Supporting Information

Palladium-Catalyzed
 Coupling-Carboannulation Reaction Leading to Polysubstituted [60]Fullerene-Fused Cyclopentanes

Qingfeng Liu, Tong-Xin Liu,* Jinliang Ma, and Guisheng Zhang*

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

E-mail: liutongxin_0912@126.com andzgs6668@yahoo.com

Table of Contents

1. General Information S2
2. Experimental Procedures S3-S4
3. UV-vis Spectra of Representative Compounds S5-S13
4. CVs of Selected Compounds S14-S17
5. Synthesis and Spectral Data for Compounds 4 and 6 S18-S33
6. ${ }^{1}$ H NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds 4 and 6 S34-S69

1. General Information

Unless otherwise specified, all reagents were purchased as reagent grade and used without further purification. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and (hetero)aryliodides were purchased from Innochem. $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ was purchased from Energy Chemical. 2-(buta-2,3-dien-1-yl)malonates 2a, ${ }^{1} \mathbf{2 b},{ }^{1} \mathbf{2 c},{ }^{2} \mathbf{2 d},{ }^{3} \mathbf{2 e},{ }^{1 \mathrm{lb}, 4} \mathbf{2 f},{ }^{1 \mathrm{~b}}$ and aryliodide $\mathbf{3 o}{ }^{5}$ was prepared by following the literature procedure. 1,2-Dichlorobenzene (ODCB) were treated with $\mathrm{CaH}_{2} \cdot{ }^{1} \mathrm{H}$ NMR (400 and 600 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 and 150 MHz) were registered on Bruker 400 and 600 M spectrometers with tetramethylsilane (TMS) as internal standard. UV-vis Spectra were recorded on Shimadzu UV-1700. CVs were recorded on CHI660E. FT-IR was registered on Thermo Nicolet NEXUS 670 FTIR. HRMS were measured on Bruker Ultraflextreme MALDI-TOF/TOF using E-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as a matrix.

References:

(1) (a) Naidu, V. R.; Posevins, D.; Volla, C. M. R.; Bäckvall, J.-E. Angew. Chem. Int. Ed. 2017, 56, 1590. (b) Tsukamoto, H.; Ito, K.; Doi, T. Chem. Commun. 2018, 54, 5102.
(2) Cérat, P.; Gritsch, P. J.; Goudreau, S. R.; Charette, A. B. Org. Lett. 2016, 18, 1410.
(3) Meguro, M.; Yamamoto, Y. J. Org. Chem. 1999, 64, 694.
(4) Ahmar, M.; Cazes, B.; Gore, J. Tetrahedron, 1987, 43, 3453.
(5) Deng, R.; Huang, Y.; Ma, X.; Li, G.; Zhu, R.; Wang, B.; Kang, Y.-B.; Zhenhua Gu, Z. J. Am. Chem. Soc. 2014, 136, 4472.

2. Experimental Procedures

General Procedure for the Synthesis of Products 4: A dry 15-mL tube equipped with a magnetic stirrer was charged with $\mathrm{C}_{60}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathbf{2 a}(0.1 \mathrm{mmol}), \mathbf{3 a}(0.1$ $\mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.005 \mathrm{mmol})$. After dissolving the solids in anhydrous ODCB (4 mL) and $\mathrm{MeCN}(1 \mathrm{~mL})$ by sonication, the sealed tube was stirred in an oil bath preset at a designated temperature for a desired time (monitored by TLC) in air. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}$ to give product 4 .

Typical Procedure for the Synthesis of Product 4aa from $\operatorname{Pd}\left(P \mathrm{Ph}_{3}\right)_{4}$-catalyzed Reaction of C_{60} with Substrates 2a and 3a at a minimum 1 mmol scale: A dry 200-mL tube equipped with a magnetic stirrer was charged with $\mathrm{C}_{60}(720.0 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{2 a}$ $(0.368 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $\mathbf{3 a}(0.408 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.116 \mathrm{~g}, 0.10 \mathrm{mmol})$. After dissolving the solids in anhydrous ODCB (80 mL) and $\mathrm{MeCN}(20 \mathrm{~mL})$ by sonication, the sealed tube was stirred in an oil bath at $100{ }^{\circ} \mathrm{C}$ for 4 h in air. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS_{2} as the eluent to recover unreacted C_{60} $(0.360 \mathrm{~g})$, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give product 4aa: ($0.303 \mathrm{~g}, 31 \%$).

Transformations of C_{60}-Fused Cyclopentane 4aa: A $50-\mathrm{mL}$ tube equipped with a magnetic stirrer was charged with $\mathbf{4 a a}(49.0 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{NaOH}(20.0 \mathrm{mg}$, $0.50 \mathrm{mmol})$. After dissolving the solids in $\mathrm{CB}(16 \mathrm{~mL})$ and $\mathrm{MeOH}(4 \mathrm{~mL})$ by sonication, the sealed tube was stirred in an oil bath at $80^{\circ} \mathrm{C}$ for 18 h in air, and then
acidified with 0.4 mL of acetic acid. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with $\mathrm{CS}_{2} / \mathrm{DCM} / E t O A c(\mathrm{v} / \mathrm{v} / \mathrm{v}=10: 5: 2)$ as the eluent to give product $6(30.0 \mathrm{mg}, 66 \%)$.

Procedures for UV-Vis Spectra Recording: A dry $100-\mathrm{mL}$ volumetric flask was charged with the product $4\left(1.4 \times 10^{-3} \sim 1.6 \times 10^{-3} \mathrm{mmol}\right)$. After dissolving the solid with 100 mL of CHCl_{3} by sonication, a small amount of sample solution is added to a cuvette and then placed in the UV-vis spectrophotometer to record the UV-vis spectrum of product 4.

Procedures for Electrochemical Characterization Recording: In dry $15-\mathrm{mL}$ electrolytic cup, $2.0 \times 10^{-3} \mathrm{mmol}$ of product $\mathbf{4}, 2 \mathrm{~mL}$ of the solution of $(n-\mathrm{Bu})_{4} \mathrm{NClO}_{4}$ in ODCB (0.1 M), and $18 \mu \mathrm{~L}$ of the solution of ferrocene in ODCB $(0.054 \mathrm{M})$ was added, respectively. After sonication, three different electrodes (reference electrode: SCE; working electrode: Pt; auxiliary electrode: Pt wire) were placed in the sample solution, then running electrochemical workstation recorded the cyclic voltammogram (CV) of product 4 under argon atmosphere.

3. UV-vis Spectra of Compounds

Figure S1. UV-vis spectrum of compound 4aa in CHCl_{3}

Figure S2. UV-vis spectrum of compound $\mathbf{4 a b}$ in CHCl_{3}

Figure S3. UV-vis spectrum of compound $\mathbf{4 a c}$ in CHCl_{3}

Figure S4. UV-vis spectrum of compound $\mathbf{4 a d}$ in CHCl_{3}

Figure S5. UV-vis spectrum of compound 4ae in CHCl_{3}

Figure S6. UV-vis spectrum of compound 4af in CHCl_{3}

Figure $\mathbf{S 7}$. UV-vis spectrum of compound $\mathbf{4 a g}$ in CHCl_{3}

Figure S8. UV-vis spectrum of compound $\mathbf{4 a h}$ in CHCl_{3}

Figure S9. UV-vis spectrum of compound 4ai in CHCl_{3}

Figure S10. UV-vis spectrum of compound 4aj in CHCl_{3}

Figure S11. UV-vis spectrum of compound 4ak in CHCl_{3}

Figure S12. UV-vis spectrum of compound $\mathbf{4 a l}$ in CHCl_{3}

Figure S13. UV-vis spectrum of compound 4am in CHCl_{3}

Figure S14. UV-vis spectrum of compound 4an in CHCl_{3}

Figure S15. UV-vis spectrum of compound 4ao in CHCl_{3}

Figure S16. UV-vis spectrum of compound 4ap in CHCl_{3}

Figure S17. UV-vis spectrum of compound $\mathbf{4 b a}$ in CHCl_{3}

Figure S18. UV-vis spectrum of compound $\mathbf{6}$ in CHCl_{3}

4. CVs of Selected Compounds

Cyclic voltammogram of compound 4aa (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound 4ac (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound 4ag (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{4} \mathbf{a h}$ (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound $\mathbf{4 a j}$ (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound 4ak (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound 4am (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic voltammogram of compound 4ao (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

5. Synthesis and Spectral Data for Compounds 4 and 6

Compound 4aa: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ as the eluent to give $\mathbf{4 a}(16.7 \mathrm{mg}, 34 \%)$, amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.18$ $(\mathrm{m}, 3 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{dd}, J=13.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 MHz, $\mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 171.1,168.9,154.7,154.1,152.1,151.2,147.3,147.2$, $146.9,146.6,146.5,146.4,146.39,146.3,146.2,146.1,146.0,145.93,145.91,145.9$, $145.8,145.7,145.6,145.33,145.3,145.27,145.24,145.2,145.1,145.0,144.7,144.6$, $144.5,144.2,143.1,143.0,142.7,142.66,142.5,142.3,142.2,142.1,141.9,141.8$, 141.7, 141.66, 141.53, 141.5, 141.2, 141.15, 141.1, 139.7, 138.9, 138.8, 138.7, 138.3, $137.0,136.4,134.7,128.3,128.2,127.7,117.3,74.6,74.0,68.9,53.6,53.4,52.9,51.9$, 37.6; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr})$ 2946, 1735, 1430, 1266, 1243, 1192, 1173, 1138, 1113, 1080, 903, 775, 697, 527; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 255,313,430,590,633,697$; MALDI-TOF MS m / z calcd for $\mathrm{C}_{75} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}]^{-} 980.1054$, found 980.1052.

4ab

Compound 4ab: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $\mathbf{4 a b}(13.4 \mathrm{mg}, 27 \%)$, amorphous brown solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.69(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.10(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{dd}, J=13.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (150 MHz, CDCl_{3}) $\delta 171.6,169.4,155.0,154.4,152.3,151.4,147.5,147.4,147.1$, 146.9, 146.6, 146.5, 146.4, 146.3, 146.26, 146.2, 146.1, 146.08, 146.05, 146.0, 145.9, $145.89,145.8,145.7,145.44,145.42,145.4,145.38,145.3,145.2,145.1,144.8,144.7$, 144.6, 144.3, 143.2, 143.1, 142.9, 142.8, 142.76, 142.7, 142.5, 142.45, 142.3, 142.2, 142.1, 141.9, 141.8, 141.7, 141.3, 141.28, 139.7, 139.1, 138.9, 138.8, 138.4, 138.1, 137.1, 136.4, 134.7, 129.1, 127.7, 116.8, 74.8, 74.2, 69.1, 53.8, 53.3, 52.1, 37.7, 21.3; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2946,1739,1430,1262,1189,1170,1137,1078,900,821,735$, 526; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 256,312,431,590,697$; MALDI-TOF MS m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}]^{-} 994.1211$, found 994.1209.

Compound 4ac: the product mixture was separated and purified by silica gel column
chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}$ ($\mathrm{v} / \mathrm{v}=6: 1$) to give $\mathbf{4 a c}(9.9 \mathrm{mg}, 20 \%)$, amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{~s}$, $1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}$, $3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=13.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(150$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6,169.4,159.7,155.0,154.4,152.4,151.4,147.5,147.4,147.1$, $146.9,146.6,146.5,146.4,146.35,146.2,146.15,146.1,146.05,145.9,145.86,145.7$, $145.5,145.44,145.4,145.3,145.25,145.2,144.9,144.7,144.6,144.4,143.2,143.17$, $142.9,142.86,142.8,142.6,142.5,142.48,142.4,142.2,142.1,142.0,141.84,141.8$, 141.7, 141.32, 141.3, 139.8, 139.1, 138.9, 138.8, 138.5, 137.1, 136.4, 134.8, 133.9, $129.0,116.0,113.8,74.8,74.2,69.2,55.5,53.8,53.3,52.1,37.7 ;$ FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr})$ 2947, 2831, 1735, 1605, 1509, 1452, 1430, 1247, 1177, 1138, 1114, 1078, 1031, 904, 833, 730, 526; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 256,312,431,590,697$; MALDI-TOF MS m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{18} \mathrm{O}_{5}[\mathrm{M}]^{-} 1010.1160$, found 1010.1156.

Compound 4ad: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $\mathbf{4 a d}(21.7 \mathrm{mg}, 41 \%)$, amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~s}, 4 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{dd}$, $J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J$
$=13.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.5, 169.3, 154.6, 154.1, $152.2,151.2,147.5,147.4,147.0,146.7,146.6,146.56,146.5,146.4,146.23,146.2$, 146.12, 146.1, 145.9, 145.88, 145.85, 145.8, 145.75, 145.7, 145.6, 145.5, 145.48, $145.47,145.4,145.3,145.29,145.28,144.9,144.7,144.6,144.4,143.3,143.2,142.9$, $142.9,142.8,142.6,142.5,142.3,142.25,142.1,142.06,141.84,141.8,141.7,141.4$, $141.3,140.3,139.7,139.2,139.1,138.8,138.6,137.1,136.7,134.9,131.5,129.4$, 122.3, 118.3, 74.8, 74.2, 69.2, 53.8, 53.3, 52.1, 37.6; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2945,1735$, 1486, 1430, 1264, 1243, 1190, 1173, 1078, 1007, 907, 830, 764, 734, 575, 526; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 254,312,430,590,633,697$; MALDI-TOF MS m / z calcd for $\mathrm{C}_{75} \mathrm{H}_{15} \mathrm{BrO}_{4}[\mathrm{M}]^{-} 1058.0159$, found 1058.0155 .

Compound 4ae: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $\mathbf{4 a e}(31.2 \mathrm{mg}, 62 \%)$, amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.23(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~d}, J=13.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.8,171.5,169.3,154.4,153.9,152.14,151.1,147.53,147.5$, $147.4,146.9,146.6,146.56,146.5,146.4,146.2,146.18,146.1,145.9,145.8,145.7$, 145.6, 145.5, 145.48, 145.46, 145.4, 145.36, 145.3, 145.2, 144.8, 144.6, 144.4, 143.3,
143.2, 142.9, 142.85, 142.7, 142.5, 142.4, 142.3, 142.26, 142.1, 142.0, 141.84, 141.8, 141.7, 141.4, 141.3, 139.6, 139.2, 139.1, 138.8, 138.6, 137.0, 136.7, 135.8, 135.0, $129.8,128.4,120.0,74.8,74.1,69.1,53.9,53.4,52.0,37.6$; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2947$, 2834, 2728, 1735, 1702, 1602, 1430, 1267, 1243, 1172, 1079, 909, 837, 730, 527; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 257,312,430,590,633,697$; MALDI-TOF MS m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{16} \mathrm{O}_{5}[\mathrm{M}]^{-}$1008.1003, found 1008.1001.

Compound 4af: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=6: 1)$ to give $\mathbf{4 a f}(17.6 \mathrm{mg}, 34 \%)$, amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.76(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=14.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.11(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{dd}, J=13.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.5,169.3,154.5,154.0,152.2,151.2,147.5,147.4,147.0,146.6,146.58$, $146.56,146.5,146.4,146.2,146.19,146.12,146.1,145.9,145.85,145.8,145.7,145.6$, 145.5, 145.47, 145.43, 145.4, 145.3, 145.28, 144.8, 144.7, 144.6, 144.4, 143.3, 143.2, $142.93,142.9,142.85,142.7,142.5,142.49,142.3,142.26,142.1,141.84,141.8$, 141.71, 141.7, 141.4, 141.3, 140.5, 139.7, 139.2, 139.1, 138.8, 138.6, 137.0, 136.7, $135.8,134.9,130.9,128.9,125.8,118.6,74.8,74.1,69.1,53.9,53.3,51.9,37.5$; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2946,2032,1734,1502,1430,1266,1242,1193,1173,1163$,

1137, 1113, 1078, 906, 838, 730, 527; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 256,430,590,697$;
MALDI-TOF MS m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}]^{-}$1037.0727, found 1037.0729.

Compound 4ag: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=6: 1)$ to give $\mathbf{4 a g}(23.6 \mathrm{mg}, 47 \%)$, amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.86(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=14.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.11(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=13.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 171.5,169.2,154.2,153.8,152.1,151.0,147.6,147.4,146.9,146.6,146.58$, $146.5,146.45,146.3,146.27,146.2,146.14,146.1,146.0,145.84,145.8,145.77$, $145.75,145.6,145.5,145.43,145.4,145.36,145.3,145.28,144.8,144.7,144.4,143.3$, 143.26, 143.0, 142.9, 142.7, 142.5, 142.46, 142.3, 142.04, 142.0, 141.9, 141.8, 141.7, 141.7, 141.4, 141.3, 139.6, 139.2, 139.1, 138.9, 138.6, 137.0, 136.8, 135.0, 132.2, $128.4,120.3,118.7,111.8,74.8,74.1,69.1,53.9,53.4,51.9,37.5 ;$ FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr})$ 2947, 1735, 1431, 1267, 1243, 1194, 1174, 1079, 910, 844, 730, 527; UV-vis (CHCl_{3}) $\lambda_{\max } / \mathrm{nm} 255,314,430,590$, 697; MALDI-TOF MS m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{15} \mathrm{NO}_{4}[\mathrm{M}]^{-}$ 1005.1007, found 1005.1006 .

Compound 4ah: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=5: 1)$ to give $\mathbf{4} \mathbf{a h}(23.3 \mathrm{mg}, 45 \%)$, amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.81(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{dd}, J=13.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (150 MHz, CDCl_{3}) $\delta 171.5,169.3,166.8,154.5,154.1,152.2,151.2,147.5,147.4$, $147.0,146.6,146.57,146.5,146.4,146.38,146.2,146.16,146.1,146.08,145.9,145.9$, $145.86,145.8,145.7,145.69,145.5,145.46,145.4,145.39,145.35,145.3,145.2$, $144.8,144.64,144.6,144.4,143.2,143.19,142.9,142.8,142.6,142.5,142.4,142.3$, $142.2,142.1,142.0,141.8,141.79,141.7,141.4,141.3,139.7,139.1,139.08,138.8$, 138.6, 137.0, 136.7, 134.9, 129.7, 129.69, 127.7, 119.4, 74.8, 74.2, 69.1, 53.8, 53.3, 52.3, 52.0, 37.6; FT-IR v / cm^{-1} (KBr) 2946, 1734, 1606, 1432, 1276, 1243, 1190, 1175, $1108,1079,908,859,780,730,527$; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 257,313,430,590$, 697; MALDI-TOF MS m / z calcd for $\mathrm{C}_{77} \mathrm{H}_{18} \mathrm{O}_{6}[\mathrm{M}]^{-} 1038.1110$, found 1038.1114.

Compound 4ai: the product mixture was separated and purified by silica gel column
chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=7: 1)$ to give $\mathbf{4 a i}(20.5 \mathrm{mg}, 40 \%)$, amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.90(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{dd}, J=13.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 171.5,169.2,154.1,153.7,152.0,151.0,148.0,147.6,147.5,147.45,146.9$, $146.6,146.58,146.5,146.45,146.3,146.25,146.2,146.1,145.83,145.82,145.8$, $145.6,145.5,145.4,145.39,145.32,145.31,145.3,145.2,144.8,144.7,144.6,144.4$, 143.3, 143.27, 143.0, 142.95, 142.9, 142.7, 142.6, 142.4, 142.3, 142.27, 142.04, 142.0, $141.9,141.8,141.7,141.69,141.4,141.3,139.6,139.2,139.19,138.9,138.7,136.94$, 136.9, 135.1, 128.6, 123.7, 121.0, 74.7, 74.1, 69.1, 53.9, 53.4, 52.1, 37.5; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2946,2920,2847,1735,1594,1518,1431,1342,1266,1243,1193$, $1174,1138,1112,1078,910,856,763,730,527$; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 257,312$, 430, 590, 633, 697; MALDI-TOF MS m/z calcd for $\mathrm{C}_{75} \mathrm{H}_{15} \mathrm{NO}_{6}[\mathrm{M}]^{-}$1025.0905, found 1025.0901 .

Compound 4aj: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $\mathbf{4 a j}(14.3 \mathrm{mg}, 27 \%)$, amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H})$,
7.45-7.44 (m, 2H), 7.41-7.38 (m, 2H), 7.33-7.30(m, 1H), $5.78(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H})$, $5.38(\mathrm{dd}, J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.24(\mathrm{dd}, J=13.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.6, 169.4, $154.9,154.3,152.3,151.4,147.5,147.4,147.1,146.9,146.6,146.5,146.4,146.3$, $146.2,146.16,146.1,146.05,145.92,145.9,145.86,145.7,145.5,145.46,145.42$, $145.4,145.3,145.25,145.2,144.9,144.7,144.6,144.4,143.2,143.17,142.9,142.87$, $142.8,142.6,142.5,142.48,142.4,142.2,142.1,142.0,141.8,141.7,141.69,141.34$, $141.3,141.1,140.6,140.3,139.8,139.1,138.9,138.8,138.4,137.1,136.5,134.9$, $128.9,128.3,127.6,127.1,127.05,117.4,74.8,74.3,69.2,53.8,53.3,52.2,37.7$; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2946,1735,1485,1430,1264,1242,1190,1173,1078,905,842$, 768, 659, 527 ; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 257,431,590,698 ;$ MALDI-TOF MS m / z calcd for $\mathrm{C}_{81} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}]^{-} 1056.1367$, found 1056.1365.

Compound 4ak: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=7: 1)$ to give 4ak ($20.1 \mathrm{mg}, 41 \%$), amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.89(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.11(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=13.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 171.5,169.2,154.3,153.9,152.1,151.1,150.1,148.9,147.6,147.4,146.9$,
$146.6,146.57,146.5,146.4,146.37,146.3,146.2,146.14,146.1,145.9,145.8,145.77$, $145.75,145.6,145.5,145.45,145.4,145.38$, 145.3, 144.8, 144.7, 144.66, 144.65, $144.4,143.3,143.2,142.93,142.9,142.87,142.7,142.5,142.48,142.3,142.26,142.1$, 141.9, 141.8, 141.7, 141.4, 141.3, 139.6, 139.2, 139.17, 138.9, 138.8, 137.0, 136.8, 135.0, 122.3, 120.5, 74.7, 74.1, 69.1, 53.9 53.4 51.5 37.5; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2946$, $1734,1591,1431,1268,1242,1194,1174,1078,910,831,729,527 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right)$ $\lambda_{\max } / \mathrm{nm} 256,314,429$, 590, 697; MALDI-TOF MS m / z calcd for $\mathrm{C}_{74} \mathrm{H}_{15} \mathrm{NO}_{4}[\mathrm{M}]$ 981.1007, found 981.1005.

4al

Compound 4al: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=7: 1)$ to give 4al ($28.9 \mathrm{mg}, 56 \%$), amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.84(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=2.0 \mathrm{~Hz}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{q}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=14.4$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=13.6,4.0$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 MHz, CDCl_{3}) $\delta 171.6$ 169.3, 154.6 154.1, 152.3 151.2, $150.9,148.0,147.5,147.4,147.0,146.6,146.53,146.5,146.4,146.3,146.2,146.15$, 146.1, 146.0, 145.9, 145.84, 145.8, 145.7, 145.5, 145.4, 145.38, 145.3, 145.25, 145.1, $144.8,144.6,144.58,144.4,143.2,142.9,142.86,142.8,142.6,142.5,142.4,142.3$,
$142.2,142.0,141.9,141.8,141.7,141.68,141.3,141.26,139.7,139.5,139.2,139.0$, $138.8,138.3,137.1,136.6,136.3,134.9,129.7,129.5,127.9,126.8,121.7,118.9$, 74.8, 74.2, 69.2, 53.9, 53.3, 52.2, 37.7; FT-IR $1 / \mathrm{cm}^{-1}(\mathrm{KBr})$ 2946, 1734, 1430, 1266, 1241, 1193, 1172, 1138, 1112, 1079, 906, 838, 729, 527; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm}$ 254, 312, 430, 590, 697; MALDI-TOF MS m / z calcd for $\mathrm{C}_{78} \mathrm{H}_{17} \mathrm{NO}_{4}[\mathrm{M}]^{-}$1031.1163, found 1031.1165.

4 am

Compound 4am: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $\mathbf{4 a m}(16.3 \mathrm{mg}, 33 \%)$, amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}, \mathrm{v} / \mathrm{v}=10: 1$) $\delta 7.34-7.33(\mathrm{~m}, 1 \mathrm{H})$, $7.20-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=15.0$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=13.2$, 4.2 Hz, 1H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}, \mathrm{v} / \mathrm{v}=10: 1$) $\delta 171.0,168.8,154.9$, $154.3,152.0,151.2,147.3,147.2,146.9,146.5,146.4,146.34,146.3,146.2,146.1$, $146.0,145.9,145.89,145.74,145.73,145.7,145.6,145.32,145.3,145.25,145.1$, 145.0, 144.7, 144.6, 144.4, 144.2, 143.0, 143.0, 142.8, 142.7, 142.67, 142.6, 142.5, $142.4,142.3,142.2,142.1,141.9,141.7,141.6,141.57,141.5,141.2,141.1,140.9$, 139.7, 139.0, 138.97, 138.7, 138.5, 137.0, 136.3, 134.4, 126.8, 126.0, 123.2, 115.5, 74.5, 74.0, 68.8, 53.3, 52.9, 52.7, 37.3; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr})$ 2946, 1732, 1626, 1431,
$1268,1239,1174,1138,1113,1079,905,788,735,575,527$; UV-vis $\left(\mathrm{CHCl}_{3}\right)$ $\lambda_{\text {max }} / \mathrm{nm} 256,312,431$, 695; MALDI-TOF MS m/z calcd for $\mathrm{C}_{73} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}]^{-}$ 986.0618, found 986.0793.

Compound 4an: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $\mathbf{4} \mathbf{a n}(16.5 \mathrm{mg}, 33 \%)$, amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J$ $=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=13.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{dd}, J=13.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 MHz, CDCl_{3}) $\delta 177.7,171.3,169.2,159.1,154.7,154.0,152.1,152.0$, 151.1, 147.6, 147.5, 146.9, 146.6, 146.5, 146.47, 146.4, 146.3, 146.26, 146.2, 146.19, $146.18,145.9,145.85,145.8,145.7,145.6,145.5,145.47,145.34,145.3,145.2,145.1$, $144.8,144.7,144.65,144.4,143.3,143.2,142.9,142.7,142.5,142.48,142.4,142.3$, $142.2,142.1,141.9,141.8,141.75,141.7,141.67,141.4,139.8,139.7,139.3,139.2$, $138.9,137.0,136.8,134.7,134.6,119.6,111.4,74.5,74.1,69.1,53.8,53.4,50.5,37.2$; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2947,1733,1678,1562,1500,1430,1261,1244,1195,1175$, $1139,1079,1027,968,908,796,766,728,527$; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 258,314$, 430, 694; MALDI-TOF MS m / z calcd for $\mathrm{C}_{74} \mathrm{H}_{14} \mathrm{O}_{6}[\mathrm{M}]^{-} 998.0796$, found 998.0799 .

Compound 4ao: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=7: 1)$ to give $\mathbf{4 a o}(30.4 \mathrm{mg}, 51 \%)$, amorphous brown solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.81(\mathrm{~s}, 2 \mathrm{H}), 5.42(\mathrm{dd}, J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.70(\mathrm{~m}, 1 \mathrm{H})$, 4.54-4.52(m, 2H), 4.22 (t, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~s}, 5 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.25(\mathrm{dd}, J=13.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 198.6, 171.6, $169.3,154.7,154.0,152.3,151.3,147.5,147.4,147.0,146.8,146.6,146.59,146.5$, $146.4,146.3,146.14,146.12,146.1,145.94,145.9,145.87,145.86,145.7,145.5$, 145.44, 145.43, 145.4, 145.3, 145.0, 144.8, 144.7, 144.6, 144.4, 144.37, 143.3, 143.2, 142.94, 142.9, 142.7, 142.5, 142.4, 142.35, 142.3, 142.2, 141.9, 141.85, 141.8, 141.7, 141.67, 141.4, 141.3, 139.7, 139.5, 139.2, 138.9, 138.85, 138.2, 137.0, 136.7, 135.0, $128.0,127.8,118.4,78.1,74.9,74.1,72.9,72.88,71.7,71.6,70.5,69.2,53.9,53.3$, 52.0, 37.4; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 3092,2948,1757,1735,1634,1604,1513,1445$, 1430, 1375, 1264, 1240, 1189, 1173, 1138, 1117, 1080, 1046, 1027, 857, 829, 779, 763, 575, 527; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 257,310,430,695 ;$ MALDI-TOF MS m / z calcd for $\mathrm{C}_{86} \mathrm{H}_{24} \mathrm{FeO}_{5}[\mathrm{M}]^{+} 1192.0979$, found 1192.0981.

Compound 4ap: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give $\mathbf{4 a p}(11.8 \mathrm{mg}, 20 \%)$, amorphous brown solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{dd}$, $J=14.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{dd}, J$ $=13.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6,169.4,154.9,154.2$, $152.3,151.3,147.5,147.4,147.0,146.8,146.6,146.55,146.4,146.35,146.2,146.15$, 146.1, 146.07, 146.06, 146.0, 145.9, 145.85, 145.7, 145.5, 145.47, 145.43, 145.4, $145.3,145.25,145.2,144.8,144.7,144.6,144.4,143.2,143.18,142.9,142.88,142.8$, $142.6,142.5,142.3,142.2,142.1,141.9,141.82,141.8,141.7,141.4,141.3,140.8$, 140.0, 139.9, 139.7, 139.1, 138.9, 138.8, 138.4, 138.0, 137.1, 136.5, 134.9, 128.9, $128.5,126.8,117.7,93.4,74.8,74.3,69.2,53.8,53.3,52.2,37.7 ;$ FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr})$ 2946, 1735, 1478, 1431, 1266, 1243, 1192, 1173, 1079, 999, 905, 813, 731, 527; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm} 256,431,591,697$; MALDI-TOF MS m / z calcd for $\mathrm{C}_{81} \mathrm{H}_{19} \mathrm{IO}_{4}[\mathrm{M}]^{-} 1182.0334$, found 1182.0336.

Compound 4ba: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM}(\mathrm{v} / \mathrm{v}=8: 1)$ to give 4ba ($13.5 \mathrm{mg}, 27 \%$), amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.72(\mathrm{~s}$, $2 \mathrm{H}), 5.36(\mathrm{dd}, J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.50(\mathrm{~m}, 2 \mathrm{H}), 4.45-4.38(\mathrm{~m}, 1 \mathrm{H})$, $4.21-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{dd}, J=16.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,169.0,155.1,154.4,152.6$, $151.5,147.5,147.4,147.3,146.9,146.7,146.6,146.55,146.4,146.36,146.3,146.2$, $146.1,146.08,146.05,145.94,145.9,145.7,145.5,145.45,145.4,145.39,145.3$, $145.25,145.1,144.9,144.7,144.6,144.4,143.2,143.17,142.9,142.87,142.8,142.6$, $142.5,142.4,142.2,142.1,141.9,141.83,141.8,141.7,141.66,141.4,141.36,141.3$, 139.7, 139.0, 138.88, 138.6, 138.4, 137.1, 136.5, 134.9, 128.4, 128.3, 127.9, 117.4, 74.8, 74.3, 69.0, 62.8, 62.6, 52.1, 37.7, 14.4, 14.1; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2976,1731$, $1462,1440,1264,1238,1180,1137,1112,1079,1010,904,776,731,698,576,527 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm} 256,312,431,699 ;$ MALDI-TOF MS m / z calcd for $\mathrm{C}_{77} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}]^{-} 1008.1367$, found 1008.1369.

Compound 6: the product mixture was separated and purified by silica gel column chromatography with CS_{2} as the eluent to recover unreacted C_{60}, and then the eluent was switched to $\mathrm{CS}_{2} / \mathrm{DCM} / E t O A c(\mathrm{v} / \mathrm{v} / \mathrm{v}=10: 5: 2)$ to give $6(30.0 \mathrm{mg}, 66 \%)$,
amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{DMSO}-d_{6} / \mathrm{CS}_{2}, \mathrm{v} / \mathrm{v}=1: 10\right) \delta 12.79(\mathrm{~s}$, $1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 3 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J$ $=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{q}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=12.6$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 MHz, DMSO- $d_{6} / \mathrm{CS}_{2}, \mathrm{v} / \mathrm{v}=1: 10$) $\delta 155.3$, 155.2, 153.8, $153.5,147.1,147.0,146.7,146.0,145.9,145.6,145.5,145.2,145.1,145.06,144.9$, $144.82,144.8,144.7,144.6,144.1,144.0,143.98,143.95,143.9,143.5,143.4,143.22$, $143.2,141.9,141.8,141.5,141.4,141.39,141.1,141.0,140.96,140.9,140.8,140.6$, $140.5,140.4,140.3,138.2,137.7,137.4,135.3,135.0,134.0,133.2,127.3,126.8$, 126.6, 116.2, 73.9, 72.1, 55.0, 33.3, 29.1; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2959,2926,1716,1575$, 1420, 1261, 1212, 1177, 1097, 1051, 1026, 905, 804, 776, 696, 527; UV-vis $\left(\mathrm{CHCl}_{3}\right)$ $\lambda_{\text {max }} / \mathrm{nm} 256,311,431,689$; MALDI-TOF MS m / z calcd for $\mathrm{C}_{72} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}]^{+} 908.0832$, found 908.0836.

6. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds 4

${ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) of compound 4aa		

LG9＇\angle
8ELてG
00ε ¿६
ع8Ľと
と8t＇sc
90Z＇69
してでっく
ZLLELL
Z86＇GLL
S00＇6Zし
Gt8 \＆
86と＂9عا
L6L＇8\＆

\％	$\begin{aligned} & 0 \mathrm{SO} 6 \varepsilon \mathrm{~L} \\ & 8+\mathrm{l} \cdot 6 \varepsilon \mathrm{l} \end{aligned}$
	80ぐしャレ
	988レヤレ
	890゙でヤ
	890でで
	£Gででっ
	＋1cciz＋1－
	906 てカレ
＂	0Z6でで
	te9 \dagger＋
m	と0ぐガー
O	Gち8゙カー
0	
\bigcirc	06で乌ちー
N	8\＆E「ちレ
	91ヵらヶt
	69t＇St
O	08t＇Gtレ
5	てLS¢¢
－	89G＇Stl
\sum^{∞}	LZL＇StL
	$8 \vdash L$ Cヶh
	088 ¢ヶし
0	L68＇乌゙レ
	960 9tr
	6LI＇9tl
	たとで9tし
	$668.9 \downarrow$－
	¢99＇9ヶl
	いでくカー
	SIC＇LSL
	619 t¢
	HE691－
	LES＇LLL

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of compound 4af
121ε
GOZ
siでと
808 \＆

$290<$
ع80
092て
OSt
ZLTLI

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4af

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4ai

8\& G,
898.
058
206 G

H NMR（ $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of compound 4ak
£81 ε 061 E－
てしで
カ18と

H NMR（ 600 MHz ，
$+0 \varepsilon \mathrm{G}$
$01 \varepsilon \mathrm{G}$
$87 \varepsilon \mathrm{G}$
$\downarrow \subset \varepsilon \mathrm{G}$
698 G
+68 G

$09 Z \angle$
$\varepsilon 6 \varepsilon \angle$
Z0t L^{-}
$0<t 8$
8Lt 8

\section*{${ }^{1} \mathrm{H}$ NMR（ $600 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$ ）of compound 4am

 881 G

 6 LZG
 E 99
 S8L＇${ }^{-}$
 | tGL |
| :--- |
| 6 Cl 2 |
| 1 |
 $291 \angle$
 $291<$
 88 L 2
 $961 / 2$
 861 2
 $09 Z^{2}$
 たEどく
 $9 \varepsilon \varepsilon \angle$
 $6 \varepsilon \varepsilon<$
 $\downarrow \& L^{」}$}

$\begin{array}{llllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -16\end{array}$

29G6-

ZてZ＇し－$0 \downarrow て ゙ し$	
	$\angle 8 t \cdot$
toc ${ }^{\circ}$	
zz9＇L	
ャ0で¢	
$\angle Z Z^{\angle \varepsilon} \angle$	
$601 \cdot$	
	くZl＇t
くとL＇	
\％	
	zLl ${ }^{\text {cot }}$
	$681{ }^{\circ} \mathrm{t}$
으 $£ 68{ }^{\circ} \mathrm{t}$	
O Uドナ	
	0てt゙ャ
－8てt゙t	
mestit	
0 Gos \dagger	
	$89 c^{\circ} \mathrm{t}$
	$\mathrm{c8s}^{\circ} \mathrm{b}$
	zo9＇t
	0Z9＇t
0	$8 z 9 ' \downarrow$
\sum	Le9＇t
Z	9t9＇t－
エ	\＆$¢ \subset$
	でE゙G
89\％${ }^{\text {c }}$	
	gLL＇
1612	
90 でく	
8 8でく	
09でく	
	LSt＇L
	92tく

