1 Supporting Information

Metabolic traits of *Ca.* Accumulibacter clade IIF strain SCELSE-1 using amino acids as carbon sources for enhanced biological phosphorus removal

- Guanglei Qiu^{1,6*}, Xianghui Liu¹, Nay Min Min Thaw Saw¹, Yingyu Law¹, Rogelio ZunigaMontanez^{1,2}, Sara Swa Thi¹, Thi Quynh Ngoc Nguyen¹, Per H. Nielsen^{1,3}, Rohan B.H. Williams⁴,
 Stefan Wuertz^{1,2,5*}
- 7
- ⁸ ¹Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University,
- 9 Singapore 637551, Singapore.
- 10 ²Department of Civil and Environmental Engineering, One Shields Avenue, University of California,
- 11 Davis, California 95616, USA.
- ¹² ³Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University,
- 13 *DK-9220, Aalborg, Denmark.*
- ⁴Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore,
- 15 Singapore 119077, Singapore.
- ⁵School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- 17 *639798, Singapore*
- 18 ⁶School of Environment and Energy, South China University of Technology, Guangzhou 510006,
- 19 *China*
- 20
- 21 Corresponding Author: <u>swuertz@ntu.edu.sg</u> (S.W.); <u>qiugl@scut.edu.cn</u> (G.Q.)
- 22
- 23 **Supporting Information:** 57 pages, 6 tables, 13 figures
- 24

25 S1. Material and Methods

26 S1.1 EBPR reactor operation.

27 A sequencing batch reactor (SBR) with a working volume of 5.4 L was inoculated with sludge from an EBPR enrichment reactor. A slow feeding strategy was applied for the reactor operation, which has 28 been shown to benefit the proliferation of Ca. Accumulibacter. The SBR was operated with 6-h cycles, 29 including a 60-min feed, a 20-min anaerobic, a 180-min aerobic, and a 100-min settling/decant stage. 30 In each cycle, 2.35 L of synthetic wastewater composed of 0.53 L of solution A (containing 1.02 g/L 31 32 NH₄Cl, 1.2 g/L MgSO₄ \cdot 7 H₂O, 0.01g/L peptone, 0.01g/L yeast extract and 6.8 g/L sodium acetate) and 1.82 L of solution B (0. 312 g/L K₂HPO₄ · 3 H₂O, 0.185 g/L KH₂PO₄, 0.75 mg/L FeCl₃ · 6 H₂O, 33 0.015 mg/L CuSO₄ · 5H₂O, 0.03 mg/L MnCl₂, 0.06 mg/L ZnSO₄, 0.075 mg/L CoCl₂, 0.075 mg/L 34 H₃BO₃, 0.09 mg/L KI and 0.06 mg/L Na₂MoO₄ · 2 H₂O) were introduced into the reactor. The reactor 35 was operated at 30°C with an HRT and SRT of 12 h and 11 d, respectively. The pH was controlled at 36 7.00 - 7.60, with DO levels maintained at 0.8-1.2 mg/L during the aerobic phase. 37

38 S1.2 Amino acid uptake mechanism.

39 To study the uptake mechanisms with acetate, glutamate and aspartate as carbon sources, fresh activated sludge collected at the end of the aerobic stage was diluted to a MLSS concentration of 0.5 40 g/L. Two hundred millilitres of mixed liquor were added to nine batch reactors. Three reactors were 41 42 supplied with carbonyl cyanide m-chlorophenylhydrazone (CCCP, final concentration of 100 mM), and three with N-N'-dicyclohexylcarboiimide (DCCD; final concentration of 50 mM). CCCP is an 43 uncoupler that inhibits the build-up of the electro-chemical potential (i.e. proton motive force, PMF) 44 across the cell membrane. DCCD is an F1-F0 ATPase inhibitor capable of significantly reducing the 45 intracellular ATP levels via covalent modification of membrane-bound ATPase.^{16,17} The sludge was 46 incubated under anaerobic conditions for 30 min at 30 °C and a pH of 7.0 for the inhibitory effects to 47 take place. Three reactors with no inhibitor added served as controls. After incubation, acetate, 48

49 aspartate or glutamate were added to each set of reactors at a final concentration of 8.33 mmol C/L 50 (TOC content of 100 mg/L). Water and biomass samples were collected at time intervals for TOC and 51 PO_4^{3-} -P analysis.

52 S1.3 DNA extraction, 16S rRNA gene amplicon sequencing and metagenomic analysis

53 For the microbial community analysis, 2 ml of mixed liquor were collected on Day 152 and Day 166 54 from the end of the aerobic stage and stored at -80°C before DNA extraction. Genomic DNA was 55 extracted using the Fast DNATM 2 mL SPIN Kit for Soil samples (MP Biomedicals, CA, USA), following the optimised protocol for activated sludge.¹ Bacterial 16S rRNA gene amplicon sequencing 56 57 was performed, targeting the V1-V3 region (primer set: 27F AGAGTTTGATCCTGGCTCAG and 534R ATTACCGCGGCTGCTGG). PCR amplification was carried out in a 25-µl PCR matrix 58 59 containing 10 ng of genomic DNA, 400 nM dNTPs, 1.5 mM MgSO₄, 2 mU Platinum R Taq DNA polymerase high fidelity, 1× Platinum R High Fidelity buffer (Thermo Fisher Scientific, MA, USA) 60 and a pair of barcoded library adaptors (400 nM), with a thermo cycler setting of initial denaturation 61 at 95°C for 2 min, 30 cycles of 95°C for 20 s, 56°C for 30 s, 72°C for 60 s, and final elongation at 72°C 62 for 5 min. All PCR reactions were run in duplicate and pooled afterwards. The amplicon libraries were 63 purified using the Agencourt R AMpure XP bead protocol (Beckmann Coulter, CA, USA) with 1.8 64 bead solution/PCR solution ratio. Based on library concentrations and calculated amplicon sizes, the 65 samples were pooled in equimolar concentrations. The library pool was sequenced on a MiSeq 66 (Illumina, CA, US) using a MiSeq Reagent kit v3 (2×300 paired end). Pre-processing of all amplicon 67 libraries was performed according to Albertsen et al.¹ Taxonomy was assigned using MiDAS v.1.20.² 68

For metagenomic DNA, two samples were collected at Day 146 and Day 152. Sequencing library 69 70 preparation was performed using a modified version of the Illumina TruSeq DNA Sample Preparation protocol: For the sample, 1 µg of the DNA was sheared on a Covaris S220 to approximately 300 bp, 71 72 following the manufacturer's recommendation. Size selection was performed on a Sage Science Pippin 73 Prep instrument, using a 2% EtBr agarose cassette and selecting for a tight peak around 400 bp. Each 74 library was tagged with a TruSeq LT DNA barcode (Illumina) to allow for library pooling prior to 75 sequencing. Library quantitation was performed using the Picogreen assay (Invitrogen) and the 76 average library size was determined by running the libraries on a Bioanalyzer DNA 7500 chip (Agilent). Library concentrations were normalized to 4 nM and validated by qPCR on a ViiA-7 real-77 time thermocycler (Applied Biosystems), using qPCR primers recommended by Illumina in their 78 79 qPCR protocol, and the Illumina PhiX control library was used as a standard. Libraries were then combined in one pool, which was sequenced across two lanes of an Illumina HiSeq2500 sequencing
run at a read-length of 150 bp paired-end. Raw reads have been submitted to NCBI and are accessible
under the BioProject PRJNA532338.

83 Sequencing of these samples generated 31.4 and 31 Gb of data for the samples on Day146 and Day152, respectively. Illumina reads were processed to cut the adaptor and quality-trimmed using Trimmomatic 84 version 0.36³. Paired end reads from sample Day 152 were then merged using IDBA version 1.1.1 85 fq2fa and assembled into contigs using idba ud⁴. Reads from Day 146 and Day 152 were then mapped 86 to those contigs using Bowtie2 version 2.3.4.3⁵ and sam files were converted into bam files and then 87 sorted and indexed using samtools ⁶. Coverages file are generated using CONCOCT version 1.0.0 88 script gen input table.py⁷. Assembled contigs larger than 1500bp were then binned using CONCOCT. 89 Bin information is summarized in Table S1. In total 128 bins were found. Completeness, redundancy 90 91 and strain heterogeneity were assessed using CheckM v1.0.7⁸.

There was one bin (bin0) with a high completeness (95.24%) and low contamination rate (0.6%), and 92 it was annotated to the marker set lineage UID3971. This is a possible Ca. Accumulibacter bin. The 93 average coverages for bin0 are around 375 and 408 for Day 146 and Day 152. Mash ⁹ was used to 94 check the taxonomic information for bin0. The genome of this bin was uploaded into PATRIC¹⁰ 95 (https://www.patricbrc.org). The Similar Genome Finder Service in PATRIC 96 (https://www.patricbrc.org/app/GenomeDistance) was used to find similar public genomes in PATRIC. 97 The genome distance estimation was compute using Mash/MinHash. The top 10 similar genomes of 98 bin0 are listed in Table S2. The result suggested that bin0 is an Ca. Accumulibacter bin with the closest 99 relationship with Ca. Accumulibacter sp. BA-94. The average nucleotide identity(ANI)¹¹ among bin0 100 101 and published Ca. Accumulibacter genomes was determined according to the method described by Richter and Rosselló-Móra¹² as implemented in the python script 'CALCULATE ANI.PY' 102 (https://github.com/ctSkennerton/scriptShed/blob/master/calculate ani.py). Results showed that bin0 103 shared ANI values of 84.7-90.8% with other Ca. Accumulibacter genomes (Figure S1), suggesting 104 that bin0 represents a new species of Ca. Accumulibacter (based on the typical percentage threshold 105 for species boundary of 95% ANI). 106

bin0 was further checked with Quast ¹³ and annotated with Prokka v1.12 ¹⁴, finding that this bin
contained 253 contigs (the length ranged from 1,657 to 100,190 bp with a mean of 17,616 bp) and had
a total sequence length of 4.25Mb, with an average GC content of 66.1%. The draft genome sequence
encodes 4,062 genes together with 38 tRNAs genes (Table S3).

To further identify the taxonomic information of bin0, we looked for 16S rRNA and *ppk1* genes in this genome. One *ppk1* gene was found in the bin. But there was no 16S rRNA gene. From the 16S amplicon sequencing data and CONCOC binning result, there was likely only one strain of *Ca*. Accumulibacter in this community. To recover the full length 16S rRNA gene, EMIRGE ¹⁵ was used. An almost full-length 16S rRNA gene (1,407 bp) was constructed and SILVA Incremental Aligner (SINA) ¹⁶ suggests it to be *Ca*. Accumulibacter with 99.6% sequence identity.

The *ppk1* gene has been used to partition the *Ca*. Accumulibacter lineage. A *ppk1* (2,121 bp) 117 118 homologue identified in a long contig (contig-100 2131, 17,267 bp). A phylogenetic tree constructed from this *ppk1* gene with other representative *ppk1* genes of *Ca*. Accumulibacter genomes and clone 119 sequences available at NCBI were used to classify into 1 of the 14 clades described to date ^{17,18}. 120 According to the phylogenetic tree topology of the *ppk1* gene (Figure S2), *ppk1* of bin0 clustered with 121 122 sequences previously classified as clade IIF. It shares a 95.13% nucleotide identity with BPBW3662 (GenBank EU433148). The most similar genome *ppk1* gene is from *Ca*. Accumulibacter sp. BA-94 123 124 (on contig JEMZ01000181.1) and the encoding protein is EXI82049.1.

Genome-based phylogeny analysis based on a concatenated alignment of 92 maker genes of the draft genome recovered in this work and the *Ca*. Accumulibacter draft genomes published in GeneBank using UBCG pipeline ¹⁹ further confirmed that the draft genome represents a new species (Figure S3).

Collectively, these results suggest that a draft genome of a new species of *Ca*. Accumulibacter was
recovered. This strain is thus named "*Candidatus* Accumulibacter clade IIF strain SCELSE-1". This
Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession
SZXR00000000. The version described in this paper is version SZXR01000000.

132 S1.4 Fluorescence in situ hybridisation (FISH)

Activated sludge collected at the end of the aerobic stage was immediately fixed using 4% 133 paraformaldehyde (final concentration) at 4°C for 2-3 h. The fixed activated sludge samples were 134 washed with 1× phosphate-buffered saline (PBS) solution. Washed samples were stored at -20°C in a 135 mixed solution of 1×PBS and 100% ethanol (50:50) before FISH analysis. Organisms of interest were 136 detected using EUB probe mix, targeting most Bacteria (EUB338, EUB338II and EUB338III)²⁰, and 137 PAOmix (PAO651, PAO462 and PAO846)²¹ and GAOmix (GAO431 and GAO989)²² targeting Ca. 138 Accumulibacter and Ca. Competibacter, respectively. FISH images were obtained using a Zeiss 139 LSM780 confocal microscope system (Carl Zeiss, Germany). The biovolume was measured using 140

141 Image pro plus 6.0 (Media Cybernetics, U.S.)

142 S1.5 NMR analysis

Mixed liquor samples were collected at the beginning of the experiment, and at the end of anaerobic 143 and aerobic phases in the anaerobic-aerobic full-cycle study. The samples were centrifuged 144 145 immediately at 12,000 rpm for 2 min at 4°C. The supernatant was discarded and the pellet was snapfrozen in liquid nitrogen and freeze-dried. The lyophilized samples were stored at -80°C prior to the 146 extraction of the intracellular storage compounds. Twenty-five milligrams of sludge powders from 147 each freeze-dried sample were extracted using 2 mL of 50% (v/v) methanol. After vortexing for 1 min 148 and sonicating for 10 min, the samples were put in a rotary shaker for 30 min at room temperature. 149 After centrifugation at 12,000 rpm for 5 min, the supernatants were collected, and the pellets were re-150 extracted with 1 ml of 50% (v/v) methanol. Supernatants were combined and dried by using vacuum 151 evaporator. The dried samples were re-constituted in 0.5 ml of 4.8 mM 2,2,3,3-tetradeutero-3-152 153 (trimethylsilyl) propionate in D₂O and loaded in 5-mm NMR tubes. ¹H-NMR analysis was performed on a 600 MHz Bruker In Vitro Diagnostics Research (IVDr) system comprises of an AVANCE III HD 154 155 console, a ascend 600 magnet and a 5-mm broadband inverse probe, operating at 600.13 MHz. Analysis of the NMR spectra was performed using TopSpin V3.6.0 (Bruker, Billerica, MA, USA). 156

157

- 158 S1.6 Pathways, ATP, reducing power and PMF balance in anaerobic acetate, aspartate and
- 159 glutamate metabolisms of *Ca.* Accumulibacter

- 160 *S1.6.1 Acetate as a carbon source*
- 161

Figure S1.6.1 Metabolic pathways, ATP, reducing power and PMF balance of *Ca.* Accumulibacterwith acetate as carbon source.

- 166 The activation of 1 mol C as acetate (into acetyl-CoA) requires 0.5 mol ATP and the subsequent
- reduction of 1 mol C as acetyl-CoA (to 3-hydroxybutyryl-CoA) to form PHB needs 0.25 mol NADH
- 168 23 (Figure S1.6.1).
- 169 Glycolysis of 1 mol C as glycogen and its subsequent transformation to 0.67 mol C as PHB generates
- 170 0.5 mol ATP and 0.5 mol NADH ²³ (Figure S1.6.1).

Cell membrane

- 171 To balance the NADH, 0.5 mol C as glycogen is required for the transformation of 1 mol C as acetate.
- 172 The glycolysis of 0.5 mol C as glycogen, in the meantime, generates 0.25 mol ATP. This ATP is used

- for the activation of acetate (Figure S1.6.1). To balance the ATP, an additional 0.25 mol ATP is needed
- 174 (for the activation of 1 mol C as acetate). These 0.25 mol ATP are generated from poly-P hydrolysis.
- 175 The hydrolysis of 1 mol P as poly-P generates 1 mol ATP (Figure S1.6.1). Thus, 0.25 mol P as poly-
- P is required (Figure S1.6.1). The hydrolysis of 0.25 mol P as poly-P (and the subsequent consumption
- of the ATP produced from poly-P hydrolysis) generates 0.25 mol PO_4^{3-} , 0.083 mol Mg²⁺ and 0.083
- mol K^+ . The efflux of H^+ in symport with these ions through the inorganic phosphate transporter (Pit)
- generates PMF.^{24,25} Assume that efflux of 1 mol of PO_4^{3-} results in the translocation of b mol H⁺. Based
- on the charge balance (i.e., a net flux of negative charge out of the cell), b<2 (1 mol of PO₄³⁻ carries 3)
- mol negative charges. 0.33 mol Mg^{2+} and 0.33 mol K^+ carry 1 mol positive charges in total. Thus, the
- amount of H⁺ translocated with the efflux of 1 mol of PO_4^{3-} is no more than 2 mol). 0.25 mol of ATP
- 183 would result in the translocation of $0.25b \text{ mol } H^+$.
- Assume that the transport of 1 mol (2 mol C) acetate is achieved in symport with 1 mol H^+ through
- 185 ActP, having a net flux of positive charge into the cell, i.e. a > 1.
- 186 Since b<2 and a>1, then 0.25b (generated)<0.5a (required for the uptake of 1 mol C as acetate). It is
- 187 clear that the PMF generated via efflux of H^+ in symport with PO_4^{3-} is insufficient for the uptake of
- acetate, i.e., pathways to generate additional PMF (0.5a-0.25b mol H⁺) are needed.
- The DCCD inhibition experiment suggested that around 25% of PMF was generated via the reverse operation of F1-F0 ATPase, i.e., $0.5a-0.25b\approx0.125a$, $b\approx1.5a$ (a>1; b<2).

191 *S1.6.2 Aspartate as a carbon source*

192

Figure S1.6.2 Metabolic pathways, ATP, reducing power and PMF balance of *Ca*. Accumulibacterwith aspartate as carbon source.

0.5 mol C as aspartate undergoes oxidative deamination catalyzed by L-aspartate oxidase [EC: 195 1.4.3.16] generates 0.5 mol C as oxaloacetate (and 0.125 mol NH₃). L-aspartate oxidase can use both 196 O₂ and fumarate in cofactor re-oxidation, which enables it to function under both aerobic and anaerobic 197 conditions.²⁶ 0.5 mol C as oxaloacetate is converted into 0.375 mol C as phosphoenolpyruvate 198 (catalyzed by phosphoenolpyruvate carboxykinase [EC: 4.1.1.32] at the expense of 0.125 mol ATP) 199 and then to 0.375 mol C as pyruvate (catalyzed by pyruvate kinase [EC: 2.7.1.40] and results in the 200 generation of 0.125 mol ATP). 0.375 mol C as pyruvate is then converted [EC: 1.2.4.1] into 0.25 mol 201 C as acetyl-CoA following the traditional acetate metabolic pathway and results in the production of 202 203 0.125 mol NADH.

The anaerobic operation of L-aspartate oxidase [EC: 1.4.3.16] needs fumarate as an electron acceptor.

Fumarate can be readily generated from aspartate. Ca. Accumulibacter clade IIF strain SCELSE-1

206 (and also the clade IIA strain UW-1) encode three pathways for the conversion of aspartate to fumarate: (P6.1, Figure S1.6.2) direct conversion through the activity of aspartate ammonia-lyase [EC: 4.3.1.1]; 207 (P6.2, Figure S1.6.2) formation via the purine nucleotide cycle (EC: 6.3.4.4; EC: 4.3.2.2) at the 208 expense of 0.125 mol ATP (per 0.5 mol C of fumarate production); or (P6.3, Figure S1.6.2) generation 209 via the urea cycle (EC: 6.3.4.5; EC: 4.3.2.1), which consumes more ATP (0.375 mol per 0.5 mol C of 210 fumarate produced), but can condense the NH_3 (0.125 mol) cleaved from the aspartate together with 211 0.125 mol of free NH₃ to 0.125 mol of urea. Compared to the direct conversion (P6.1), the purine 212 nucleotide cycle (P6.3) could provide a higher production rate of fumarate to meet the cofactor demand 213 of L-aspartate oxidase to convert aspartate to oxaloacetate.²⁷ The urea cycle (P6.2) consumes more 214 ATP, but could effectively decrease the in-cell NH₃ content, thus avoiding inhibition from free NH₃.²⁸ 215 The subsequent transformation of 0.5 mol C as fumarate (mediated by fumarate reductase EC: 1.3.5.4 216 and EC: 1.3.5.1) into 0.5 mol C as succinate balances the oxidative strength generated during oxidative 217 deamination of aspartate and results in the translocation of 0.25 mol H⁺. 0.5 mol C as succinate is then 218 activated (EC: 6.2.1.5) into 0.5 mol C as succinyl-CoA and consumes 0.125 mol ATP, followed by its 219 isomerization (mediated by methylmalonyl-CoA mutase; EC: 5.4.99.2) into methylmalonyl-CoA. The 220 decarboxylation of 0.5 mol C as methylmalonyl-CoA (mediated by methylmalonyl-CoA 221 decarboxylase EC:4.1.1.94 and EC: 4.1.1.41) generates 0.375 mol C as propoinyl-CoA and results in 222 the translocation of 0.25 mol Na⁺. ²⁹ 223

To maintain a redox balance, equal amount of aspartate (i.e. 0.5 mol C each) would be channeled through the above-mentioned two metabolic pathways, which results in (1) the consumption of 0.25 mol ATP (1 mol ATP per mol of fumarate generation via purine nucleotide cycle and 1 mol ATP per mol of succinate activation); (2) the generation of 0.125 mol NADH (pyruvate to acetyl-CoA); (3) the translocation of 0.25 mol H⁺ and 0.25 mol Na⁺; and (4) the production of 0.25 mol C as acetyl-CoA and 0.375 mol C as propoinyl-CoA (Figure S1.6.2).

The subsequent reduction of 0.25 mol C as acetyl-CoA and 0.375 mol C as propoinyl-CoA into 3hydroxyvaleratyl-CoA, 3-hydroxy-2-methylvalerate-CoA or 3-hydroxybutyryl-CoA (0.625 mol C in total) consumes 0.125 mol NADH. Given the net production of 0.125 mol NADH in the transformation of pyruvate to acetyl-CoA, no additional NADH would be needed from either glycolysis or the TCA cycle (Figure S1.6.2).

Considering that 0.25 mol ATP (required for fumarate generation via purine nucleotide cycle (P6.3)
and succinate activation) is provided by poly-P hydrolysis, a consumption of 0.25 mol P as poly-P is
required.

- The uptake of aspartate occurs via GltP driven by the PMF. Given that the *p*Ka values of aspartic acid are *p*Ka1 = 1.88, *p*Ka2 = 3.65, and *p*Ka3 = 9.60, the net charge of the aspartate at pH = 7.0 is -1. Assume that the transport of 1 mol (4 mol C) of aspartate is achieved in symport with 1 mol H⁺. To maintain a net positive charge transported into the cells, a>1. 0.25a mol H⁺ is required for the uptake
- of 1 mol C as aspartate (Figure S1.6.2).
- The hydrolysis of 0.25 mol poly-P (and the subsequent consumption of the 0.25 mol of ATP produced from the hydrolysis of these 0.25 mol of poly-P) generates 0.25 mol PO₄³⁻, 0.083 mol Mg²⁺ and 0.083 mol K⁺; the efflux of H⁺ in symport with these ions through Pit (with a net negative charge flowing out of the cell) generates PMF. Assume that efflux of 1 mol of PO₄³⁻ resulted in the translocation of b mol H⁺ (as mentioned above, 1 mol of PO₄³⁻ carries 3 mol negative charges and 0.33 mol Mg²⁺ and 0.33 mol K⁺ carry 1 mol positive charges in total. Thus, the amount of H⁺ translocated with the efflux of 1 mol of PO₄³⁻ is no more than 2 mol, i.e., b<2.) (Figure S1.6.2).
- Additionally, the reduction of 0.5 mol C as fumarate to succinate results in the translocation of an additional 0.25 mol H⁺ (Figure S1.6.2). In total, 0.25b+0.25 mol H⁺ is generated. Assume that the same b≈1.5a is maintained as in the case of acetate, then 0.25b+0.25 (generated) >0.25a (required for the uptake of 1 mol C as aspartate). Clearly, enough PMF is generated from the hydrolysis of poly-P and the fumarate reductase for aspartate uptake. No operation of F1-F0 ATPase is required to generate additional PMF (Figure S1.6.2).
- The P/C molar ratio for aspartate uptake in this case is around 0.25. And the aspartate uptake and PHA formation ratio is 0.625 mol C / mol C with an acetyl-CoA and propionyl-CoA molar ratio of 1:1 (Figure S1.6.2).
- However, the deamination of aspartate results in the generation of NH₃. Ca. Accumulibacter might 259 260 have to eliminate the toxic effects of the increased intracellular NH₃ concentration by employing the urea cycle at the expense of more ATP.²⁸ The necessity to activate the urea cycle might depend on the 261 tolerance level of the bacteria, the ability of the bacteria to effectively pump out NH₃ through another 262 pathway, and the extracellular/intracellular pH and NH₃ concentration. In the case where all the 263 fumarate is generated via the urea cycle the P/C molar ratio would increase to 0.5 (3 mol/mol of ATP 264 consumption in the urea cycle compared to 1 mol/mol of ATP consumption in the purine nucleotide 265 cycle for the production of the same amount of 1 mol fumarate). That might explain the higher C/P 266 ratios observed in studies when aspartate was used as a carbon source. ^{30,31} 267
- 268

270

Figure S1.6.3 Metabolic pathways, ATP, reducing power and PMF balance of *Ca*. Accumulibacter with glutamate as carbon source.

273 Glutamate is taken up via GltP driven by PMF (Figure S1.6.3).

Glutamate can be converted into ketoglutarate with the aid of glutamate dehydrogenase [EC: 1.4.1.2], 274 which results in the generation of NH₃ and NADH. Ketoglutarate could then be channeled to the TCA 275 cycle. However, no significant NH_4^+ release was observed during anaerobic glutamate uptake, 276 suggesting that a majority of glutamate was not converted into ketoglutarate. A possible explanation 277 is that Ca. Accumulibacter clade IIF strain SCELSE-1 encodes only an NADP-specific isocitrate 278 279 dehydrogenase [EC: 1.1.1.42] other than its NAD-specific homologues [EC: 1.1.1.41]. Inside the cells, the ratio of NADP+/NADPH is typically kept low. NADP-specific isocitrate dehydrogenase 280 [EC:1.1.1.42] might use NADH but much more slowly,³⁰ which creates a barrier for the carboxylation 281 of ketoglutarate to synthesize isocitrate to achieve a reducing power balance (Figure S1.6.3). 282

283 Glutamate is assumed to be condensed into poly-glutamate (Figure S1.6.3).

- The condensation of 1 mol C as glutamate requires 0.2 mol ATP. This ATP is generated from the hydrolysis (5 mol C) of poly-P (Figure S1.6.3).
- Similarly, assume that the hydrolysis of poly-P and the efflux of 1 mol of PO_4^{3-} results in the
- translocation of b mol H⁺ (where b < 2, as mentioned above). The condensation of 1 mol C as glutamate
- requires 0.2 mol P as poly-P and the efflux of 0.2 mol PO_4^{3-} achieves the translocation of 0.2b mol H⁺.
- The *p*Ka values of glutamic acid are *p*Ka1 = 2.19, *p*Ka2 = 4.25, and *p*Ka3 = 9.67. The net charge of
- 290 glutamate at pH=7.0 is expected to be -1. Assume that transport of 1 mol glutamate (5 mol C) is
- achieved in symport with a mol H⁺, having a net flux of positive charge into the cell, i.e. a > 1. The transport of 1 mol C as glutamate would require 0.2a mol H⁺.
- Assume that a and b remained at the same ratio as in the case of acetate ($b\approx 1.5a$), thus 0.2b>0.2a.
- Enough PMF is generated for the uptake of glutamate. The result agreed with the finding that no
- operation of F1-F0 ATPase was required during glutamate uptake (Figure S1.6.3).
- 296 Overall, the P/C molar ratio for glutamate uptake is around 0.2.

297

BinID	Marker	Lineage	Genomes	Markers	Marker sets	0	1	2	3	4	5+	Completeness	Contamination	Strain heterogeneity
81	k_Bacteria	UID203	5449	104	58	0	13	41	32	13	5	100	148.78	1.51
75	root	UID1	5656	56	24	0	0	7	43	6	0	100	206.1	11.05
65	k_Bacteria	UID203	5449	104	58	0	7	95	2	0	0	100	88.24	1.98
24	root	UID1	5656	56	24	0	0	0	12	44	0	100	277.13	1
123	k_Bacteria	UID203	5449	104	58	0	7	94	3	0	0	100	95.16	34.95
17	k_Bacteria	UID2982	88	229	147	1	227	1	0	0	0	99.86	0.68	0
5	k_Bacteria	UID203	5449	104	58	1	38	5	5	17	38	99.14	349.9	6.81
83	cAlphaproteobacteria	UID3422	26	529	308	36	41	110	178	147	17	98.91	204.35	61.37
101	c_Alphaproteobacteria	UID3422	26	529	308	8	515	6	0	0	0	98.53	1.62	16.67
72	k_Bacteria	UID2570	433	274	183	6	264	3	1	0	0	97.27	2.73	0
114	k_Bacteria	UID1453	901	171	117	10	158	3	0	0	0	96.89	2.14	0
66	k_Bacteria	UID2570	433	273	183	7	264	2	0	0	0	96.45	1.09	0
52	o_Flavobacteriales	UID2815	123	324	204	18	294	12	0	0	0	95.81	3.57	41.67
26	k_Bacteria	UID3187	2258	188	117	5	179	4	0	0	0	95.73	2.61	0
0	c_Betaproteobacteria	UID3971	223	424	210	13	404	7	0	0	0	95.24	0.6	85.71
36	o_Burkholderiales	UID4000	193	427	214	40	381	6	0	0	0	95.06	1.82	33.33
79	k_Bacteria	UID203	5449	103	57	3	27	53	20	0	0	94.74	86	52.21
100	k_Bacteria	UID203	5449	104	58	5	40	59	0	0	0	94.67	39.76	5.08
15	f_Xanthomonadaceae	UID4214	55	659	290	60	257	301	38	2	1	94.14	66.99	10.53
22	k_Bacteria	UID2570	433	273	183	16	254	3	0	0	0	93.39	1.37	0
85	k_Bacteria	UID1452	924	161	108	8	151	2	0	0	0	93.06	1.85	0
69	k_Bacteria	UID2570	433	274	183	24	229	19	2	0	0	93.01	8.51	0
27	k_Bacteria	UID1452	924	161	108	10	149	2	0	0	0	92.95	1.03	0
37	c_Betaproteobacteria	UID3959	235	419	211	29	384	6	0	0	0	92.76	1.1	16.67
54	k_Bacteria	UID203	5449	104	58	9	36	58	1	0	0	92.53	56.92	29.51
105	k_Bacteria	UID203	5449	104	58	8	9	14	22	13	38	87.93	210.92	2.78
127	k_Bacteria	UID2982	88	229	147	27	194	8	0	0	0	86.85	3.1	12.5

Table S1: CheckM results of bins from CONCOCT with contig length>=1500.

43	cAlphaproteobacteria	UID3305 564	349	230	39	307	3	0	0	0	86.77	1.01	33.33
45	fFlavobacteriaceae	UID2817 81	511	283	69	421	20	1	0	0	85.03	5.74	60.87
4	c_Betaproteobacteria	UID3959 235	413	209	67	291	49	6	0	0	84.16	14	19.4
91	k_Bacteria	UID203 5449	103	57	11	43	46	3	0	0	84.05	50.22	0
50	cGammaproteobacteria	UID4267 119	544	284	76	449	19	0	0	0	82.63	3.4	36.84
8	k_Bacteria	UID203 5449	104	58	26	52	19	5	2	0	82.13	36.34	4.35
93	o_Flavobacteriales	UID2815 123	324	204	61	222	38	3	0	0	82.02	11.26	25.53
39	k_Bacteria	UID3187 2258	181	110	36	135	10	0	0	0	78.76	5.78	50
104	o_Burkholderiales	UID4000 193	427	214	102	2 301	23	1	0	0	77.66	5.52	46.15
111	k_Bacteria	UID2565 2921	143	88	25	113	5	0	0	0	77.56	3.58	0
14	k_Bacteria	UID1452 924	163	110	39	120	4	0	0	0	75.98	2.88	25
124	k_Bacteria	UID1452 924	161	108	39	111	11	0	0	0	75.94	3.86	27.27
110	oRhizobiales	UID3654 92	481	319	142	2 337	2	0	0	0	75.11	0.63	0
46	k_Bacteria	UID203 5449	104	58	32	34	37	0	1	0	74.06	33.86	95.35
84	k_Bacteria	UID1452 924	163	110	51	109	3	0	0	0	71.17	2.73	0
67	k_Bacteria	UID1452 924	163	110	40	120	3	0	0	0	71.09	2	0
64	o_Burkholderiales	UID4105 54	553	264	18	7 347	18	1	0	0	66.54	4.09	23.81
121	k_Bacteria	UID1452 924	163	110	50	110	3	0	0	0	66.13	1.92	0
59	o_Burkholderiales	UID4000 193	427	214	16	255	12	0	0	0	65.01	2.93	0
2	f_Xanthomonadaceae	UID4214 55	659	290	22	5 416	17	0	0	0	64.42	2.67	29.41
87	f_Xanthomonadaceae	UID4214 55	659	290	22	7 427	5	0	0	0	63.45	0.18	80
3	k_Bacteria	UID1452 924	151	101	47	103	1	0	0	0	63.02	0.99	100
33	k_Bacteria	UID1452 924	161	108	51	110	0	0	0	0	61.39	0	0
107	fRhodobacteraceae	UID3340 84	568	330	24	3 267	53	5	0	0	57.5	11.64	16.18
109	k_Bacteria	UID1453 901	171	117	61	92	18	0	0	0	54.36	8.63	66.67
13	c_Betaproteobacteria	UID3971 223	425	211	20	1 182	42	0	0	0	48.18	9.54	83.33
115	k_Bacteria	UID1452 924	158	106	90	58	10	0	0	0	47.56	7.08	70
112	oBurkholderiales	UID4000 193	426	214	22	1 165	39	1	0	0	47.13	9.7	19.05
117	k_Bacteria	UID1452 924	163	110	83	64	16	0	0	0	45.98	5.5	12.5
106	k_Bacteria	UID1452 924	151	101	70	80	1	0	0	0	42.44	0.99	0

58	k_Bacteria	UID203	5449	104	58	71	33	0	0	0	0	41.72	0	0
35	k_Bacteria	UID203	5449	104	58	44	22	19	14	5	0	41.03	22.35	28.57
118	oRhizobiales	UID3447	356	416	249	241	127	38	9	1	0	40.03	11.21	1.41
125	k_Bacteria	UID203	5449	104	58	54	24	20	4	0	2	39.67	22.2	26.92
103	k_Bacteria	UID203	5449	104	58	75	27	2	0	0	0	37.54	3.45	0
122	cGammaproteobacteria	UID4202	67	481	276	278	147	47	7	0	2	35.63	11.72	24.73
97	k_Bacteria	UID1452	924	163	110	112	40	9	1	1	0	31.73	7.7	0
80	oRhodospirillales	UID3754	63	336	201	233	76	22	4	1	0	29.9	8.38	2.5
32	k_Bacteria	UID203	5449	104	58	73	31	0	0	0	0	29.2	0	0
18	k_Bacteria	UID203	5449	104	58	78	23	2	1	0	0	26.21	3.76	20
38	c_Betaproteobacteria	UID3959	235	413	209	297	94	20	2	0	0	20.76	4.87	3.85
49	k_Bacteria	UID203	5449	104	58	82	16	3	3	0	0	20.64	9.35	0
9	k_Bacteria	UID203	5449	104	58	81	23	0	0	0	0	17.95	0	0
12	k_Bacteria	UID203	5449	104	58	88	16	0	0	0	0	15.24	0	0
120	k_Bacteria	UID203	5449	104	58	90	14	0	0	0	0	14.97	0	0
31	k_Bacteria	UID203	5449	100	55	92	8	0	0	0	0	6.28	0	0
96	k_Bacteria	UID203	5449	104	58	96	8	0	0	0	0	5.8	0	0
78	root	UID1	5656	56	24	55	1	0	0	0	0	4.17	0	0
55	root	UID1	5656	56	24	55	1	0	0	0	0	4.17	0	0
10	k_Bacteria	UID203	5449	104	58	101	3	0	0	0	0	2.04	0	0
40	k_Bacteria	UID203	5449	104	58	102	2	0	0	0	0	1.72	0	0
74	k_Archaea	UID2	207	149	107	143	5	1	0	0	0	0.43	0.07	0

Table S2	The	10 most	similar	genomes	of hin0	found	using I	PATRIC
	THE	10 111050	Siiiiiai	genomes	or unit	Iouna	using r	AINC.

Genome ID	Genome Name	Contigs	Genome Length	GC Content	Distance	P Value	Counts	NCBI Taxon ID	Genome Status	ANI
1454005.3	Ca. Accumulibacter sp. BA-94	299	3097332	63.43	0.106047	8.79E-271	57/1000	1454005	WGS	90.8%
327160.8	<i>Ca.</i> Accumulibacter phosphatis strain UBA2327	171	4431027	65.20	0.110193	1.22E-240	52/1000	327160	WGS	88.7%
1454000.3	Ca. Accumulibacter sp. SK-11	94	47100180	58.33	0.11197	6.05E-230	50/1000	1454000	WGS	88.5%
2053492.3	<i>Ca.</i> Accumulibacter sp. strain UBA8770	406	4010561	65.68	0.112887	1.19E-226	49/1000	2053492	WGS	88.8%
327160.9	<i>Ca.</i> Accumulibacter phosphatis strain UBA2315	202	4244559	65.89	0.119909	4.18E-191	42/1000	327160	WGS	88.3%
2053492.4	<i>Ca.</i> Accumulibacter sp. strain UBA11070	426	3516715	65.25	0.119909	6.07E-193	42/1000	2053492	WGS	88.7%
327160.12	<i>Ca.</i> Accumulibacter phosphatis strain UBA6585	263	4555925	65.75	0.12101	1.60E-185	41/1000	327160	WGS	88.2%
1454001.3	Ca. Accumulibacter sp. SK-12	61	4412715	64.57	0.124491	4.67E-171	38/1000	1454001	WGS	88.0%
2053492.6	<i>Ca.</i> Accumulibacter sp. strain UBA9001	176	2581832	65.83	0.132399	4.06E-146	32/1000	2053492	WGS	88.5%
522306.3	<i>Ca.</i> Accumulibacter phosphatis clade IIA str. UW-1	4	5306133	64.00	0.186761	6.76E-40	10/1000	522306	Complete	84.5%

Characteristics	Values
Genome size (Mbp)	4.25
Contigs	253
Contig N50	26216
Max contig size	100,190
Completeness (%)	95.24
Contamination (%)	0.6
Dominant strains	1
Plasmids	
GC content (%)	66.05
Protein coding density (%)	99
Coding Sequence (CDS)	4023
rRNA copies	1^1
Abundance: Experiment (by amplicon)	45%

Table S3. Quality metrics of the "Ca. Accumulibacter clade IIF strain SCELSE-1" draft genome.

¹ The 16S rRNA gene was recovered using EMIRGE ¹⁵.

Microorganism	Carbon Source	P/C ^a	PHA/C ^b	PHB/C ^c	PHV/C ^d	PH2MV/C °	Propionyl/ Acetyl ^f	Gly/C ^g	P release rate	Carbon uptake rate	P uptake rate	Ref.
		mol P/mol C	mol P/mol C	mol C/mol C	mol C/mol C	mol C/mol C	mol C/mol C	mol C/mol C	mgP/gMLSS/ h	mgC/gMLSS /h	mgP/gMLSS /h	
	Acetate	0.53	1.37	1.29	0.07	0.01	0.04	_ h	112.8	81.5	-	
Ca.	Aspartate	0.24	0.63	0.15	0.35	0.15	0.99	-	21.3	37.4	-	
Accumulibacter	Glutamate	0.19	0.05	-	-	-	-	-	18.5	36.5	-	This study
release test	Asparagine	0.29	0.74	0.16	0.40	0.17	1.03	-	12.9	31.1	-	stady
	Glutamine	0.34	0.04	-	-	-	-	-	10.8	24.9	-	
	Acetate	0.51-0.59	1.32-1.34	1.22-1.26	0.11-0.13	0	0.03-0.04	0.43-0.46	112.4-114.8	70.1-74.2	31.5-34.1	
<i>Ca.</i> Accumulibacter	Aspartate	0.28-0.29	0.55-0.59	0.12-0.16	0.32-0.34	0.14-0.16	1.02-1.07	-	17.7-18.0	26.4-29.2	13.4-19.6	
Anaerobic-	Glutamate	0.23-0.24	0.02-0.02	-	-	-	-	-	13.3-14.1	20.3-26.1	14.3-17.9	This study
aerobic full	Asparagine	0.31-0.36	0.45-0.53	0.11-0.14	0.25-0.26	0.13-0.16	0.96-1.17	-	10.2-10.3	14.1-15.2	6.14-6.19	stady
cycle study	Glutamine	0.36-0.37	0.04-0.04	-	-	-	-	-	9.9-10.0	10.7-10.9	8.25-9.80	
Ca.	Acetate	0.53	1.35	1.17	0.18	0	0.08	0.41	104.44	82.9	49	
Accumulibacter	Aspartate	0.29	0.56	0.11	0.47	0.09	1.02	-	19.1	21	30.4	This study
In-reactor test	Glutamate	0.22	0.03	-	-	-	-	-	10.6	19.8	20.3	study
<i>Ca.</i> Accumulibacter - Glycogen model	Acetate	0.5	1.33	1.33	0	0	0	0.5	-	-	-	1

Table S4 Stoichiometry and kinetics of phosphorus and carbon transformations obtained with different carbon sources in this study and a comparison with literature values and model values for *Ca*. Accumulibacter, *Tetrasphaera* and mixed cultures.

Tetrasphaera elongata	Glycine	0.48	-	-	-	-	-	-	-	-	-	33
Mixed culture	Casein hydrolysat e	0.35±0.08	0.15±0.04	0.03±0.01	0.09±0.02	0.03±0.01	-	0.38±0.12	-	-	-	30
Mixed culture	Aspartate	0.29-0.55	0.39-0.95	-	-	-	-	0.55-1.64	-	-	-	21
Wixed culture	Glutamate	0.17-0.73	0.13-0.61	-	-	-	-	0.45-1.24	-	-	-	51

^a P release-to-carbon uptake ratio; ^b PHA formation-to-carbon uptake ratio; ^c PHB formation-to-carbon uptake ratio; ^d PHV formation-to-carbon uptake ratio; ^e PH2MV formation-to-carbon uptake ratio; ^f the ratio of the propionyl- and acetyl- residues in PHA; ^g Glycogen consumption-to-carbon uptake ratio; ^h not available.

Table S5 Key genes and the encoding enzymes potentially involved in amino acid metabolism in *Ca*. Accumulibacter clade IIF strain SCELSE-1, their homologous genes in *Ca*. Accumulibacter clade IIA strain UW-1 and their expression patterns as in Oyserman et al., 2016. ³⁴ Detailed expression profiles are shown in Fig. S11.

Feature ID	Туре	Function	Ontology	Start Strar	nd Length Contig	Homologue in Clade IIA strain UW-1	Expression patterns ³⁴
gAccumu.CDS.12 21	gene	Acetate permease ActP (cation/acetate symporter)	SSO:000000671- Acetate permease ActP (cation/acetate symporter)	19,034 +	1,662 contig-100_201	CAP2UW1_1608	An↑Ae↓ ^a
gAccumu.CDS.19 41	gene	Acetate permease ActP (cation/acetate symporter)	SSO:000000671- Acetate permease ActP (cation/acetate symporter)	24,440 +	2,037 contig-100_601	CAP2UW1_3752	An↓Ae↑ ^b
gAccumu.CDS.30 48	gene	Acetate kinase (EC 2.7.2.1)	SSO:000000670- Acetate kinase (EC 2.7.2.1)	27,859 +	1,185 contig-100_815	CAP2UW1_1515	An↑Ae↓
gAccumu.CDS.21 88	gene	Polyphosphate kinase (EC 2.7.4.1)	SSO:000006159- Polyphosphate kinase (EC 2.7.4.1)	6,490 -	2,121 contig-100_2131	CAP2UW1_1063	An↑Ae↓
gAccumu.CDS.17 43	gene	Exopolyphosphatase (EC 3.6.1.11)	SSO:000002629- Exopolyphosphatase (EC 3.6.1.11)	42,196 +	1,533 contig-100_139	CAP2UW1_1064	An↑Ae↓
gAccumu.CDS.21 89_CDS	CDS	Exopolyphosphatase (EC 3.6.1.11)	SSO:000002629- Exopolyphosphatase (EC 3.6.1.11)	6,725 +	1,533 contig-100_2131	CAP2UW1_0060	An↑Ae→ ^c
gAccumu.CDS.24 91	gene	Polyphosphate kinase 2 (EC 2.7.4.1)		10,460 +	1,059 contig-100_3027	CAP2UW1_2309	An↑Ae↓
gAccumu.CDS.38 72	gene	Polyphosphate kinase 2 (EC 2.7.4.1)		13,824 -	1,260 contig-100_1653	CAP2UW1_3622	An↓Ae↑
gAccumu.CDS.28 26	gene	Polyhydroxyalkanoic acid synthase		19,505 -	702 contig-100_1811	CAP2UW1_3185	An↑Ae→

gAccumu.CDS.17 02	gene	polyhydroxyalkanoate granule-associated protein PhaI	95,102 -	594 contig-100_130	CAP2UW1_3347	No specific pattern
gAccumu.CDS.58 2	gene	Polyhydroxyalkanoic acid synthase	8,015 -	1,107 contig-100_2807	CAP2UW1_4338	No specific pattern
gAccumu.CDS.58 9	gene	Polyhydroxyalkanoic acid synthase	12,793 +	1,389 contig-100_2807	CAP2UW1_3191	An↑Ae↓
gAccumu.CDS.38 76	gene	Anaerobic C4- dicarboxylate transporter	20,516 -	1,326 contig-100_1653	CAP2UW1_1862	An↑Ae↓
gAccumu.CDS.17 96	gene	Glutamate Aspartate periplasmic binding protein precursor GltI (TC 3.A.1.3.4)	87,897 +	1,023 contig-100_139	CAP2UW1_4241	An \circ Ae \rightarrow^{d}
gAccumu.CDS.22 18	gene	Glutamate Aspartate periplasmic binding protein precursor GltI (TC 3.A.1.3.4)	13,329 +	906 contig-100_1434	CAP2UW1_1834	No specific pattern
gAccumu.CDS.35 68	gene	Glutamate Aspartate periplasmic binding protein precursor GltI (TC 3.A.1.3.4)	6,506 +	906 contig-100_2495	CAP2UW1_1092	An↓Ae↑
gAccumu.CDS.35 69	gene	Glutamate Aspartate transport system permease protein GltJ (TC 3.A.1.3.4)	7,471 +	741 contig-100_2495	CAP2UW1_1094	An ∘ Ae→
gAccumu.CDS.35 70	gene	Glutamate Aspartate transport system permease protein GltK (TC 3.A.1.3.4)	8,213 +	681 contig-100_2495	CAP2UW1_1095	An↓Ae→ ^e
gAccumu.CDS.35 71	gene	Glutamate Aspartate transport ATP-binding protein GltL (TC 3.A.1.3.4)	9,029 +	729 contig-100_2495	CAP2UW1_1096	An↓Ae→

gAccumu.CDS.44 35	gene	Glutamate Aspartate periplasmic binding protein precursor GltI (TC 3.A.1.3.4)		23,422 -	858 contig-100_507	CAP2UW1_2891	An ∘ Ae→
gAccumu.CDS.38 41	gene	L-asparaginase (EC 3.5.1.1)	SSO:000004125- L- asparaginase (EC 3.5.1.1)	570 +	1,068 contig-100_23642	CAP2UW1_1093	An \circ Ae \uparrow^{f}
gAccumu.CDS.88	gene	L-aspartate oxidase (EC 1.4.3.16)	SSO:000004128- L-aspartate oxidase (EC 1.4.3.16)	38,182 -	1,575 contig-100_479	CAP2UW1_1542	An↑Ae↓
gAccumu.CDS.11 29	gene	Phosphoenolpyruvate carboxykinase [GTP] (EC 4.1.1.32)	SSO:000005954- Phosphoenolpyruvate carboxykinase [GTP] (EC 4.1.1.32)	7,169 -	1,839 contig-100_1711	CAP2UW1_0771	An↑Ae↓
MEIGNLFM_016 07	gene	Phosphoenolpyruvate carboxykinase [GTP]	SSO:000005954- Phosphoenolpyruvate carboxykinase [GTP] (EC 4.1.1.32)	77,418 +	627 contig-100_139	CAP2UW1_1298	An↑Ae↓
gAccumu.CDS.23 72	gene	Pyruvate kinase (EC 2.7.1.40)	SSO:000006852- Pyruvate kinase (EC 2.7.1.40)	3,889 +	1,440 contig-100_4523	CAP2UW1_0821	An↑Ae↓
gAccumu.CDS.34 99	gene	Pyruvate kinase (EC 2.7.1.40)	SSO:000006852- Pyruvate kinase (EC 2.7.1.40)	14,030 -	1,413 contig-100_248	CAP2UW1_1890	$An \circ Ae \rightarrow$
gAccumu.CDS.40 85	gene	Pyruvate dehydrogenase E1 component (EC 1.2.4.1)	SSO:000006847- Pyruvate dehydrogenase E1 component (EC 1.2.4.1)	11,997 -	2,694 contig-100_517	CAP2UW1_1838	An ∘ Ae↑
gAccumu.CDS.35 26	gene	Aspartate ammonia-lyase	SSO:000001094- Aspartate ammonia-lyase (EC 4.3.1.1)	20,939 -	321 contig-100_1653	CAP2UW1_3016	An↓Ae→
gAccumu.CDS.10 73	gene	Adenylosuccinate synthetase (EC 6.3.4.4)	SSO:00000824- Adenylosuccinate synthetase (EC 6.3.4.4)	2,587 -	1,308 contig-100_953	CAP2UW1_2911	An↑Ae↓
gAccumu.CDS.18 21	gene	Adenylosuccinate lyase (EC 4.3.2.2)	SSO:000000823- Adenylosuccinate lyase (EC 4.3.2.2)	9,294 +	1,368 contig-100_3701	CAP2UW1_2523	An↑Ae↓

gAccumu.CDS.19 45	gene	Diaminohydroxyphospho ribosylaminopyrimidine deaminase (EC 3.5.4.26) / 5-amino-6-(5- phosphoribosylamino)ura cil reductase (EC 1.1.1.193)	SSO:000000412- 5-amino-6- (5- phosphoribosylamino)uracil reductase (EC 1.1.1.193)SSO:000002279- Diaminohydroxyphosphoribos ylaminopyrimidine deaminase (EC 3.5.4.26)	28,716 +	1,107 contig-100_601	CAP2UW1_1500	An↑Ae↓
gAccumu.CDS.60 8	gene	Argininosuccinate lyase (EC 4.3.2.1)	SSO:000001051- Argininosuccinate lyase (EC 4.3.2.1)	14,867 +	1,389 contig-100_1523	CAP2UW1_0789	An↑Ae↓
gAccumu.CDS.24 78	gene	Argininosuccinate synthase (EC 6.3.4.5)	SSO:000001052- Argininosuccinate synthase (EC 6.3.4.5)	6,965 -	1,230 contig-100_4260	CAP2UW1_3083	An↑Ae↓
gAccumu.CDS.24 79	gene	Ornithine carbamoyltransferase (EC 2.1.3.3)	SSO:000005514- Ornithine carbamoyltransferase (EC 2.1.3.3)	7,915 -	954 contig-100_4260	CAP2UW1_3084	An↑Ae↓
gAccumu.CDS.40 26	gene	Fumarate reductase subunit C	SSO:000002960- Fumarate reductase subunit C	1,229 +	399 contig-100_1021	CAP2UW1_0924	An↑Ae↑ ^g
gAccumu.CDS.40 27	gene	Fumarate reductase subunit D	SSO:000002961- Fumarate reductase subunit D	1,624 +	369 contig-100_1021	CAP2UW1_0923	An↑Ae→
gAccumu.CDS.1	gene	Succinate dehydrogenase iron-sulfur protein (EC 1.3.99.1)	SSO:000007781- Succinate dehydrogenase iron-sulfur protein (EC 1.3.99.1)	56 +	714 contig-100_9384	CAP2UW1_2385	An↑Ae↓
gAccumu.CDS.30 82	gene	Succinate dehydrogenase flavoprotein subunit (EC 1.3.99.1)	SSO:000007779- Succinate dehydrogenase flavoprotein subunit (EC 1.3.99.1)	13,034 +	1,785 contig-100_2630	CAP2UW1_2384	An↑Ae↓

gAccumu.CDS.15 33	gene	Succinyl-CoA ligase [ADP-forming] beta chain (EC 6.2.1.5)	SSO:000007790- Succinyl- CoA ligase [ADP-forming] beta chain (EC 6.2.1.5)	23 +	1,161 contig-100_4567	CAP2UW1_0656	An↑Ae↓
gAccumu.CDS.13 82	gene	SuccinateCoA ligase [ADP-forming] subunit alpha	SSO:000001032- Archaeal succinyl-CoA ligase [ADP- forming] alpha	1194 +	894 contig-100_4567	CAP2UW1_0657	An↑Ae↓
gAccumu.CDS.17 57	gene	Methylmalonyl-CoA mutase (EC 5.4.99.2)	SSO:000004891- Methylmalonyl-CoA mutase (EC 5.4.99.2)	57,589 +	2,175 contig-100_139	CAP2UW1_1139	An↑Ae↓
gAccumu.CDS.17 60	gene	Methylmalonyl-CoA decarboxylase	SSO:000004886- Methylmalonyl- CoA decarboxylase, alpha chain (EC 4.1.1.41)	52,159 +	780 contig-100_256	CAP2UW1_3914	An O Ae→
gAccumu.CDS.87 7	gene	Oxaloacetate decarboxylase beta chain (EC 4.1.1.3) / Methylmalonyl-CoA decarboxylase, beta chain (EC 4.1.1.41)	SSO:000004887- Methylmalonyl-CoA decarboxylase, beta chain (EC 4.1.1.41) SSO:000005616- Oxaloacetate decarboxylase beta chain (EC 4.1.1.3)	5,017 -	1,209 contig-100_9049	CAP2UW1_3917	An O Ae→
gAccumu.CDS.35 72	gene	NAD-specific glutamate dehydrogenase (EC 1.4.1.2), large form		9,943 +	4,659 contig-100_2495	CAP2UW1_1097	An↑Ae↑
gAccumu.CDS.20 80	gene	Arginine decarboxylase (EC 4.1.1.19), Ornithine decarboxylase (EC 4.1.1.17), Lysine decarboxylase (EC 4.1.1.18)	SSO:000001044- Arginine decarboxylase (EC 4.1.1.19) SSO:000004598- Lysine decarboxylase (EC 4.1.1.18) SSO:000005516- Ornithine decarboxylase (EC 4.1.1.17)	6,458 -	1,542 contig-100_9027	CAP2UW1_4030	An↑Ae↓

gAccumu.CDS.16 83	gene	Isocitrate dehydrogenase [NADP] (EC 1.1.1.42)	SSO:000004050- Isocitrate dehydrogenase [NADP] (EC 1.1.1.42)	75,772 +	1,230 contig-100_130	CAP2UW1_0663	An↑Ae↓
gAccumu.CDS.27 22	gene	Ketoglutarate oxidoreductase, beta subunit (EC 1.2.7.3)	SSO:000000208- Ketoglutarate oxidoreductase, beta subunit (EC 1.2.7.3)	2,765 -	1,056 contig-100_5269	CAP2UW1_2584	An↑Ae↓
gAccumu.CDS.27 23	gene	Ketoglutarate oxidoreductase, alpha subunit (EC 1.2.7.3)	SSO:000000207- Ketoglutarate oxidoreductase, alpha subunit (EC 1.2.7.3)	4,605 -	1,839 contig-100_5269	CAP2UW1_2583	An↑Ae↓
gAccumu.CDS.28 55	gene	Glutamine synthetase type I (EC 6.3.1.2)	SSO:000003172- Glutamine synthetase type I (EC 6.3.1.2)	27,066 -	1,416 contig-100_649	CAP2UW1_0248	An↑Ae↓
gAccumu.CDS.25 06	gene	CTP synthase (glutamine hydrolysing) (EC 6.3.4.2)	SSO:000001378- CTP synthase (EC 6.3.4.2)	13,554 -	1,689 contig-100_2230	CAP2UW1_3327	An↑Ae↓
gAccumu.CDS.25 39	gene	Gamma- glutamyltranspeptidase (EC 2.3.2.2)	SSO:000003036- Gamma- glutamyltranspeptidase (EC 2.3.2.2)	1,736 +	1,644 contig-100_1364	CAP2UW1_1179	An O Ae→
gAccumu.CDS.22 40	gene	Gamma- glutamyltranspeptidase (EC 2.3.2.2)	SSO:000003036- Gamma- glutamyltranspeptidase (EC 2.3.2.2)	13,652 -	1,944 contig-100_762	CAP2UW1_0230	An↑Ae↓
gAccumu.CDS.27 46	gene	Capsule biosynthesis protein CapA		4,835 -	987 contig-100_1283	CAP2UW1_0829	An↑Ae↓
gAccumu.CDS.98 8	gene	Actin cross-linking toxin VgrG1	SSO:000006139- Poly- gamma-glutamate synthase subunit PgsA/CapA (EC 6.3.2) SSO:000006140- Poly- gamma-glutamate synthase subunit PgsB/CapB (EC	4683 +	687 contig-100_7042		h

			6.3.2) SSO:000006141- Poly- gamma-glutamate synthase subunit PgsC/CapC (EC 6.3.2) SSO:000006142- Poly- gamma-glutamate synthase subunit PgsE/CapE (EC 6.3.2)				
gAccumu.CDS.19 33	gene	Glutamate racemase (EC 5.1.1.3)	SSO:000003153- Glutamate racemase (EC 5.1.1.3)	16,497 -	786 contig-100_601	CAP2UW1_3759	An↑Ae↓
gAccumu.CDS.39 30	gene	Dihydrofolate synthase/folylpolyglutam ate synthase	SSO:000002289- Dihydrofolate synthase (EC 6.3.2.12)	49,167 -	1,335 contig-100_187	CAP2UW1_1233	An↑Ae↓

^a anaerobic increase, aerobic decrease; ^b anaerobic decrease, aerobic increase; ^c anaerobic increase, aerobic high expression; ^d anaerobic no specific pattern, aerobic high expression; ^e anaerobic decrease, aerobic high expression; ^f anaerobic no specific pattern, aerobic increase; ^g anaerobic increase; ^h not found.

Reaction code	Name	Equation	Genes involved
rxn10042[c0]	F(1)-ATPase	$ADP[c0] + Phosphate[c0] + (4) H^+[e0]$ <=> $H_2O[c0] + ATP[c0] + (3) H^+[c0]$	gAccumu.CDS.1172_CDS, gAccumu.CDS.1172, gAccumu.CDS.1171, gAccumu.CDS.1171_CDS, gAccumu.CDS.960, gAccumu.CDS.960_CDS, gAccumu.CDS.1176, gAccumu.CDS.1176, gAccumu.CDS.1169, gAccumu.CDS.1169, gAccumu.CDS.1169, gAccumu.CDS.961, gAccumu.CDS.961, gAccumu.CDS.961_CDS, gAccumu.CDS.1170_CDS, gAccumu.CDS.1170_CDS,
rxn05312[c0]	Inorganic phosphate transporter	Phosphate[e0] + H ⁺ [e0] <= Phosphate[c0] + H ⁺ [c0]	gAccumu.CDS.4119, gAccumu.CDS.708_CDS, gAccumu.CDS.4119_CDS, gAccumu.CDS.4310_CDS, gAccumu.CDS.4113, gAccumu.CDS.708, gAccumu.CDS.4310, gAccumu.CDS.4113_CDS
rxn10151[c0]	TRANS-RXN-122A.cp	L-Aspartate[e0] + (2) H ⁺ [e0] <=> L- Aspartate[c0] + (2) H ⁺ [c0]	gAccumu.CDS.2142, gAccumu.CDS.2142_CDS

Table S6 Reactions involved in the amino acid metabolism as identified in the metagenomic analysis.

rxn05152[c0]	ATP phosphohydrolase (polar-amino- acid-importing)	H ₂ O[c0] + ATP[c0] + L-Aspartate[e0] => ADP[c0] + Phosphate[c0] + L- Aspartate[c0] + H ⁺ [c0]	gAccumu.CDS.3569_CDS, gAccumu.CDS.3569, gAccumu.CDS.3571_CDS, gAccumu.CDS.3571, gAccumu.CDS.3570_CDS, gAccumu.CDS.3570, gAccumu.CDS.3568_CDS, gAccumu.CDS.1796_CDS, gAccumu.CDS.1796, gAccumu.CDS.2218, gAccumu.CDS.2218_CDS, gAccumu.CDS.4435, gAccumu.CDS.4435, gAccumu.CDS.4435_CDS, gAccumu.CDS.893_CDS, gAccumu.CDS.893, gAccumu.CDS.3568
rxn00347[c0]	L-Aspartate ammonia-lyase	L-Aspartate[c0] <=> NH ₃ [c0] + Fumarate[c0]	gAccumu.CDS.3877, gAccumu.CDS.2353_CDS, gAccumu.CDS.3877_CDS, gAccumu.CDS.2353
rxn00262[c0]	L-Aspartic acid: oxygen oxidoreductase (deaminating)	$\begin{split} H_2O[c0] + O_2[c0] + L-Aspartate[c0] \\ => NH_3[c0] + H_2O_2[c0] + \\ Oxaloacetate[c0] \end{split}$	gAccumu.CDS.88, gAccumu.CDS.88_CDS
rxn00305[c0]	GTP:oxaloacetate carboxy-lyase (adding GTP;phosphoenolpyruvate- forming)	Oxaloacetate[c0] + GTP[c0] => CO ₂ [c0] + GDP[c0] + Phosphoenolpyruvate[c0]	gAccumu.CDS.1129_CDS, gAccumu.CDS.1129, gAccumu.CDS.1780_CDS, gAccumu.CDS.1780, gAccumu.CDS.793, gAccumu.CDS.793_CDS

rxn00148[c0]	ATP: pyruvate 2-O- phosphotransferase	ATP[c0] + Pyruvate[c0] <=> ADP[c0] + Phosphoenolpyruvate[c0] + H ⁺ [c0]	gAccumu.CDS.2372, gAccumu.CDS.3499_CDS, gAccumu.CDS.3499, gAccumu.CDS.2372_CDS
rxn00162[c0]	Oxaloacetate carboxy-lyase (pyruvate- forming)	$\begin{aligned} &Oxaloacetate[c0] + H^+[c0] => CO_2[c0] \\ &+ Pyruvate[c0] \end{aligned}$	gAccumu.CDS.877, gAccumu.CDS.877_CDS
rxn00148[c0]	ATP: pyruvate 2-O- phosphotransferase	ATP[c0] + Pyruvate[c0] <=> ADP[c0] + Phosphoenolpyruvate[c0] + H ⁺ [c0]	gAccumu.CDS.2372, gAccumu.CDS.3499_CDS, gAccumu.CDS.3499, gAccumu.CDS.2372_CDS
rxn05938[c0]	Pyruvate ferredoxin oxidoreductase	CO ₂ [c0] + Acetyl-CoA[c0] + H ⁺ [c0] + Reducedferredoxin[c0] <=> CoA[c0] + Pyruvate[c0] + Oxidizedferredoxin[c0]	gAccumu.CDS.962_CDS, gAccumu.CDS.962, gAccumu.CDS.391, gAccumu.CDS.391_CDS
rxn09272[c0]	Fumarate reductase complex (i.e. FRD, involved in anaerobic respiration, repressed in aerobic respiration)	Succinate[c0] + Ubiquinone-8[c0] <=> Fumarate[c0] + Ubiquinol-8[c0]	gAccumu.CDS.3082_CDS, gAccumu.CDS.3930_CDS, gAccumu.CDS.3930, gAccumu.CDS.4024_CDS, gAccumu.CDS.4024, gAccumu.CDS.3082, gAccumu.CDS.3080, gAccumu.CDS.3080_CDS, gAccumu.CDS.4026_CDS, gAccumu.CDS.4026, gAccumu.CDS.4027_CDS, gAccumu.CDS.4027, gAccumu.CDS.3081_CDS, gAccumu.CDS.3081, gAccumu.CDS.4025_CDS,

			gAccumu.CDS.4025, gAccumu.CDS.1, gAccumu.CDS.1_CDS
rxn00285[c0]	Succinate: CoA ligase (ADP-forming)	ATP[c0] + CoA[c0] + Succinate[c0] <=> ADP[c0] + Phosphate[c0] + Succinyl-CoA[c0]	gAccumu.CDS.1533_CDS, gAccumu.CDS.1533, gAccumu.CDS.1534_CDS, gAccumu.CDS.1534
rxn00672[c0]	(S)-methylmalonyl-CoA carboxy- lyase (propanoyl-CoA-forming)	H ⁺ [c0] + D-methylmalonyl-CoA[c0] => CO ₂ [c0] + Propionyl-CoA[c0]	gAccumu.CDS.877_CDS, gAccumu.CDS.877
rxn00194[c0]	L-glutamate 1-carboxy-lyase (4- aminobutanoate-forming)	L-Glutamate[c0] + H+[c0] \Longrightarrow CO ₂ [c0] + GABA[c0]	gAccumu.CDS.251, gAccumu.CDS.251_CDS, gAccumu.CDS.2080_CDS, gAccumu.CDS.2080
rxn02792[c0]	Gamma-glutamyltranspeptidase family protein	L-Glutamate[c0] + H^+ [c0] + L-3- Cyanoalanine[c0] => $H_2O[c0]$ + $CO_2[c0]$ + gamma-Glutamyl-3- aminopropiononitrile[c0]	gAccumu.CDS.2539, gAccumu.CDS.2240, gAccumu.CDS.2539_CDS, gAccumu.CDS.2240_CDS
rxn00193[c0]	Glutamate racemase	L-Glutamate[c0] <=> D- Glutamate[c0]	gAccumu.CDS.1933_CDS, gAccumu.CDS.1933, gAccumu.CDS.138_CDS, gAccumu.CDS.138

_

300

Figure S1 PAOs and GAOs visualized by FISH imaging and microbial community composition 301 analysis based on 16S rRNA gene amplicon sequencing of the enrichment culture in the SBR. (A) Ca. 302 303 Accumulibacter targeted by PAOmix; (B) Competibacter-related GAOs targeted by GAOmix; (C) Most bacteria targeted by EUBmix; (D) Superimposed images of A, B and C; and (E) Phylogenetic 304 tree of the OTUs present (97% identity) in the enrichment culture based on 16S rRNA gene amplicon 305 analysis (only OTUs with relative abundance >0.5% are shown; the pie charts at the end of each branch 306 indicate the relative abundance of the OTU). A single OTU of Ca. Accumulibacter, strain SCELSE-1, 307 dominated the community (Day 152). 308

Figure S2 Comparison of the genome-wide average nucleotide identities (ANI) of Ca.

Accumulibacter genomes.

Figure S3 Neighbor-joining phylogenetic tree based on nucleotide sequences of *ppk1* found in clones and genomes of *Ca*. Accumulibacter. Sequences were aligned in MEGA7³⁵ applying a Muscle alignment with default settings. Sequences were trimmed giving an alignment length of 1006 bp.

Figure S4 Phylogenetic tree of a concatenated alignment of 92 maker genes for *Ca*. Accumulibacter draft genomes published in GeneBank using the UBCG pipeline ¹⁹.

Figure S5 P-release and PHA formation behaviors when amino acids were used as carbon sources as compared to acetate. Poly-P was stained using methylene blue (**A**. state before experiment, **B**. after anaerobic incubation with acetate for 10 h, **C**. after anaerobic incubation with aspartate for10 h, **D**. after anaerobic incubation with glutamine for 10 h). PHA was stained using Sudan black (**E**. state before experiment, **F**. after anaerobic incubation with acetate for 10 h, **G**. after anaerobic incubation with aspartate for10 h, **H**. after anaerobic incubation with glutamine for 10 h). Chemical staining was performed according to Nielsen et al.³⁶

Figure S6 (A) Phosphorous and (B) carbon profiles with different amino acids performed in batch reactors operated in parallel and (C) the TN profiles during the anaerobic phase (MLSS = 1.6 mg/L; aerobic phase started at 180 min; error bars indicate the range of duplicates).

Figure S7 TN (A) and NH_4^+ -N (B) profiles in the cycle study with acetate, aspartate and glutamate as carbon sources.

Figure S8 PHA profiles in the cycle study with acetate (A), aspartate (B) or glutamate (C) as a carbon source.

- 310 Figure S9 Anaerobic P release and carbon uptake by *Ca*. Accumulibacter strain SCELSE-1 enrichment culture with and without the PMF
- 311 decoupler CCCP or the F1-F0 ATPase inhibitor DCCD. (A) Carbon (C) uptake for acetate; (B) Phosphorus (P) release for acetate; (C) C uptake
- for aspartate; (D) P release for aspartate; (E) C uptake for glutamate; (F) P release for glutamate. Error bars indicate the range of duplicate
- 313 experiments.
- 314

Figure S10 NMR analysis of the intercellular storage compounds when glutamate (A), aspartate (B) or acetate (C) was used as a carbon source.

Figure S11 Gene expression profile patterns (changes in relative transcript abundances were measured as $\Delta \log$ (RPKM,2), i.e., the difference between the log (RPKM,2) value at each time point and the minimum log (RPKM,2) value in the EBPR cycles for each gene) of the Ca. Accumulibacter clade IIA strain UW-1 in a single EBPR cycle. Data were obtained from Oyserman et al., 2016³⁴. Yeast extract was included in the feed when the authors performed the metatranscriptomic analysis. The expression patterns of genes related to aspartate and glutamate metabolism of Ca. Accumulibacter clade IIA stain UW-1 may provide evidences to support the proposed pathways in this work. Gray and white backgrounds represent anerobic and aerobic phases respectively. A. The expression of a homologue gene (CAP2UW1 1862) of gltP encoding a C4-dicarboxylate transport protein increased anaerobically and decreased aerobically. While genes encoding the glutamate/aspartate transport system (*gltI*, *gltK*, *gltJ* and *gltL*, K1001–K1004),¹⁴ belonging to the ATP-binding cassette (ABC) transporter family showed decreased expressions after anaerobic carbon contact. Their expressions were relatively high under aerobic condition. These results are in line with the observations in this work where the uptake of aspartate and glutamate were achieved via GltP driven by PMF and were not via the glutamate/aspartate ABC transporter. B. Expression patterns of genes involved in the fumarate generation from aspartate. Genes involved in purine nucleotide cycle (EC: 6.3.4.4; EC: 4.3.2.2) and urea cycle (EC: 6.3.4.5; EC: 4.3.2.1) was expressed increasingly in the anaerobic phase and decreasingly in the aerobic phase. No specific pattern was observed for a gene encoding the aspartate ammonia-lyase (EC: 4.3.1.1). These results implied that both purine nucleotide cycle and urea cycle might have been active for the conversion of aspartate to fumarate in Ca. Accumulibacter clade IIA stain UW-1. While where was probably no significant direct conversion of aspartate to fumarate via aspartate ammonia-lyase. C. Expression of key genes involved in the aspartate metabolic pathway proposed in this study increased anaerobically and decreased after exposure to oxygen. They include genes encoding L-aspartate oxidase (EC 1.4.3.16, responsible for the conversion of aspartate to oxaloacetate), phosphoenolpyruvate carboxykinase

(EC 4.1.1.32, oxaloacetate to phosphoenolpyruvate), fumarate reductase (EC 1.3.5.1, EC 1.3.5.4, fumarate to succinate), and succinyl-CoA ligase (EC 6.2.1.5, succinate activation to succinyl-CoA), methylmalonyl-CoA mutase (EC 5.4.99.2, succinyl-CoA to methylmalonyl-CoA). **D**. Expression patterns of key genes involved in the glutamine/glutamate metabolic pathway (and the metabolic pathway with the co-presence of acetate and glutamate) proposed in this work. The gene encoding the glutamate dehydrogenase (EC 1.4.1.2) more highly expressed in the aerobic phase than in the anaerobic phase, which is in line with the observation that a majority of glutamate was not deaminized or routed to the TCA cycle, but was stored in a different form during the anaerobic phase. The high expression of genes encoding the glutamate racemase (EC 5.1.1.3) and folylpolyglutamate (FPGA) synthase (EC 6.3.2.17) during the anaerobic phase also supports the hypothesis that glutamate was stored as glutamate polymers (FPGA/PGA). The high anaerobic expression of isocitrate dehydrogenase (EC 1.1.1.42) and ketoglutarate oxidoreductase (EC 1.2.7.3) was probably related to the use of the TCA cycle to generate reducing power ³⁷ by *Ca*. Accumulibacter clade IIA stain UW-1 or the activation of the glutamate/acetate pathway proposed in this work, or both.

Figure S12 (**A**) PHA formation characteristics and TN (**B**) profiles with the co-presence of glutamate (Glu) and acetate (HAc) as compared to these with acetate or glutamate as a single carbon source. Error bars indicate the range of duplicate experiments.

Figure S13 Presence (Green) and absence (Red) of key genes involved in the metabolism of aspartate and glutamate in draft genomes of representative *Ca*. Accumulibacter stains.

References

- (1) Albertsen, M.; Karst, S.M.; Ziegler, A.S.; Kirkegaard, R.H.; Nielsen, P.H. Back to basics-the influence of DNA extraction and primer choice on phylogenetic analysis in activated sludge communities. *PLoS ONE* **2015**, 10: e0132783.
- (2) McIlroy, S. J.; Saunders, A. M.; Albertsen, M.; Nierychlo, M.; McIlroy, B.; Hansen, A.A.; Karst, S.M.; Nielsen, J.L.; Nielsen P.H. MiDAS: the field guide to the microbes of activated sludge. *Database* **2015**, 1–8.
- (3) Bolger, A.M.; Lohse, M.; Usadel, B., Trimmomatic: A flexible trimmer for Illumina Sequence Data. *Bioinformatics* 2014, 30(15), 2114–2120.

(4) Peng, Y.; Leung, H.C.M.; Yiu S.M., Chin F.Y.L., IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. *Bioinformatics* **2012**, 28, 1420–1428.

(5) Langmead, B.; Salzberg, S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359.

(6) Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. and 1000 Genome Project Data Processing Subgroup. The Sequence alignment/map (SAM) format and SAMtools. *Bioinformatics* **2009**, 25, 2078-2079.

- (7) Alneberg, J.; Bjarnason, B.S.; de Bruijn, I.; Schirmer, M.; Quick, J.; Ijaz, U.Z.; Lahti, L.; Loman, N.J.; Andersson A.F.; Quince. C., Binning metagenomic contigs by coverage and composition. *Nat. Methods* **2014**, 11, 1144–1146.
- (8) Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W., Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res.*, **2014**, 25, 1043–1055.

(9) Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M., Mash: fast genome and metagenome distance estimation using MinHash. *Genome Biol.* **2016**, 17(1), 132: doi: 10.1186/s13059-016-0997-x.

(10)Gillespie, J.J.; Wattam, A.R.; Cammer, S.A.; Gabbard, J.L.; Shukla, M.P.; Dalay, O.; Driscoll, T.; Hix, D.; Mane, S.P.; Mao, C.; Nordberg, E.K.; Scott, M.; Schulman J.R.; Snyder, E.E.; Sullivan, D.E.; Wang, C.; Warren, A.; Williams, K.P.; Xue. T.; Yoo H.S.; Zhang, C.; Zhang, Y.; Will, R.; Kenyon, R.W.; Sobral, B.W., PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. *Infect Immun.* 2011, 79(11), 4286–4298.

(11)Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. *Int. J. Syst. Evol. Micr.* **2007**, 57, 81-91.

(12)Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. *Proc. Natl. Acad. Sci. USA*, **2009**, 106, 19126-19131.

(13)Gurevich, A.; Saveliev, V.; Vyahhi N.; Tesler, G., QUAST: quality assessment tool for genome assemblies. *Bioinformatics*, **2013**, 29(8), 1072–1075.

(14) Seemann, T., Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014, 30(14), 2068–2069.

(15) Miller, C.S.; Baker, B.J.; Thomas, B.C.; Singer, S.W.; Banfield, J.F., 2011, EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. *Genome Biol.* 12, R44: doi:10.1186/gb-2011-12-5-r44.

(16) Pruesse, E.; Peplies, J.; Glöckner, F.O., SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. *Bioinformatics* **2012**, 28, 1823–1829.

(17)Camejo, P.Y., Oyserman, B.O.; McMahon, K.D.; Noguera, D.R., 2019. Integrated omic analyses provide evidence that a "*Candidatus* Accumulibacter phosphatis" strain performs denitrification under microaerobic conditions. *mSystems* **4**, e00193-18: doi.org/10.1128/mSystems.00193-18.

(18) Mao, Y.; Yu, K.; Xia, Y.; Chao, Y.; Zhang T., Genome reconstruction and gene expression of "*Candidatus* Accumulibacter phosphatis" clade IB performing biological phosphorus removal. *Environ. Sci. Technol.* **2014**, 48(17), 10363–10371.

(19)Na, S.I.; Kim, Y.O.; Yoon, S.H.; Ha, S.M.; Baek, I.; Chun, J. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 2018, 56(4), 280-285.

(20) Daims, H.; Brühl, A.; Amann, R.; Schleifer, K.H.; Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set. *Syst. Appl. Microbiol.* **1999**, 22, 434–444.

(21)Crocetti, G.R.; Hugenholtz, P.; Bond, P.L.; Schuler, A.; Keller, J.; Jenkins, D.; Blackall1, L.L.; Identification of polyphosphate-accumulating organisms and design of 16S rRNA directed probes for their detection and quantitation. *Environ. Microbiol.* **2000**, 66, 1175–1182.

(22)Crocetti, G.R.; Banfield, J.F.; Keller, J.; Bond, P.L.; Blackall, L.L. Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. *Microbiology* **2002**, 148(11), 3353–3364.

(23) Smolders G.J.F.; van der Meij J.; van Loosdrecht M.C.M.; Heijnen J.J. Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence. *Biotechnol. Bioeng.* **1994**, 43, 461–470.

(24) Saunders A.M.; Mabbett A.N.; McEwan A.G.; Blackall L.L. Proton motive force generation from stored polymers for the uptake of acetate under anaerobic conditions. *FEMS Microbiol. Lett.* **2007**.274, 245–251.

(25)Burow, L.; Mabbett, A.; McEwan, A.; Bond, P.; Blackall, L. Bioenergetic models for acetate and phosphate transport in bacteria important in enhanced biological phosphorus removal. *Environ. Microbiol.* **2008**, 10, 87–98.

(26)Bossi, R.T.; Negri, A.; Tedeschi, G.; Mattevi, A. Structure of FAD-bound L-aspartate oxidase: insight into substrate specificity and catalysis. *J. Biochem.* **2002**, 41, 3018–3024.

(27) Salway, J.G. Metabolism at a glance 3rd edition, Blackwell Publishing Ltd., Oxford, 2004.

(28) Harvey, R.A.; Ferrier, D.R. Lippincott's Illustrated Reviews, Biochemistry, 5th ed. Lippincott Williams & Wilkins, 2011.

(29) Hilpert, W.; Dimroth P. Conversion of the chemical energy of methylmalonyl-CoA decarboxylation into a Na⁺ gradient. *Nature* **1982**, 296, 584-585.

(30) Marques, R.; Santos, J.; Nguyen, H.; Carvalho, G.; Noronha, J.P.; Nielsen, P.H.; Reis, M.A.M.; Oehmen, A. Metabolism and ecological niche of *Tetrasphaera* and *Ca*. Accumulibacter in enhanced biological phosphorus removal. *Water Res.* **2017**, 122, 159–171.

(31)Zengin, G.E.; Artan, N.; Orhon, D.; Satoh, H.; Mino, T. Effect of aspartate and glutamate on the fate of enhanced biological phosphorus removal process and microbial community structure. *Bioresour. Technol.* **2011**, 102(2), 894–903.

(32) Camacho, M.L.; Brown, R.A.; Bonete, M.J.; Danson M.J.; Hough, D.W. Isocitrate dehydrogenases from *Haloferax volcanii* and *Sulfolobus solfataricus*: enzyme purification, characterisation and N-terminal sequence. *FEMS Microbiol. Lett.* **1995**. 134, 85–90.

(33)Nguyen, H.T.T.; Kristiansen, R.; Vestergaard, M.; Wimmer, R.; Nielsen, P.H. Intracellular accumulation of glycine in polyphosphateaccumulating organisms in activated sludge, a novel storage mechanism under dynamic anaerobic-aerobic conditions. *Appl. Environ. Microbiol.* **2015**, 81(14), 4809-4818.

(34)Oyserman, B.O.; Noguera, D.R.; del Rio, T.G.; Tringe, S.G.; McMahon K.D. Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis. ISME J. 2016, 10, 810–822.

(35)Kumar, S.; Stecher, G.; Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* 2016, 33, 1870–1874.

(36)Nielsen, J.L.; Kragelund, C.; Nielsen, P.H. Combination of fluorescence in situ hybridization with staining techniques for cell viability and accumulation of PHA and polyP in microorganisms in complex microbial systems. In: Cummings, S. (Ed.). *Methods in Molecular Biology*. *Bioremediation*. Humana Press Inc. **2010**, 599, 103-116.

(37)Zhou, Y.; Pijuan, M.; Zeng, R.J.; Yuan, Z. Involvement of the TCA cycle in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs). *Water Res.* **2009**, 43, 1330–1340.