Supporting Information for

Microbial Community Predicts Functional Stability of Microbial Fuel Cells Using Machine Learning Techniques

Keaton Larson Lesnik ^{1,2} , Wenfang Cai1, ^{1,3} and Hong Liu ¹ *
¹ Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, USA
² Maia Analytica LLC, Corvallis, OR 97330
³ Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an,
710049, China
* Corresponding author. Phone: (541) 737– 6309. Email: hong.liu@oregonstate.edu
Supporting Information includes 1 table, 2 figures, and 4 pages

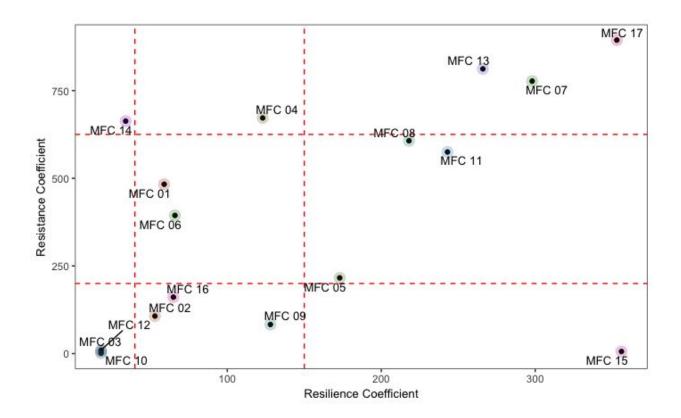

Electrochemical and Recovery Data

Table S1. Electrochemical characterization and perturbation data

Reactor Number	External Resistance	Current (initial)	Current (disruption)	Current (disruption) Current (recovered)	Recovery Rate	Recovery Time
	(Ω)	(A m-2)	(A m-2)	(A m-2)	(mA m-2 h-1)	(hrs)
MFC 1	624	2.14	1.39	2.82	10	127.9
MFC 2	464	2.67	0.52	2.71	13	165.4
MFC 3	330	2.66	0.03	0.45		
MFC 4	495	2.46	1.98	ω	11	48.4
MFC 5	330	2.9	1.03	4.37	35	49.5
MFC 6	80	8.6	4.86	9.27	86	120.8
MFC 7	164	7.11	6.22	7.11	37	14.5
MFC 8	265	3.55	2.68	3.77	23	30.3
MFC 9	120	7.58	1.16	7.62	90	69.3
MFC 10	348	2.69	0.01	0.13		
MFC 11	650	1.85	1.35	3.03	17	28.3
MFC 12	118	5.88	0.11	0.23		
MFC 13	385	2.69	2.41	2.67	11	13.1
MFC 14	800	1.69	1.35	1.7	ъ	269
MFC 15	95	8.84	0.11	8.84	107	19.9
MFC 16	120	8.68	2.41	8.46	10	79.6
MFC 17	325	3.35	3.16	3.46	20	1.5
Min	336	1.69	0.01	0.13	5	1.5
Max	215	8.84	6.22	9.27	107	269
Average	336	4.43	1.81	4.1	34	74.1
Std. Dev.	215	2.67	1.72	3.04	34	74.5

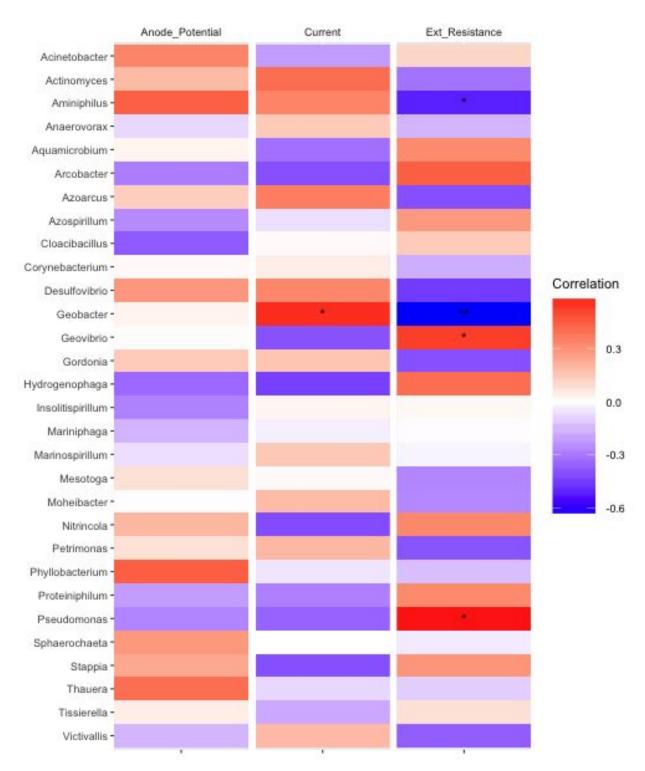

Resistance and Resilience Plot

Figure S1. Plot of resistance and resilience coefficients with lines designating classification levels (low, mid, high) for both resistance and resilience.

Electrochemical Correlation of Genera

Figure S2. Heat map of Pearson's correlation between most abundant genera and electrochemical characteristics.

