3, 146.27, 146.2, 146.14, 146.1, 146.0, 145.84, 145.8, 145.77, 145.75, 145.6, 145.5, 145.43, 145.4, 145.36, 145.3, 145.28, 144.8, 144.7, 144.4, 143.3, 143.26, 143.0, 142.9, 142.7, 142.5, 142.46, 142.3, 142.04, 142.0, 141.9, 141.8, 141.7, 141.7, 141.4, 141.3, 139.6, 139.2, 139.1, 138.9, 138.6, 137.0, 136.8, 135.0, 132.2, 128.4, 120.3, 118.7, 111.8, 74.8, 74.1, 69.1, 53.9, 53.4, 51.9, 37.5; FT-IR v/cm⁻¹ (KBr) 2947, 1735, 1431, 1267, 1243, 1194, 1174, 1079, 910, 844, 730, 527; UV-vis (CHCl₃) λ_{max} /nm 255, 314, 430, 590, 697; MALDI-TOF MS m/z calcd for C₇₆H₁₅NO₄ [M] 1005.1007, found 1005.1006.

Compound 4ah: the product mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS_2/DCM (v/v = 5:1) to give **4ah** (23.3 mg, 45%), amorphous brown solid; ¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 5.81 (s, 1H), 5.79 (s, 1H), 5.36 (dd, J = 14.4, 3.6 Hz, 1H), 4.19 (t, J = 14.0 Hz, 1H), 4.12 (s, 3H), 3.87 (s, 3H), 3.81 (s, 3H), 3.22 (dd, J = 13.6, 4.0 Hz, 1H); ${}^{13}C\{{}^{1}H\}$ NMR (150 MHz, CDCl₃) δ 171.5, 169.3, 166.8, 154.5, 154.1, 152.2, 151.2, 147.5, 147.4, 147.0, 146.6, 146.57, 146.5, 146.4, 146.38, 146.2, 146.16, 146.1, 146.08, 145.9, 145.9, 145.86, 145.8, 145.7, 145.69, 145.5, 145.46, 145.4, 145.39, 145.35, 145.3, 145.2, 144.8, 144.64, 144.6, 144.4, 143.2, 143.19, 142.9, 142.8, 142.6, 142.5, 142.4, 142.3, 142.2, 142.1, 142.0, 141.8, 141.79, 141.7, 141.4, 141.3, 139.7, 139.1, 139.08, 138.8, 138.6, 137.0, 136.7, 134.9, 129.7, 129.69, 127.7, 119.4, 74.8, 74.2, 69.1, 53.8, 53.3, 52.3, 52.0, 37.6; FT-IR v/cm⁻¹ (KBr) 2946, 1734, 1606, 1432, 1276, 1243, 1190, 1175, 1108, 1079, 908, 859, 780, 730, 527; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ 257, 313, 430, 590, 697; MALDI-TOF MS m/z calcd for $C_{77}H_{18}O_6$ [M] 1038.1110, found 1038.1114.

Compound 4ai: the product mixture was separated and purified by silica gel column

chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 7:1) to give **4ai** (20.5 mg, 40%), amorphous brown solid; ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 9.0 Hz, 2H), 7.65 (d, J = 9.0 Hz, 2H), 5.90 (s, 1H), 5.85 (s, 1H), 5.35 (dd, J = 14.4, 3.6 Hz, 1H), 4.18 (t, J = 13.8 Hz, 1H), 4.12 (s, 3H), 3.82 (s, 3H), 3.23 (dd, J = 13.2, 4.2 Hz, 1H); ${}^{13}C\{{}^{1}H\}$ NMR (150 MHz, $CDCl_3$) δ 171.5, 169.2, 154.1, 153.7, 152.0, 151.0, 148.0, 147.6, 147.5, 147.45, 146.9, 146.6, 146.58, 146.5, 146.45, 146.3, 146.25, 146.2, 146.1, 145.83, 145.82, 145.8, 145.6, 145.5, 145.4, 145.39, 145.32, 145.31, 145.3, 145.2, 144.8, 144.7, 144.6, 144.4, 143.3, 143.27, 143.0, 142.95, 142.9, 142.7, 142.6, 142.4, 142.3, 142.27, 142.04, 142.0, 141.9, 141.8, 141.7, 141.69, 141.4, 141.3, 139.6, 139.2, 139.19, 138.9, 138.7, 136.94, 136.9, 135.1, 128.6, 123.7, 121.0, 74.7, 74.1, 69.1, 53.9, 53.4, 52.1, 37.5; FT-IR v/cm⁻¹ (KBr) 2946, 2920, 2847, 1735, 1594, 1518, 1431, 1342, 1266, 1243, 1193, 1174, 1138, 1112, 1078, 910, 856, 763, 730, 527; UV-vis (CHCl₃) λ_{max} /nm 257, 312, 430, 590, 633, 697; MALDI-TOF MS m/z calcd for C₇₅H₁₅NO₆ [M]⁻ 1025.0905, found 1025.0901.

Compound **4aj**: the product mixture was separated and purified by silica gel column chromatography with CS_2 as the eluent to recover unreacted C_{60} , and then the eluent was switched to CS_2/DCM (v/v = 8:1) to give **4aj** (14.3 mg, 27%), amorphous brown solid; ¹H NMR (600 MHz, CDCl₃) δ 7.56–7.54 (m, 2H), 7.51–7.49 (m, 2H),

7.45–7.44 (m, 2H), 7.41–7.38 (m, 2H), 7.33–7.30 (m, 1H), 5.78 (s, 1H), 5.74 (s, 1H), 5.38 (dd, J = 14.4, 3.6 Hz, 1H), 4.21 (t, J = 14.4 Hz, 1H), 4.12 (s, 3H), 3.82 (s, 3H), 3.24 (dd, J = 13.2, 4.2 Hz, 1H); 13 C{ 1 H} NMR (150 MHz, CDCl₃) δ 171.6, 169.4, 154.9, 154.3, 152.3, 151.4, 147.5, 147.4, 147.1, 146.9, 146.6, 146.5, 146.4, 146.3, 146.2, 146.16, 146.1, 146.05, 145.92, 145.9, 145.86, 145.7, 145.5, 145.46, 145.42, 145.4, 145.3, 145.25, 145.2, 144.9, 144.7, 144.6, 144.4, 143.2, 143.17, 142.9, 142.87, 142.8, 142.6, 142.5, 142.48, 142.4, 142.2, 142.1, 142.0, 141.8, 141.7, 141.69, 141.34, 141.3, 141.1, 140.6, 140.3, 139.8, 139.1, 138.9, 138.8, 138.4, 137.1, 136.5, 134.9, 128.9, 128.3, 127.6, 127.1, 127.05, 117.4, 74.8, 74.3, 69.2, 53.8, 53.3, 52.2, 37.7; FT-IR ν /cm $^{-1}$ (KBr) 2946, 1735, 1485, 1430, 1264, 1242, 1190, 1173, 1078, 905, 842, 768, 659, 527; UV-vis (CHCl₃) λ max/nm 257, 431, 590, 698; MALDI-TOF MS m/z calcd for C₈₁H₂₀O₄ [M] $^{-1}$ 1056.1367, found 1056.1365.

Compound **4ak**: the product mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 7:1) to give **4ak** (20.1 mg, 41%), amorphous brown solid; 1 H NMR (600 MHz, CDCl₃) δ 8.47 (d, J = 4.8 Hz, 2H), 7.39 (d, J = 5.4 Hz, 2H), 5.89 (s, 1H), 5.87 (s, 1H), 5.32 (dd, J = 14.4, 3.6 Hz, 1H), 4.18 (t, J = 13.8 Hz, 1H), 4.11 (s, 3H), 3.81 (s, 3H), 3.20 (dd, J = 13.6, 3.6 Hz, 1H); 13 C{ 1 H} NMR (150 MHz, CDCl₃) δ 171.5, 169.2, 154.3, 153.9, 152.1, 151.1, 150.1, 148.9, 147.6, 147.4, 146.9,

146.6, 146.57, 146.5, 146.4, 146.37, 146.3, 146.2, 146.14, 146.1, 145.9, 145.8, 145.77, 145.75, 145.6, 145.5, 145.45, 145.4, 145.38, 145.3, 144.8, 144.7, 144.66, 144.65, 144.4, 143.3, 143.2, 142.93, 142.9, 142.87, 142.7, 142.5, 142.48, 142.3, 142.26, 142.1, 141.9, 141.8, 141.7, 141.4, 141.3, 139.6, 139.2, 139.17, 138.9, 138.8, 137.0, 136.8, 135.0, 122.3, 120.5, 74.7, 74.1, 69.1, 53.9 53.4 51.5 37.5; FT-IR ν /cm⁻¹ (KBr) 2946, 1734, 1591, 1431, 1268, 1242, 1194, 1174, 1078, 910, 831, 729, 527; UV-vis (CHCl₃) λ _{max}/nm 256, 314, 429, 590, 697; MALDI-TOF MS m/z calcd for C₇₄H₁₅NO₄ [M]⁻ 981.1007, found 981.1005.

Compound **4al**: the product mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/DCM (v/v = 7:1) to give **4al** (28.9 mg, 56%), amorphous brown solid; 1 H NMR (400 MHz, CDCl₃) δ 8.84 (dd, J = 4.4, 1.6 Hz, 1H), 8.06 (d, J = 7.6 Hz, 1H), 7.96 (d, J = 8.8 Hz, 1H), 7.91 (d, J = 2.0 Hz, 1H), 7.84 (dd, J = 2.0 Hz, J = 8.8 Hz, 1H), 7.34 (q, J = 4.0 Hz, 1H), 5.88 (s, 1H), 5.86 (s, 1H), 5.47 (dd, J = 14.4, 4.0 Hz, 1H), 4.23 (t, J = 14.0 Hz, 1H), 4.14 (s, 3H), 3.82 (s, 3H), 3.28 (d, J = 13.6, 4.0 Hz, 1H); 13 C{ 1 H} NMR (150 MHz, CDCl₃) δ 171.6 169.3, 154.6 154.1, 152.3 151.2, 150.9, 148.0, 147.5, 147.4, 147.0, 146.6, 146.53, 146.5, 146.4, 146.3, 146.2, 146.15, 146.1, 146.0, 145.9, 145.84, 145.8, 145.7, 145.5, 145.4, 145.38, 145.3, 145.25, 145.1, 144.8, 144.6, 144.58, 144.4, 143.2, 142.9, 142.86, 142.8, 142.6, 142.5, 142.4, 142.3,

142.2, 142.0, 141.9, 141.8, 141.7, 141.68, 141.3, 141.26, 139.7, 139.5, 139.2, 139.0, 138.8, 138.3, 137.1, 136.6, 136.3, 134.9, 129.7, 129.5, 127.9, 126.8, 121.7, 118.9, 74.8, 74.2, 69.2, 53.9, 53.3, 52.2, 37.7; FT-IR v/cm^{-1} (KBr) 2946, 1734, 1430, 1266, 1241, 1193, 1172, 1138, 1112, 1079, 906, 838, 729, 527; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ 254, 312, 430, 590, 697; MALDI-TOF MS m/z calcd for $C_{78}H_{17}NO_4$ [M]⁻ 1031.1163, found 1031.1165.

Compound **4am**: the product mixture was separated and purified by silica gel column chromatography with CS_2 as the eluent to recover unreacted C_{60} , and then the eluent was switched to CS_2/DCM (v/v = 8:1) to give **4am** (16.3 mg, 33%), amorphous brown solid; 1H NMR (600 MHz, $CDCl_3/CS_2$, v/v = 10:1) δ 7.34–7.33 (m, 1H), 7.20–7.19 (m, 1H), 7.17–7.15 (m, 1H), 5.79 (s, 1H), 5.65 (s, 1H), 5.20 (dd, J = 15.0, 3.6 Hz, 1H), 4.16 (t, J = 14.4 Hz, 1H), 4.08 (s, 3H), 3.80 (s, 3H), 3.14 (dd, J = 13.2, 4.2 Hz, 1H); $^{13}C\{^1H\}$ NMR (150 MHz, $CDCl_3/CS_2$, v/v = 10:1) δ 171.0, 168.8, 154.9, 154.3, 152.0, 151.2, 147.3, 147.2, 146.9, 146.5, 146.4, 146.34, 146.3, 146.2, 146.1, 146.0, 145.9, 145.89, 145.74, 145.73, 145.7, 145.6, 145.32, 145.3, 145.25, 145.1, 145.0, 144.7, 144.6, 144.4, 144.2, 143.0, 143.0, 142.8, 142.7, 142.67, 142.6, 142.5, 142.4, 142.3, 142.2, 142.1, 141.9, 141.7, 141.6, 141.57, 141.5, 141.2, 141.1, 140.9, 139.7, 139.0, 138.97, 138.7, 138.5, 137.0, 136.3, 134.4, 126.8, 126.0, 123.2, 115.5, 74.5, 74.0, 68.8, 53.3, 52.9, 52.7, 37.3; FT-IR v/cm^{-1} (KBr) 2946, 1732, 1626, 1431,

1268, 1239, 1174, 1138, 1113, 1079, 905, 788, 735, 575, 527; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ 256, 312, 431, 695; MALDI-TOF MS m/z calcd for C₇₃H₁₄O₄S [M]⁻ 986.0618, found 986.0793.

Compound 4an: the product mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS_2/DCM (v/v = 8:1) to give **4an** (16.5 mg, 33%), amorphous brown solid; ¹H NMR (600 MHz, CDCl₃) δ 9.56 (s, 1H), 7.16 (d, J = 4.2 Hz, 1H), 6.77 (d, J= 4.2 Hz, 1H), 6.38 (s, 1H), 5.91 (s, 1H), 5.18 (dd, J = 13.8, 4.2 Hz, 1H), 4.21 (t, J = 13.8, 4.2 Hz), 6.38 (s, 1H), 5.91 (s, 1H), 5.18 (dd, J = 13.8, 4.2 Hz), 1H), 4.21 (t, J = 13.8, 4.2 Hz), 1H, 4.21 (t, $J = 13.8, 4.2 \text$ 14.4 Hz, 1H), 4.08 (s, 3H), 3.82 (s, 3H), 3.13 (dd, J = 13.8, 4.2 Hz, 1H); ${}^{13}C\{{}^{1}H\}$ NMR (150 MHz, CDCl₃) δ 177.7, 171.3, 169.2, 159.1, 154.7, 154.0, 152.1, 152.0, 151.1, 147.6, 147.5, 146.9, 146.6, 146.5, 146.47, 146.4, 146.3, 146.26, 146.2, 146.19, 146.18, 145.9, 145.85, 145.8, 145.7, 145.6, 145.5, 145.47, 145.34, 145.3, 145.2, 145.1, 144.8, 144.7, 144.65, 144.4, 143.3, 143.2, 142.9, 142.7, 142.5, 142.48, 142.4, 142.3, 142.2, 142.1, 141.9, 141.8, 141.75, 141.7, 141.67, 141.4, 139.8, 139.7, 139.3, 139.2, 138.9, 137.0, 136.8, 134.7, 134.6, 119.6, 111.4, 74.5, 74.1, 69.1, 53.8, 53.4, 50.5, 37.2; FT-IR v/cm⁻¹ (KBr) 2947, 1733, 1678, 1562, 1500, 1430, 1261, 1244, 1195, 1175, 1139, 1079, 1027, 968, 908, 796, 766, 728, 527; UV-vis (CHCl₃) λ_{max}/nm 258, 314, 430, 694; MALDI-TOF MS m/z calcd for $C_{74}H_{14}O_6$ [M] 998.0796, found 998.0799.

Compound 4ao: the product mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS_2/DCM (v/v = 7:1) to give **4ao** (30.4 mg, 51%), amorphous brown solid; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 5.81 (s, 2H), 5.42 (dd, J = 14.4, 3.6 Hz, 1H), 4.74–4.73 (m, 1H), 4.71–4.70 (m, 1H), 4.54-4.52 (m, 2H), 4.22 (t, J = 14.0 Hz, 1H), 4.13 (s, 3H), 4.11 (s, 5H), 3.82 (s, 3H), 3.25 (dd, J = 13.6, 4.0 Hz, 1H); ${}^{13}C\{{}^{1}H\}$ NMR (150 MHz, CDCl₃) δ 198.6, 171.6, 169.3, 154.7, 154.0, 152.3, 151.3, 147.5, 147.4, 147.0, 146.8, 146.6, 146.59, 146.5, 146.4, 146.3, 146.14, 146.12, 146.1, 145.94, 145.9, 145.87, 145.86, 145.7, 145.5, 145.44, 145.43, 145.4, 145.3, 145.0, 144.8, 144.7, 144.6, 144.4, 144.37, 143.3, 143.2, 142.94, 142.9, 142.7, 142.5, 142.4, 142.35, 142.3, 142.2, 141.9, 141.85, 141.8, 141.7, 141.67, 141.4, 141.3, 139.7, 139.5, 139.2, 138.9, 138.85, 138.2, 137.0, 136.7, 135.0, 128.0, 127.8, 118.4, 78.1, 74.9, 74.1, 72.9, 72.88, 71.7, 71.6, 70.5, 69.2, 53.9, 53.3, 52.0, 37.4; FT-IR v/cm⁻¹ (KBr) 3092, 2948, 1757, 1735, 1634, 1604, 1513, 1445, 1430, 1375, 1264, 1240, 1189, 1173, 1138, 1117, 1080, 1046, 1027, 857, 829, 779, 763, 575, 527; UV-vis (CHCl₃) λ_{max} /nm 257, 310, 430, 695; MALDI-TOF MS m/zcalcd for $C_{86}H_{24}FeO_5$ [M]⁺ 1192.0979, found 1192.0981.

Compound 4ap: the product mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS_2/DCM (v/v = 8:1) to give **4ap** (11.8 mg, 20%), amorphous brown solid; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 5.78 (s, 1H), 5.75 (s, 1H), 5.36 (dd, J = 14.4, 4.0 Hz, 1H), 4.19 (t, J = 14.0 Hz, 1H), 4.12 (s, 3H), 3.81 (s, 3H), 3.24 (dd, J = 14.4, 4.0 Hz)= 13.6, 4.0 Hz, 1H); ${}^{13}C\{{}^{1}H\}$ NMR (150 MHz, CDCl₃) δ 171.6, 169.4, 154.9, 154.2, 152.3, 151.3, 147.5, 147.4, 147.0, 146.8, 146.6, 146.55, 146.4, 146.35, 146.2, 146.15, 146.1, 146.07, 146.06, 146.0, 145.9, 145.85, 145.7, 145.5, 145.47, 145.43, 145.4, 145.3, 145.25, 145.2, 144.8, 144.7, 144.6, 144.4, 143.2, 143.18, 142.9, 142.88, 142.8, 142.6, 142.5, 142.3, 142.2, 142.1, 141.9, 141.82, 141.8, 141.7, 141.4, 141.3, 140.8, 140.0, 139.9, 139.7, 139.1, 138.9, 138.8, 138.4, 138.0, 137.1, 136.5, 134.9, 128.9, 128.5, 126.8, 117.7, 93.4, 74.8, 74.3, 69.2, 53.8, 53.3, 52.2, 37.7; FT-IR v/cm⁻¹ (KBr) 2946, 1735, 1478, 1431, 1266, 1243, 1192, 1173, 1079, 999, 905, 813, 731, 527; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ 256, 431, 591, 697; MALDI-TOF MS m/z calcd for C₈₁H₁₉IO₄ [M]⁻ 1182.0334, found 1182.0336.

Compound **4ba**: the product mixture was separated and purified by silica gel column chromatography with CS₂ as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS_2/DCM (v/v = 8:1) to give **4ba** (13.5 mg, 27%), amorphous brown solid; ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.46 (m, 2H), 7.22–7.19 (m, 3H), 5.72 (s, 2H), 5.36 (dd, J = 12.0, 4.0 Hz, 1H), 4.66–4.50 (m, 2H), 4.45–4.38 (m, 1H), 4.21-4.11 (m, 2H), 3.22 (dd, J = 16.0, 4.0 Hz, 1H), 1.50 (t, J = 8.0 Hz, 3H), 1.22 (t, J = 8.0 Hz, 3H), 1.22= 8.0 Hz, 3H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃) δ 171.2, 169.0, 155.1, 154.4, 152.6, 151.5, 147.5, 147.4, 147.3, 146.9, 146.7, 146.6, 146.55, 146.4, 146.36, 146.3, 146.2, 146.1, 146.08, 146.05, 145.94, 145.9, 145.7, 145.5, 145.45, 145.4, 145.39, 145.3, 145.25, 145.1, 144.9, 144.7, 144.6, 144.4, 143.2, 143.17, 142.9, 142.87, 142.8, 142.6, 142.5, 142.4, 142.2, 142.1, 141.9, 141.83, 141.8, 141.7, 141.66, 141.4, 141.36, 141.3, 139.7, 139.0, 138.88, 138.6, 138.4, 137.1, 136.5, 134.9, 128.4, 128.3, 127.9, 117.4, 74.8, 74.3, 69.0, 62.8, 62.6, 52.1, 37.7, 14.4, 14.1; FT-IR v/cm⁻¹ (KBr) 2976, 1731, 1462, 1440, 1264, 1238, 1180, 1137, 1112, 1079, 1010, 904, 776, 731, 698, 576, 527; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ 256, 312, 431, 699; MALDI-TOF MS m/z calcd for C₇₇H₂₀O₄ [M]⁻ 1008.1367, found 1008.1369.

Compound **6**: the product mixture was separated and purified by silica gel column chromatography with CS_2 as the eluent to recover unreacted C_{60} , and then the eluent was switched to $CS_2/DCM/EtOAc$ (v/v/v = 10:5:2) to give **6** (30.0 mg, 66%),

amorphous brown solid; ¹H NMR (600 MHz, DMSO- d_6 /CS₂, v/v = 1:10) δ 12.79 (s, 1H), 7.44 (d, J = 7.8 Hz, 2H), 7.16–7.11 (m, 3H), 5.70 (s, 1H), 5.63 (s, 1H), 5.11 (d, J = 12.6 Hz, 1H), 4.69 (d, J = 9.0 Hz, 1H), 3.54 (q, J = 13.2 Hz, 1H), 2.92 (d, J = 12.6 Hz, 1H); ¹³C{¹H} NMR (150 MHz, DMSO- d_6 /CS₂, v/v = 1:10) δ 155.3, 155.2, 153.8, 153.5, 147.1, 147.0, 146.7, 146.0, 145.9, 145.6, 145.5, 145.2, 145.1, 145.06, 144.9, 144.82, 144.8, 144.7, 144.6, 144.1, 144.0, 143.98, 143.95, 143.9, 143.5, 143.4, 143.22, 143.2, 141. 9, 141.8, 141.5, 141.4, 141.39, 141.1, 141.0, 140.96, 140.9, 140.8, 140.6, 140.5, 140.4, 140.3, 138.2, 137.7, 137.4, 135.3, 135.0, 134.0, 133.2, 127.3, 126.8, 126.6, 116.2, 73.9, 72.1, 55.0, 33.3, 29.1; FT-IR v/cm⁻¹ (KBr) 2959, 2926, 1716, 1575, 1420, 1261, 1212, 1177, 1097, 1051, 1026, 905, 804, 776, 696, 527; UV-vis (CHCl₃) λ _{max}/nm 256, 311, 431, 689; MALDI-TOF MS m/z calcd for C₇₂H₁₂O₂ [M]⁺ 908.0832, found 908.0836.

6. ¹H NMR and ¹³C NMR Spectra of Compounds 4

