Supporting information

Relationship between Atomic Scale Structure and Reactivity of Pt catalysts:

Hydrodeoxygenation of m-cresol over Isolated Pt Cations and Clusters

Authors: Joaquin Resasco^{1,†}, Feifei Yang^{2,†}, Tong Mou², Bin Wang², Phillip Christopher^{1,*}, Daniel E. Resasco^{2,*}

Affiliations:

1. Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States

2. School of Chemical, Biological, and Materials Engineering and Center for Interfacial Reaction Engineering, University of Oklahoma, Norman OK 73019, United States [†] These authors contributed equally

*Corresponding authors: pchristopher@ucsb.edu, resasco@ou.edu

Catalyst	0.1% Pt/SiO ₂	0.1% Pt/TiO ₂	0.1% Pt/SiO ₂	0.1% Pt/TiO ₂
W/F (h)	0.156	0.156	0.727	0.695
Conversion (%)	2.85	15.73	18.53	72.31
Product yields (%)				
Toluene	1.42	14.09	16.07	67.45
Dimethylbiphenyl		0.30		3.27
Methylcyclohexanone	0.30	0.22	0.61	0.00
and methylcyclohexanol				
Methycyclohexane	0.14	0.20	0.44	0.50
Phenol	0.11	0.14	0.18	0.00
p/o-Cresol	0.85	0.69	0.52	0.21
Xylenol	0.03	0.03	0.71	0.27

Table S1: Comparison of reactivity of 0.1% Pt/SiO₂ and 0.1% Pt/TiO₂ for HDO of m-cresol.

Reaction conditions: T=350°C; P=1atm H₂; TOS=20min.

Figure S1: CO IR spectroscopy of All Pt_{iso} (0.025% Pt/TiO_2) during CO desorption. Lack of change in vibrational frequency or peak symmetry implied Pt sites sit at uniform, non-interaction sites on the oxide support.

Figure S2: Comparison of activity for Pt/TiO₂ catalysts and pure TiO₂ supports. No significant differences in activity are observed for TiO₂ supports. Small differences in activity observed are likely due to differences in surface area of the two supports. Comparison of pure supports with 0.025% Pt/TiO₂ demonstrates Pt_{iso} does have catalytic activity for m-cresol HDO, although the reactivity is much lower than Pt clusters. Reaction conditions: T=275-350 °C for 1.0% Pt/TiO₂; T=330-370 °C for the catalyst containing only Pt_{iso} ; T=375-400 °C for pure TiO₂. P=1atm H₂; TOS=20 min. Conversion was maintained below 15% by adjusting W/F.

Figure S3: Correlating site fractions to reactivity data. Experimental and calculated TOF at (a) 220 °C and (b) 350 °C. Calculated values obtained from a linear combination of TOF values for Pt_{iso} and Pt clusters, weighted by the relative site fractions of each. Site fractions were obtained from fitting one consistent set of extinction coefficients for Pt_{iso} and Pt clusters to measured CO infrared data.

Figure S4: Thermogravimetric analysis of Pt/TiO₂ catalysts. (a) Mass loss and (b) Derivative of mass loss against temperature for Pt/TiO₂ catalysts at different Pt weight loadings. All samples were deposited on lower surface area TiO₂ support besides the sample labeled 0.025% Pt/TiO₂ All Pt_{iso}. The higher coke formation on this sample was the result of the higher surface area support. Reaction conditions for the spent catalysts: W=100mg; F=0.1ml/h; H₂=58ml/min; TOS=3.5h.

Figure S5: Adsorption of m-cresol on Pt structures. DFT optimized adsorbed structures with calculated heats of adsorption for (a,b) cresol adsorption over Pt_{iso} and (c) Pt (111). The balls refer to the atoms of H (white), O (red), C (grey), Pt (blue) and Ti (green), respectively.