## Electronic Supplementary Information

## Tuning Optical Properties of Lead-Free 2D Tin-Based Perovskites with Carbon Chains Spacers

Lu Hou,<sup>†</sup> Yihua Zhu, \*,<sup>†</sup> Jingrun Zhu,<sup>†</sup> and Chunzhong Li\*,<sup>†,‡</sup>

<sup>†</sup> Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

<sup>‡</sup> School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.

\*E-mail: yhzhu@ecust.edu.cn.

\*E-mail: czli@ecust.edu.cn.

**Table S1** The average layer spacing measured by XRD ( $d_{1-mea}$ ), the layer spacing calculated by the equation d (nm) =  $0.85 + 0.16 \times n$  ( $d_{2-cal}$ ) and the absolute value of the difference between the  $d_1$  and  $d_2$  ( $|d_1-d_2|$ ).

|                                         | (C <sub>8</sub> H <sub>17</sub> NH <sub>2</sub> ) <sub>2</sub> SnBr <sub>4</sub> | $(C_{12}H_{25}NH_2)_2SnBr_4$ | (C <sub>18</sub> H <sub>37</sub> NH <sub>2</sub> ) <sub>2</sub> SnBr <sub>4</sub> | (OAm) <sub>2</sub> SnBr <sub>4</sub> |
|-----------------------------------------|----------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------|--------------------------------------|
| d <sub>1-mea</sub><br>(Å)               | 20.48                                                                            | 25.87                        | 28.96                                                                             | 37.47                                |
| d <sub>2-cal</sub><br>(Å)               | 21.30                                                                            | 27.70                        | 37.30                                                                             | 37.30                                |
| d <sub>1</sub> -d <sub>2</sub>  <br>(Å) | 0.82                                                                             | 1.83                         | 8.34                                                                              | 0.17                                 |

**Table S2** PL emission peak wavelengths, PL excitation peak wavelengths, Stokes shifts, FWHM, average decay lifetimes ( $\tau_{ave}$ ), solid PLQYs excited by 316 nm and Tauc fit of the absorbance data (Eg) of (RNH<sub>2</sub>)<sub>2</sub>SnBr<sub>4</sub>.

| Samples                                                                           | PL<br>peak  | PLE<br>(nm) | Stokes<br>shifts | FWHM<br>(nm) | τ <sub>ave</sub><br>(μs) | PLQY<br>(%) | Eg<br>(eV) |
|-----------------------------------------------------------------------------------|-------------|-------------|------------------|--------------|--------------------------|-------------|------------|
| (C <sub>8</sub> H <sub>17</sub> NH <sub>2</sub> ) <sub>2</sub> SnBr <sub>4</sub>  | (nm)<br>612 | 361         | (nm)<br>251      | 130          | 3.93                     | 54.25       | 3.26       |
| (C <sub>12</sub> H <sub>25</sub> NH <sub>2</sub> ) <sub>2</sub> SnBr <sub>4</sub> | 616         | 496         | 120              | 126          | 4.53                     | 1.94        | 3.61       |
| (C <sub>18</sub> H <sub>37</sub> NH <sub>2</sub> ) <sub>2</sub> SnBr <sub>4</sub> | 617         | 496         | 121              | 140          | 4.48                     | 1.85        | 3.56       |
| (OAm) <sub>2</sub> SnBr <sub>4</sub>                                              | 628         | 346         | 282              | 156          | 4.3                      | 61.08       | 3.53       |

**Table S3** XPS peak of elements Sn, Br, N for  $(C_8H_{17}NH_2)_2SnBr_4$ ,  $(C_{12}H_{25}NH_2)_2SnBr_4$ ,  $(C_{18}H_{37}NH_2)_2SnBr_4$ , respectively.

| Samples                                                                           | Sn 3d <sub>5/2</sub><br>(eV) | Sn 3d <sub>3/2</sub><br>(eV) | Br 3d <sub>5/2</sub><br>(eV) | Br 3d <sub>3/2</sub><br>(eV) | N (eV) |
|-----------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------|
| (C <sub>8</sub> H <sub>17</sub> NH <sub>2</sub> ) <sub>2</sub> SnBr <sub>4</sub>  | 487.20                       | 495.51                       | 67.36                        | 68.36                        | 400.99 |
| (C <sub>12</sub> H <sub>25</sub> NH <sub>2</sub> ) <sub>2</sub> SnBr <sub>4</sub> | 487.68                       | 496.25                       | 67.94                        | 68.97                        | 401.46 |
| (C <sub>18</sub> H <sub>37</sub> NH <sub>2</sub> ) <sub>2</sub> SnBr <sub>4</sub> | 487.58                       | 496.03                       | 67.73                        | 68.78                        | 401.28 |

**Table S4** Radiative lifetime  $(\tau_r)$  and non-radiative lifetime  $(\tau_{nr})$  of  $(C_8H_{17}NH_2)_2SnBr_4$ ,  $(C_{12}H_{25}NH_2)_2SnBr_4$ ,  $(C_{18}H_{37}NH_2)_2SnBr_4$  respectively.

|                                                                                   | PLQY (%) | $	au_{\mathrm{ave}}$ | $	au_{ m nr}$ | $	au_{ m r}$ |
|-----------------------------------------------------------------------------------|----------|----------------------|---------------|--------------|
| (C <sub>8</sub> H <sub>17</sub> NH <sub>2</sub> ) <sub>2</sub> SnBr <sub>4</sub>  | 54.25    | 3.93                 | 8.585         | 7.244        |
| (C <sub>12</sub> H <sub>25</sub> NH <sub>2</sub> ) <sub>2</sub> SnBr <sub>4</sub> | 1.94     | 4.53                 | 4.619         | 233.505      |
| (C <sub>18</sub> H <sub>37</sub> NH <sub>2</sub> ) <sub>2</sub> SnBr <sub>4</sub> | 1.85     | 4.48                 | 4.564         | 242.162      |

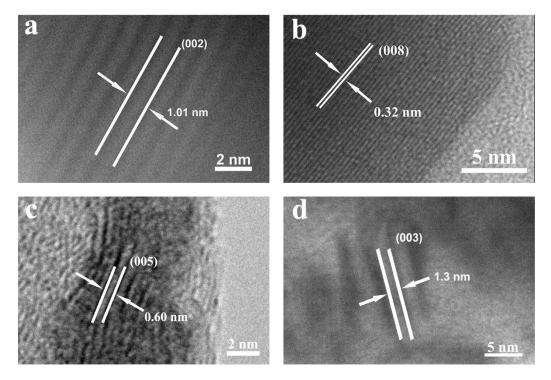
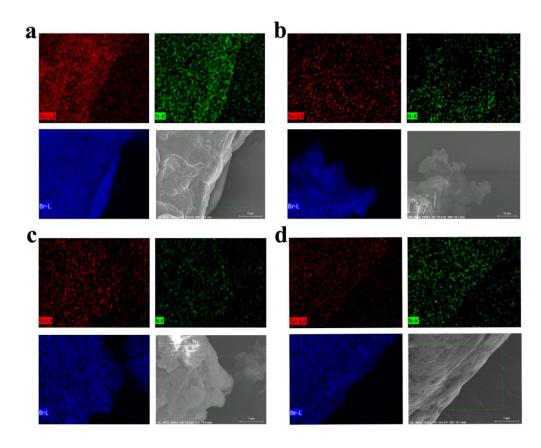
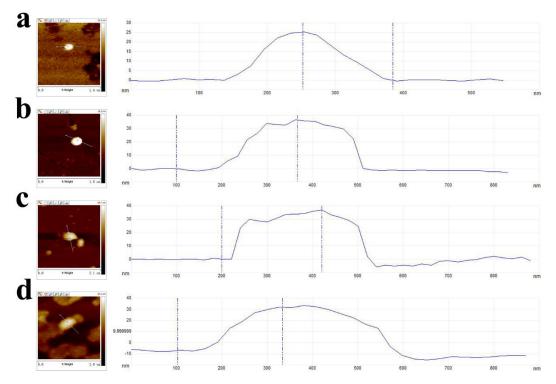





Figure S1. HRTEM images for (a)  $(C_8H_{17}NH_2)_2SnBr_4$ , (b)  $(C_{12}H_{25}NH_2)_2SnBr_4$ , (c)  $(C_{18}H_{37}NH_2)_2SnBr_4$  and (d)  $(OAm)_2SnBr_4$ , respectively.



**Figure S2**. SEM and EDS mapping images for (a)  $(C_8H_{17}NH_2)_2SnBr_4$ , (b)  $(C_{12}H_{25}NH_2)_2SnBr_4$ , (c)  $(C_{18}H_{37}NH_2)_2SnBr_4$  and (d)  $(OAm)_2SnBr_4$ , respectively.



**Figure S3**. AFM images for (a)  $(C_8H_{17}NH_2)_2SnBr_4$ , (b)  $(C_{12}H_{25}NH_2)_2SnBr_4$ , (c)  $(C_{18}H_{37}NH_2)_2SnBr_4$  and (d)  $(OAm)_2SnBr_4$ , respectively.