Supporting Information

Characterization of the chemical contents of fluorinated and fluorine-free firefighting foams using a novel workflow combining non-target screening and total fluorine analysis

Florian Dubocq*, Thanh Wang, Leo W. Y. Yeung, Viktor Sjöberg, Anna Kärrman

Man-Technology-Environment (MTM) Research Centre, Örebro University, SE-701 82 Örebro, Sweden

florian.dubocq@oru.se

*Corresponding author

Number of pages: 37

Number of Tables: 10

Number of Figures: 17

Number of Equations: 1

Table S1: Foam information. 5
Table S2: List of target analytes, internal standards (IS) used for the quantification and mass
transitions7
Table S3: Parameters for full scan raw data processing using XCMS
Table S4: Various QA/QC tests applied to confirm non-target workflow robustness
Table S5: LC parameters for analysis of the 24 firefighting foams. 11
Table S6: Results (mg/L) for analysis of 17 PFASs in the 24 foams
Table S7: CIC, ISE and mass balance analysis for the 24 foams
Table S8: Instrumental and method detection limits for PFASs target quantification, ISE and
CIC analyses
Table S9: Summary of outliers detected using non-target methodology (hierarchical clustering
analysis and mass defect plot analysis)
Table S10:Semi-quantification of the four tentatively identified organofluorine surfactants and
mass balance analysis recalculated according to the sum target and semi-quantification
concentrations

Figure S1: Dendrograms and heatmaps for the first chromatographic method using negative
ionization (top) and positive ionization (bottom) ESI mode
Figure S2: Formula, structure, CAS number and confidence level for the non-fluorinated
outliers found in firefighting foams using positive and negative electrospray ionization 22
Figure S3: Filtered HF mass defect plot between m/z 400 and m/z 675
Figure S4: Chromatogram (total ion current) for F10 sample using qToF and negative ionization
mode
Figure S5: Chromatogram (total ion current) for AR1 sample using qToF and negative
ionization mode

Figure S6: Chromatogram (total ion current) for AR7 sample using qToF and negative
ionization mode
Figure S7: Chromatogram (total ion current) for F6 sample using qToF and negative ionization
mode
Figure S8: Full scan mass high resolution spectra for sample $F2$ at retention time 6.29 minutes
with a low collision energy (top) and a high collision energy (bottom) for the first
chromatographic method
Figure S9: Full scan high resolution mass spectra for sample $F2$ at retention time 8.93 minutes
with a low collision energy (top) and a high collision energy (bottom) for the second
chromatographic method
Figure S10: Full scan high resolution mass spectra for sample F10 at retention time 6.29
minutes with a low collision energy (top) and a high collision energy (bottom) for the first
chromatographic method
Figure S11: Full scan high resolution mass spectra for sample $F2$ at retention time 8.93 minutes
with a low collision energy (top) and a high collision energy (bottom) for the second
chromatographic method
Figure S12: Full scan high resolution mass spectra for sample AR1 at retention time 8.61
minutes with a low collision energy (top) and a high collision energy (bottom) for the second
chromatographic method
Figure S13: Full scan high resolution mass spectra for sample AR7 at retention time 9.61
minutes with a low collision energy for the second chromatographic method
Figure S14: Full scan high resolution mass spectra for sample AR7 at retention time 8.91
minutes with a low collision energy (top) and a high collision energy (bottom) for the second
chromatographic method

Figure S15: Full scan high resolution mass spectra for sample F6 at retention time 8.46 minutes
with a low collision energy (top) and a high collision energy (bottom) for the second
chromatographic method
Figure S16: Full scan high resolution mass spectra for sample F10 at retention time 7.31
minutes with a low collision energy for the second chromatographic method

Table S1: Foam information. Foam IDs finishing by the same last letter were provided by the same manufacturer. Foams in bold are marketed as organofluorine containing foams.

Group	Foam ID	Name	Manufacturer or Supplier	Year of acquirement
	F1_a	AFFF 3%	Dafo Brand AB	2014
	F2_a	ARC Miljö	Dafo Brand AB	2014/2016
	F3_b	BSX	Uniteq	2014
	F4_b	EcoDare FluorFree	Uniteq	2016
	F5_c	Fluoex	3FFF Ltd	2016
AFFF	F6_c	Freesolv	3FFF Ltd	2016
	F7_d	RF 1-AG	Solberg	2016
	F8_d	RF 3% (UL)	Solberg	2016
	F9_d	RF 3x3 FP-ATC	Solberg	2016
	F10_e	Sthamex AFFF 3%	Dr Sthamer	2014/2016
	AR1_d	Arctic 1x3 ATC	Solberg	2016
	AR2_f	Ecopol AR	BioEx	2016
	AR3_c	Filmex	3FFF Ltd	2016
	AR4_c	Freedol	3FFF Ltd	2016
	AR5_c	Freedol SF	3FFF Ltd	2016
AR-AFFF	AR6_g	Moussol FF 3/6	Dr Sthamer	2016
	AR7_h	OneSeven B-AR	Nordic Fire Rescue Service	2016
	AR8_i	Towalex 3% master	Тусо	2014
	AR9_i	Towalex 3% super	Тусо	2014
	AR10_i	Towalex 3x3	Тусо	2014
	AR11_i	Towalex plus	Тусо	2014
AR-AFFFP	ARP1_j	Alcoseal 3-6%	Angus/Fire Armour Ltd	2014
	AB1_c	Freedex SF	3FFF Ltd	2016
АВ	AB2_c	Genex	3FFF Ltd	2016

LC-MS methanol was purchased from Fisher Scientific (purity 99.99 %, Ottawa, Canada). Glacial acetic acid were purchased from Sigma Aldrich (purity 99.99 %, Steinheim, Germany) for LC analysis and Merck (purity 99.99 %, Darmstadt, Germany) for ISE analysis. Ammonium acetate, sodium carbonate, sodium bicarbonate as well as multi-element chromatography anion standard solution (10 mg/kg) were obtained from Sigma Aldrich (Steinheim, Germany). Sodium chloride, disodium ethylenediaminetetraacetic acid (Na₂EDTA) (dehydrated) and sodium hydroxide were purchased from VWR (Radnor, USA). Sodium fluoride was obtained from Scharlau (Barcelona, Spain). Deionized water (18.2 M Ω) (DI) was prepared using a Milli-Q[®] water purification system from Millipore (Darmstadt, Germany).

The non-target analysis method was processed using liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer (qToF, Acquity UPLC Xevo Synapt, Waters Corporation, Milford, USA) using an Acquity UPLC BEH C18 column (L 100 mm x ID 2.1 mm, particles of 1.7 μ m) with a set temperature of 50 °C and an injection volume of 10 μ L. Samples were analyzed with an electrospray ionization in both positive and negative mode with an MS^E method in a full scan mode between m/z 50 and m/z 1200. The mobile phase was:

- In positive mode: 70:30 H₂O:MeOH + 0.1 % acetic acid (A) MeOH + 0.1 % acetic acid (B)
- In negative mode: 70:30 H₂O:MeOH + 2 mM ammonium acetate (A) MeOH + 2 mM ammonium acetate (B)

Target analysis mass transitions are summarized below (Table S2):

Target analyte	Mass transition	IS analyte	IS mass transition
PFBA	212.97 → 169*	¹³ C ₄ PFBA	216.97 → 172
PFPeA	262.97 → 219*	¹³ C ₂ PFHxA	314.97 → 270
PFBS	$\begin{array}{c} 298.9 \rightarrow 79.96^{*} \\ 298.9 \rightarrow 98.9 \end{array}$	¹⁸ O ₂ PFHxS	402.9 → 102.9
PFHxA	$\begin{array}{c} 312.97 \rightarrow 118.95^{*} \\ 312.97 \rightarrow 269 \end{array}$	¹³ C ₂ PFHxA	314.97 → 270
PFHpA	$362.97 \rightarrow 168.97^*$ $362.97 \rightarrow 319$	¹³ C ₂ PFHxA	314.97 → 270
PFHxS	$398.9 \rightarrow 79.96^*$ $398.9 \rightarrow 98.9$	¹⁸ O ₂ PFHxS	402.9 → 102.9
PFOA	412.97 → 168.97* 412.97 → 369	¹³ C ₄ PFOA	416.97 → 372
6:2 FTSA	427 → 407*	¹³ C ₂ 6:2 FTSA	429 → 409
PFNA	$462.99 \rightarrow 219^*$ $462.99 \rightarrow 419$	¹³ C ₅ PFNA	467.99 → 423
PFOSA	$497.9 \rightarrow 78^*$ $497.9 \rightarrow 168.96$	¹³ C ₈ PFOSA	505.9 → 77.8
PFOS	$498.97 \rightarrow 79.96^{*}$ $498.97 \rightarrow 98.96$ $498.97 \rightarrow 169.03$	¹³ C ₄ PFOS	502.97 → 98.96
PFDA	$512.97 \rightarrow 219^*$ $512.97 \rightarrow 469$	¹³ C ₂ PFDA	514.97 → 470
PFUnDA	$562.97 \rightarrow 268.99^*$ $562.97 \rightarrow 519$	¹³ C ₂ PFUnDA	564.97 → 520
PFDS	$598.97 \rightarrow 79.96^*$ $598.97 \rightarrow 98.9$	¹³ C ₄ PFOS	502.97 → 98.96
PFDoDA	612.97 → 168.96* 612.97 → 569	¹³ C ₂ PFDoDA	614.97 → 570
PFTrDA	$662.9 \rightarrow 168.96^{*}$ $662.9 \rightarrow 619$	¹³ C ₂ PFDoDA	614.97 → 570
PFTDA	$712.9 \rightarrow 168.97^*$ $712.9 \rightarrow 669$	¹³ C ₂ PFDoDA	614.97 → 570
PFHxDA	$812.9 \rightarrow 168.96^{*}$ $812.9 \rightarrow 769$	¹³ C ₂ PFDoDA	614.97 → 570
PFOcDA	$912.9 \rightarrow 168.96^{*}$ $912.9 \rightarrow 869$	¹³ C ₂ PFDoDA	614.97 → 570

Table S2: List of target analytes, internal standards (IS) used for the quantification and mass transitions. Quantification traces are indicated with "*" in the table.

The CIC analysis was performed by heating 100 μ L of the diluted foam in a combustion module (Analytikjena, Germany) at 1050 °C. At this temperature, bound fluorine is converted to hydrofluoric acid (HF); this HF is then absorbed into Milli-Q[®] water in a 920 absorbent module (Metrohm, Switzerland). Fluoride anion (F⁻) can be quantified in an ion chromatography (IC) flex module (Metrohm, Switzerland) using an exchange column (Metrosep A Supp5 – 150/4) and a carbonate buffer (64 mM sodium carbonate and 20 mM sodium bicarbonate) as eluent in isocratic elution.

The IF analysis was performed mixing $10 \ \mu$ L of the foam, $20 \ m$ L of distilled water and $20 \ m$ L of a buffer solution homogenized using a stirring bar. The buffer solution was prepared by mixing 58.4 g of sodium chloride, 5 g of Na₂EDTA, 57.5 mL of acetic acid and DI up to 1 L. Sodium hydroxide was used to adjust pH to 5. Since the method is sensitive to ionic strength and pH, buffer solution enables to get a controlled environment for the analysis. Since the method is sensitive to temperature variations, a polystyrene layer was placed between the beaker and the magnetic stirrer to minimize temperature effects. pH value were set up at 5 to get an optimized efficiency for EDTA to bound metal and thus to free fluoride for analysis.

	Parameter	Description	Negative ionization	Positive ionization
	Polarity	Mode of data acquisition	Negative	Positive
General	Retention time format	Time unit (minutes or seconds)	Minutes	Minutes
	Method	Feature detection method	centWave	centWave
	ppm	maximal tolerated m/z deviation in consecutive scans, in ppm (parts per million)	30	30
<i>Feature</i> <i>detection</i>	minimum peak width	minimum chromatographic peak width in seconds	10	10
	maximum peak width	maximum chromatographic peak width in seconds	60	60
	Signal/Noise threshold	Signal to noise ratio cutoff	2	2
	mzdiff	minimum difference in m/z for peaks with overlapping retention times, can be negative to allow overlap	0.01	0.01
	Integration method	Integration method. If =1 peak limits are found through descent on the mexican hat filtered data, if =2 the descent is done on the real data. Method 2 is very accurate but prone to noise, while method 1 is more robust to noise but less exact.	2	2
	prefilter peaks	Prefilter step for the first phase. Mass traces are only retained if they contain at least [prefilter peaks] peaks with intensity >= [prefilter intensity]	3	3
	prefilter intensity	Prefilter step for the first phase. Mass traces are only retained if they contain at least [prefilter peaks] peaks with intensity >= [prefilter intensity]	500	500
	Noise Filter	optional argument which is useful for data that was centroided without any intensity threshold, centroids with intensity < noise are omitted from region of interest detection	0	0

Table S3: Parameters for full scan raw data processing using XCMS.

	Parameter	Description	Negative ionization	Positive ionization
Retention	Method	Retention time correction method	Obiwarp	Obiwarp
time correction	ProfStep	Step size (m/z) to use for profile generation from the raw data files	0.5	0.5
	Grouping method		Density	Density
	Bw	Bandwidth: Tolerated RT deviations (sec)	5	5
Alignment	m/z width	Width of overlapping m/z slices to use for creating peak density chromatograms and grouping peaks across samples	0.025	0.025
	Minfrac	Minimum fraction of samples necessary in at least one of the sample groups for it to be a valid group	0	0
	Minsamp	minimum number of samples necessary in at least one of the sample groups for it to be a valid group	1	1
	Max	maximum number of groups to identify in a single m/z slice	100	100
	Statistical test	Statistical test method. Can be paired/unpaired and parametric/non-parametric	ANOVA parametric	ANOVA parametric
	p-value threshold	Highly significant features have a p-value lower than this	0.01	0.01
Statistics	Fold change threshold	Highly significant features have a fold change greater than this	1.5	1.5
Statistics	Diffreport value	Into= integrated peak intensities are used for the diffreport Maxo=maximum peak intensities are used	Into	Into
	Normalization	Normalize the intensity values by either probabilistic quotient or cyclic loess normalization.	None	None

		Concentration F ⁻ (ng/mL)	Ą	rea	Calibration curve equation	R²			
		50	0.	192					
۵۱	A) CIC calibration curve	100	0.	222					
~,		250	0.	303	y = 0.0007x + 0.1469	0.9983			
		500	0.	487					
		1000	0.	.844					
		Dilution factor	ilution factor multiplication (mg/L)	Average (mg/L)	CV (%)				
B)	CIC test dilution F10	10 000	5	.43					
-,		1 000	6.16	9.7					
		100							
		Dilution factor	ilution factor multiplication (mg/L)	Average (mg/L)	CV (%)				
c	C) CIC test dilution AR7	10 000	10 000 23.94						
ς,		1 000	24.89	4.4					
		100							
		mV	Log concentration fluoride (mg/L)	Concentration fluoride (mg/L)	Calibration curve equation	R²			
		148	-0.1	0.8					
D)	ISE Calibration curve	113	0.6	4	v = -0.019x + 2.75	0.9965			
		80	1.3	20	,				
		37	2.0	100					
		Added foam volume (uL)	Calculated concentration (mg/L)	Concentration calculated after	Average (mg/L)	CV (%)			
		//ddca.roann.roanne (p=)		dilution factor multiplication (mg/L)	,				
		100	42.4	42.4					
E)	ISE test dilution AR7	50	21.0	42.0					
		20	8.8	43.8	43.1	1.5			
		20	12	13.1					
		20	4.5	45.4					

Table S4: Various QA/QC tests applied to confirm non-target workflow robustness.

LC parameters are summarized below (Table S5):

	First chromatographic method	Second chromatographic method
Run time	13 mins	15 mins
Flow	0.4 mL/min	0.3 mL/min
	From 0 to 10 min: 70 % A : 30 % B	From 0 to 13 min: 70 % A : 30 % B
Gradient Table	From 10 to 12 min: 0 % A : 100 % B	From 13 to 14.20 min: 1 % A : 99 % B
	From 12 to 13 min: 70 % A : 30 % B	From 14.20 to 15 min: 70 % A : 30 % B

Table S5: LC parameters for analysis of the 24 firefighting foams.

Form ID	DEOSA	C-2 ETSA	DEDA	DEDaA		DEHnA	- DEOA	DENIA		DELINDA		DETrDA		DEDC		DEOS	DEDS	∑17 PFASs	Sum F ⁻ concentration for the $\Sigma 17$
Founite	PFUSA	0.2 FISA	PrdA	FFFEA	РГПХА	егпра	PFUA	Prina	FFDA	FFUIIDA	PFDUDA	PFIIDA	FFIDA	Pros	PFEXS	PFUS	PFDS	concentration (mg/L)	PFASs (mg/L)
molecular mass	499	428	214	264	314	364	414	464	514	564	614	664	714	300	400	500	600		
number of fluorine	17	13	7	9	11	13	15	17	19	21	23	25	27	9	13	17	21		
F1	<0.02	1.7	<0.01	0.02	0.08	<0.01	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.8	1.0
F2	<0.02	4.4	0.55	0.11	1.1	0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	6.1	3.7
F3	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	0.00	0.00
F4	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00	0.00
F5	<0.02	33.7	0.31	0.10	0.69	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	34.8	20.2
F6	<0.02	38.9	0.56	0.16	1.5	0.02	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	41.2	24.0
F7	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	0.01	<0.01	<0.01	0.01	0.01
F8	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00	0.00
F9	<0.02	0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	0.01	0.01
F10	<0.02	9.5	0.08	0.02	0.08	<0.01	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	9.7	5.6
AR1	<0.02	13.3	<0.01	<0.01	0.46	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	13.8	8.0
AR2	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	0.02	0.01
AR3	<0.02	27.0	0.70	0.23	0.99	0.02	0.10	<0.01	0.04	<0.01	0.02	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	29.0	16.9
AR4	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00	0.00
AR5	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00	0.00
AR6	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00	0.00
AR7	<0.02	2.4	1.5	1.1	0.51	0.13	0.003	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	5.6	3.5
AR8	<0.02	4.1	1.1	0.62	10.4	0.15	0.34	0.02	0.08	<0.01	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	16.8	10.8
AR9	<0.02	0.28	<0.01	<0.01	0.08	<0.01	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	0.40	0.20
AR10	<0.02	8.1	1.0	0.55	9.8	0.13	0.24	0.02	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	19.9	12.5
AR11	<0.02	3.4	<0.01	0.08	1.5	0.02	0.07	<0.01	0.03	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	5.1	3.1
ARP1	<0.02	3.8	<0.01	0.03	0.80	0.05	0.12	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4.8	2.9
AB1	<0.02	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	0.00	0.00
AB2	<0.02	25.4	0.80	0.17	1.5	0.02	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	27.9	16.3

Table S6: Results (mg/L) for analysis of 17 PFASs in the 24 foams.

Foam ID	Total fluorine (TF) concentration (mg/L)	Inorganic fluoride (IF) concentration (mg/L)	Total organic fluorine concentration (mg/L)	Sum F [.] concentration for the ∑17 PFASs (mg/L)	Unidentified organofluorine (UOF) concentration (mg/L)	Mass balance (%)
F1	3671	2.6	3669	1.0	3668	0.03
F2	2000	4.3	1996	3.7	1992	0.19
F3	8.0	3.8	4.2	0.00	4.2	-
F4	12.6	8.0	4.6	0.00	4.59	-
F5	2000	1.1	1999	20.2	1804	1.0
F6	4457	1.4	4456	24.0	4218	0.54
F7	0.61	0.75	0.00	0.01	0.00	0.20
F8	5.2	1.0	4.2	0.00	4.17	-
F9	0.56	0.58	0.00	0.01	0.00	0.47
F10	8000	6.7	7993	5.6	7988	0.07
AR1	8271	2.8	829	8.0	8188	0.10
AR2	0.59	0.94	0.00	0.01	0.00	0.08
AR3	5114	3.2	5111	16.9	4940	0.33
AR4	0.83	0.82	0.01	0.00	0.01	-
AR5	0.80	0.60	0.20	0.00	0.20	-
AR6	0.39	0.72	0.00	0.00	0.00	-
AR7	24800	42.4	24758	3.5	24739	0.01
AR8	6700	4.5	6695	10.8	6685	0.16
AR9	6600	3.1	6597	0.20	6597	0.003
AR10	4343	4.0	4339	12.5	4326	0.29
AR11	2829	0.90	2828	3.1	2825	0.11
ARP1	2871	1.5	2870	2.9	2867	0.10
AB1	0.74	0.60	0.14	0.00	0.14	-
AB2	3671	2.9	3669	16.3	3652	0.44

Table S7: CIC, ISE and mass balance analysis for the 24 foams.

	Molecule	Instrumental detection limit (µg/L)	Method detection limit (µg/L)*
	PFOSA	0.02	2
	6:2 FTSA	0.01	1
	PFBA	0.01	1
	PFPeA	0.01	1
	PFHxA	0.01	1
	PFHpA	0.01	1
	PFOA	0.02	2
	PFNA	0.01	1
Target analysis	PFDA	0.01	1
	PFUnDA	0.01	1
	PFDoDA	0.01	1
	PFTrDA	0.01	1
	PFTDA	0.01	1
	PFBS	0.01	1
	PFHxS	0.01	1
	PFOS	0.01	1
	PFDS	0.01	1
ISE analysis		800	800
CIC analysis		0.02	170/1.7

Table S8: Instrumental and method detection limits for PFASs target quantification, ISE and CIC analyses.

*Method detection limit concentrations were calculated by multiplying instrumental detection limit concentrations by the dilution factor (1 for ISE analysis, 100 for target analysis and organofluorine-free foams CIC analysis and 10 000 for organofluorine containing foams CIC analysis).

m/z	Rt (min)	Molecular ion	Molecular ion Mass error (ppm) Product ions \rightarrow Mass error (ppm)		Associated samples for the important detected molecules				
Negative ionization first chromatographic method									
209.0853	4.03	$[C_8H_{18}O_4S-H]^-$	2.4	96.9603 $[H_2O_4S-H]^- \rightarrow 7.2$ 79.9550 $[HO_3S-H]^- \rightarrow -22.5$	F1, F2, F3, F10, AR8, AR10, AR11				
237.1170	5.79	$[C_{10}H_{22}O_4S-H]^-$	3.8	96.9596 $[H_2O_4S-H]^-$ → -13.4 79.9568 $[HO_3S-H]^-$ → 0.0	F1, F2, F3, F10, AR8, AR10, AR11				
527.0692	6.29	$[C_{13}H_{17}F_{13}N_2O_3S-H]^-$	3.4	507.0617 $[C_{13}H_{16}F_{12}N_2O_3S-H]^-$ → 1.0 487.0574 $[C_{13}H_{15}F_{11}N_2O_3S-H]^-$ → 5.1 181.0632 $[C_5H_{14}N_2O_3S-H]^-$ → -8.3 120.0113 $[C_3H_7NO_2S-H]^-$ → -5.0	F2, F10				
569.0798	6.04	$[C_{15}H_{19}F_{13}N_2O_4S-H]^-$	3.2	549.0739 [C ₁₅ H ₁₈ F ₁₂ N ₂ O ₄ S-H] ⁻ → 4.0 446.0103 [C ₁₁ H ₉ F ₁₂ NO ₂ S-H]- → 4.3 410.9706 [C ₈ F ₁₃ H ₅ SO ₂ -H] ⁻ → -4.4 223.0734 [C ₇ H ₁₆ N ₂ O ₄ S-H] ⁻ → -8.5 179.0843 [C ₆ H ₁₆ N ₂ O ₂ S-H] ⁻ → -6.1 163.0532 [C ₅ H ₁₂ N ₂ O ₂ S-H] ⁻ → -5.5 120.0113 [C ₃ H ₇ NO ₂ S-H] ⁻ → -5.0	F10, AR8, AR10, AR11, ARP1				
586.0435	6.87	$[C_{15}H_{18}F_{13}NO_4S_2-H]^-$	7.5	566.0323 $[C_{15}H_{17}F_{12}NO_4S_2-H]^-$ → -1.1 546.0230 $[C_{15}H_{16}F_{11}NO_4S_2-H]^-$ → -6.8 206.0475 $[C_7H_{13}NO_4S-H]^-$ → -5.8	F1, AR8, AR9, AR10, AR11, ARP1				

Table S9: Summary of outliers detected using non-target methodology (hierarchical clustering analysis and mass defect plot analysis).

152.0388 [C₄H₁₁NO₃S-H]⁻ → 4.6

135.0117 [C₄H₈O₃S-H]⁻ → 0.7

79.9568 [HO₃S-H]⁻ → 0.0

Negative ionization second chromatographic method

209.0907	5.27	$[C_8H_{18}O_4S-H]^-$	28.2	Same as first chromatographic method	F2, F5, F6, F7, F9, F10, AR1, AR5, AR6, AR7, AB2
237.1176	7.57	$[C_{10}H_{22}O_4S-H]^-$	6.3	Same as first chromatographic method	F2, F5, F6, F8, F9, F10, AR1, AR5, AR6, AR7, AB1, AB2
401.2980	9.79	$[C_{21}H_{42}N_2O_5-H]^-$	-8.7	444,3433 $[C_{23}H_{47}N_{3}O_{5}-H]^{-}$ → -0.9 387.2851 $[C_{20}H_{40}N_{2}O_{5}-H]^{-}$ → -2.1 341.2814 $[C_{19}H_{38}N_{2}O_{3}-H]^{-}$ → 2.9 327.2641 $[C_{18}H_{36}N_{2}O_{3}-H]^{-}$ → -2.1 102.0540 $[C_{4}H_{9}NO_{2}-H]^{-}$ → -14.7	F5, F6 , F7, F8, F9, F10, AR1 , AR2, AR3 , AR4, AR5, AR6, AR7 , AB1, AB2
527,0691	8.93	$[C_{13}H_{17}F_{13}N_2O_3S\text{-}H]^{-1}$	3.2	Same as first chromatographic method	F2, F10
569.0798	8.61	$[C_{15}H_{19}F_{13}N_2O_4S\text{-}H]^-$	3.2	Same as first chromatographic method	F10, AR1, AR3
581.0806	9.61	$[C_{15}H_{21}F_{11}N_2O_7S\text{-}H]^-$	-1.7	No product ion on the spectra	AR7
586.0547	8.91	$[C_{15}H_{18}F_{13}NO_4S_2-H]^-$	26.6	Same as first chromatographic method	F10, AR1, AR7
649.0752	8.46	$[C_{16}H_{23}F_{13}N_2O_6S_2\text{-}H]^-$	6.2	635.0568 $[C_{15}H_{20}F_{13}N_2O_6S_2-H]^-$ → 2.0 632.0687 $[C_{16}H_{22}F_{12}N_2O_5S_2-H]^-$ → 0.5 629.0671 $[C_{16}H_{22}F_{12}N_2O_6S_2-H]^-$ → 3.5 491.0678 $[C_{13}H_{16}F_{12}N_2O_2S-H]^-$ → 3.1	F5, F6, F10, AR3, AB2

				303.0686 $[C_8H_{20}N_2O_6S_2-H]^- \rightarrow 0.3$ 182.0492 $[C_5H_{13}NO_4S-H]^- \rightarrow 2.7$ 164.0374 $[C_5H_{11}NO_3S-H]^- \rightarrow -4,3$ 136.9904 $[C_3H_6O_4S-H]^- \rightarrow -3.6$ 119.9889 $[C_3H_5O_3S-H]^- \rightarrow -6.7$ 94.9793 $[CH_4O_3S-H]^- \rightarrow -10.5$ 79.9568 $[HO_3S-H]^- \rightarrow 0.0$	
			Positiv	re ionization first chromatographic method	
343.1994	6.57	$[C_{20}H_{26}N_2O_3{+}H]^+$	-8.2	No product ion on the spectra	F1, F2, F3, AR10
423.2717	6.71	$[C_{26}H_{34}N_2O_3{+}H]^+$	16.3	445.2582 $[C_{26}H_{34}N_2O_3+Na]^+$ → 25.8 240.2298 $[C_{15}H_{29}NO+H]^+$ → -12.1	F1 , F3
529.1021	5.67	$[C_{13}H_{17}F_{13}N_2O_3S{+}H]^+$	-35.9	Same as first chromatographic method negative study	F2, F10
571.1107	5.97	$[C_{15}H_{19}F_{13}N_2O_4S{+}H]^+$	29.9	Same as first chromatographic method negative study	F10, AR8, AR10, AR11, ARP1
			Positive	ionization second chromatographic method	
285.2897	12.31	$[C_{17}H_{36}N_2O{+}H]^+$	-3.2	240.2331 [C ₁₅ H ₂₉ NO+H] ⁺ → 1.7	F5, F6, F7, F9, F10, AR1, AR2, AR3, AR4, AR5, AR6, AR7, AB1, AB2
287.2338	5.24	$[C_{15}H_{30}N_2O_3{+}H]^+$	1.0	309.2155 [C ₁₅ H ₃₀ N ₂ O ₃ +Na] ⁺ → 0.3 184.1691 [C ₁₁ H ₂₁ NO+H] ⁺ → -5.4	F5, F6, F7, F8, F9, F10, AR1, AR2, AR3, AR4, AR5, AR6, AR7, AB1, AB2

315.2666	8.06	$[C_{17}H_{34}N_2O_3+H]^+$	5.7	353.2198 $[C_{17}H_{34}N_2O_3+K]^+ \rightarrow 0.9$ 337.2472 $[C_{17}H_{34}N_2O_3+Na]^+ \rightarrow 1.3$ 212.2024 $[C_{13}H_{25}NO+H]^+ \rightarrow 4.7$ 198.1858 $[C_{12}H_{23}NO+H]^+ \rightarrow -4.0$	F5, F6, F10, AR1, AR2, AR3, AR6, AR7, AB2
343.3038	10.15	$[C_{19}H_{38}N_2O_3{+}H]^+$	11.7	707.5705 $[C_{38}H_{72}N_4O_6+Na]^+$ → 5.9 685.5880 $[C_{38}H_{72}N_4O_6+H]^+$ → 5.3 365.2787 $[C_{19}H_{38}N_2O_3+Na]^+$ → 1.7 240.2394 $[C_{15}H_{29}NO+H]^+$ → 27.6	F5, F6, F7, F8, F9, F10, AR1, AR2, AR3, AR4, AR5, AR6, AR7, AB1, AB2
371.3289	11.83	$[C_{21}H_{42}N_2O_3{+}H]^+$	-6.7	268.2647 [C ₁₇ H ₃₃ NO+H] ⁺ → 2.6 198.1850 [C ₁₂ H ₂₃ NO+H] ⁺ → -4.0	F5, F6, F7, F8, F9, F10, AR1, AR2, AR3, AR4, AR5, AR6, AR7, AB1, AB2
425.3772	13.93	$[C_{25}H_{48}N_2O_3{+}H]^+$	6.8	447.3573 [C ₂₅ H ₄₈ N ₂ O ₃ +Na] ⁺ → 2.2 322.3154 [C ₂₁ H ₃₉ NO+H] ⁺ → 13.7	F5, F6, F7, F8, F9, F10, AR1, AR2, AR3, AR4, AR5, AR6, AR7, AB1, AB2

	Target	Semi-quantification			ion						
Foam ID	6:2 FTSA (mg/L)	DPOSA (mg/L)	6:2 FTAB (mg/L)	6:2 FTSAS (mg/L)	N-HOEAmP-FHxSAPS (mg/L)	Sum tentatively identified compounds concentration (mg/L)	Sum F ⁻ tentatively identified compounds concentration (mg/L)	Sum F ⁻ concentration for the ∑17 PFASs (mg/L)	Sum target and semi- quantification fluorine analysis (mg/L)	Unidentified organofluorine (UOF) concentration (mg/L)	New mass balance (%)
molecular mass	428	528	570	587	650						
number of fluorine	13	13	13	13	13						
F1	1.7	ND	ND	2796	ND	2796	1176	1.8	1178	3668	32.1
F2	4.4	4.7	ND	ND	ND	4.7	2.2	6.1	8.3	1992	0.42
F5	33.7	ND	ND	ND	104	104	39.5	34.8	74.3	1804	4.1
F6	38.9	ND	ND	ND	96.4	96.4	36.6	41.2	77.8	4218	1.9
F10	9.5	6.0	0.1	0.3	39.0	45.3	17.8	9.7	27.5	7988	0.34
AR1	13.3	ND	123	299	ND	423	179	13.8	193	8188	2.4
AR3	27.0	ND	9.2	ND	293	302	115	29.0	144	4940	2.9
AR7	2.4	ND	ND	210	ND	217	91.2	5.6	96.8	24739	0.39
AR8	4.1	ND	18.9	66.6	ND	85.5	36.2	16.8	53.0	6685	0.79
AR9	0.28	ND	ND	5.4	ND	5.4	2.3	0.40	2.7	6597	0.04
AR10	8.1	ND	35.7	91.5	ND	127	54.0	19.9	73.9	4326	1.7
AR11	3.4	ND	21.5	143	ND	164	69.4	5.1	74.5	2825	2.6
ARP1	3.8	ND	23.1	48.1	ND	71.3	30.3	4.8	35.1	2867	1.2
AB2	25.4	ND	ND	ND	295.4	295	112	27.9	140	3652	3.8

Table S10:Semi-quantification of the four tentatively identified organofluorine surfactants and mass balance analysis recalculated according to the sum target and semi-quantification concentrations.

Figure S1: Dendrograms and heatmaps for the first chromatographic method using negative ionization (top) and positive ionization (bottom) ESI mode. The dendrograms show the foam clustering, while the heatmaps show the outliers. Samples marked in bold are marketed as organofluorine containing foams.

[C₈H₁₈O₄S-H]⁻ m/z 209.0848 Octyl hydrogen sulfate CAS number: 110-11-2 Confidence level: 2

[C₁₀H₂₂O₄S-H]⁻ m/z 237.1161 Decyl hydrogen sulfate CAS number: 142-98-3 Confidence level: 2

[C₁₇H₃₆N₂O+H]⁺ m/z 285.2906 Cocamidopropyl dimethylamine CAS number: 3179-80-4 Confidence level: 2

 $[C_{15}H_{30}N_2O_3+H]^+$ m/z 287.2335 Caprylamidopropyl betaine CAS number: 73772-46-0 Confidence level: 2

[C₁₇H₃₄N₂O₃+H]⁺ m/z 315.2648 Capramidopropyl betaine CAS number: 73772-45-9 Confidence level: 2

C12H11

 $[C_{20}H_{26}N_2O_3{+}H]^+$ m/z 343.2022 Confidence level: 4

[C₁₉H₃₈N₂O₃+H]⁺ m/z 343.2961 Cocamidopropyl betaine CAS number: 4292-10-8 Confidence level: 2

[C₂₁H₄₂N₂O₃+H]⁺ m/z 371.3274 Myristamidopropyl betaine CAS number: 59272-84-3 Confidence level: 2

Figure S2: Formula, structure, CAS number and confidence level for the non-fluorinated outliers found in firefighting foams using positive and negative electrospray ionization.

Figure S3: Filtered HF mass defect plot between m/z 400 and m/z 675. Green dots belong to the m/z 527.0674 homologous series, blue dots belong to the m/z 569.0780 homologous series, red dots belong to the m/z 581.0816 homologous series, brown dots belong to the m/z 586.0391 homologous series and purple dots belong to the m/z 649.0712 homologous series.

Figure S4: Chromatogram (total ion current) for F10 sample using qToF and negative ionization mode.

Figure S5: Chromatogram (total ion current) for **AR1** sample using qToF and negative ionization mode.

Figure S6: Chromatogram (total ion current) for AR7 sample using qToF and negative ionization mode.

Figure S7: Chromatogram (total ion current) for **F6** *sample using qToF and negative ionization mode.*

Figure S8: Full scan mass high resolution spectra for sample F2 at retention time 6.29 minutes with a low collision energy (top) and a high collision energy (bottom) for the first chromatographic method.

Figure S9: Full scan high resolution mass spectra for sample F2 at retention time 8.93 minutes with a low collision energy (top) and a high collision energy (bottom) for the second chromatographic method.

Figure S10: Full scan high resolution mass spectra for sample **F10** at retention time 6.29 minutes with a low collision energy (top) and a high collision energy (bottom) for the first chromatographic method.

Figure S11: Full scan high resolution mass spectra for sample F2 at retention time 8.93 minutes with a low collision energy (top) and a high collision energy (bottom) for the second chromatographic method.

Figure S12: Full scan high resolution mass spectra for sample AR1 at retention time 8.61 minutes with a low collision energy (top) and a high collision energy (bottom) for the second chromatographic method.

Figure S13: Full scan high resolution mass spectra for sample AR7 at retention time 9.61 minutes with a low collision energy for the second chromatographic method.

Figure S14: Full scan high resolution mass spectra for sample AR7 at retention time 8.91 minutes with a low collision energy (top) and a high collision energy (bottom) for the second chromatographic method.

Figure S15: Full scan high resolution mass spectra for sample **F6** at retention time 8.46 minutes with a low collision energy (top) and a high collision energy (bottom) for the second chromatographic method.

Figure S16: Full scan high resolution mass spectra for sample **F10** at retention time 7.31 minutes with a low collision energy for the second chromatographic method.

Equation S1: Equations A-C show the different calculations performed for fluorine mass balance and mass defect analysis.

A: Conversion target compound concentration to total fluorine concentration

$$[F^-] = \sum [i] \frac{M_F * nF_i}{M_i}$$

TOF = TF - IF

UOF = TOF - \sum_{17} PFASs Mass balance (%) = $\frac{\sum_{17}$ PFASs}{TOF} * 100

B: Mass balance analysis

 $KM(X) = IUPAC mass \times \frac{nominal mass(X)}{exact mass(X)}$

C: Mass defect plot analysis If scale ratio higher than one:

MD(X) = exact KM(X) - nominal KM(X)[round down]

If scale ratio below one:

MD(X) = nominal KM(X)[round up] - exact KM(X)

[F-]: total targeted PFASs fluorine concentration
[i]: concentration of the target molecule i M_F: Atomic mass of fluorine atom nF_i: number of fluorine atoms in the target molecule i M_i: Molecular mass of the target molecule i

TOF : Total organic fluorine TF: Total fluorine IF: Inorganic fluoride UOF: Unknown Organic Fluorine ∑17 PFASs: Sum of the 17 targeted PFASs concentrations

KM (X): Kendrick mass for the scale (X) Scale ratio : $\frac{\text{nominal mass}(X)}{\text{exact mass}(X)}$ MD (X): Mass defect for the scale (X)