Supporting Information

Heterologous Biosynthesis of Type II Polyketide Products Using E. coli

Xiangyang Liu^{1#}, Kangmin Hua^{1#}, Dongxu Liu¹, Zhen-long Wu², Ying Wang², Haoran

Zhang³, Zixin Deng¹, Blaine A. Pfeifer⁴, Ming Jiang¹*

Fable S1 <i>E. coli</i> strains an	d plasmids	used in	this study.
---	------------	---------	-------------

Strain or plasmid	Relevant properties or genetic	Source or
	marker	reference
Strains		
BL21(DE3)	F^{-} , $ompT$, $hsdS_B(r_B^{-}, m_B^{-})$, dcm , gal ,	Novagen
	λ(DE3)	
DH10B	General cloning and plasmid	GibcoBRL
	maintenance	
BAP1	F ompT hsdS _B (r_B m_B) gal dcm	(1)
	(DE3) ΔprpRBCD::T7prom-sfp,	
	T7prom-prpE	
BAP1/pGro7/pXY-1/pXY-3/pXY-	E.coli strains producing	This study
6	dehydrorabelomycin	
BAP1/pGro7/pXY-2/pXY-3/pXY-	E.coli strains producing	This study
6	dehydrorabelomycin	
BAP1/pGro7/pXY-1/pXY-3/pXY-	E.coli strains producing	This study
5	prejadomycin	
BAP1/pGro7/pXY-1/pXY-3/pXY-	E.coli strains producing UWM6,	This study

prejadomycin and rabelomycin

BAP1/pGro7/pXY-7/pXY-8

Plasmids

pET28a	T7 promoter, Kan ^r	Novagen
pET32a	T7 promoter, Amp ^r	Novagen
pCDFduet	T7 promoter, Str ^r	Novagen
pGro7	GroES-GroEL, Cm ^r	TAKARA
pXY-1	pET28a-alpAB	This study
pXY-2	pET28a- <i>alpAB-MCAT</i>	This study
pXY-3	pCDF-alpI-ravC	This study
pXY-4	pET32a-alpD-alpE	This study
pXY-5	pET32a-alpD-alpE-alpF	This study
pXY-6	pET32a-alpD-alpE-alpF-alpG	This study
pXY-7	pET28a-whiE-III-IV	This study
pXY-8	pET32a-whiE-V-whiE-VI-MCAT	This study
pET28a- <i>alpA</i>	pET-28a(+) carrying <i>alpA</i>	This study
pET28a- <i>alpB</i>	pET-28a(+) carrying <i>alpB</i>	This study
pET28a- <i>alpC</i>	pET-28a(+) carrying <i>alpC</i>	This study
pET28a- <i>ravC</i>	pET-28a(+) carrying <i>ravC</i>	This study
pET32a- <i>alpD</i>	pET-32a(+) carrying <i>alpD</i>	This study

4

pET32a-alpE	pET-32a(+) carrying <i>alpE</i>	This study
pET28a- <i>alpF</i>	pET-28a(+) carrying <i>alpF</i>	This study
pET28a- <i>alpG</i>	pET-28a(+) carrying <i>alpG</i>	This study
pET32a- <i>alpI</i>	pET-32a(+) carrying <i>alpI</i>	This study
pET28a-MCAT	pET-28a(+) carrying MCAT	This study
pET32a-whiE-V	pET-32a(+) carrying <i>whiE</i> -ORFV	This study
pET32a-whiE-VI	pET-32a(+) carrying <i>whiE</i> -ORFVI	This study

Table S2. Primers used in this study

Primer	Sequence (5' to 3')
AlpA-NdeI-F	AAACATATGAGCGGGCGACGCGTTG
AlpA-HindIII-SpeI-R	AAAAAGCTTACTAGTCATACGAGGCTCCTTTCGG
AlpB-XbaI-F	AATCTAGAAGGAGATGACCGCCTCCG
AlpB-XbaI-8-F	AATCTAGAAGGAGATATACATATG
AlpB-NdeI-F	AAACATATGACCGCCTCCGTGGTGGTGACCG
AlpB-HindIII-SpeI-R	AAAAAGCTTACTAGTCAGGCGGCGCGCACGACCA
AlpC-NdeI-F	AAACATATGGCCAGCAAGTCCTTCACCCTCGACG
AlpC-HindIII-SpeI-R	AAAAAGCTTACTAGTCAGGCGGCCTTGGCGGGCG
AlpI-NdeI-F	AAACATATGCACAGCACGCTGATCGTC
AlpI-BamHI+1-F	AAAGGATCCGATGCACAGCACGCTGATCGTC

AlpI-*Hind*III-SpeI-R AAAAAGCTTACTAGTCAACGGGAGGCCTCCCAGC

AlpD-*NdeI*-F AAACATATGACCGACACCACCACCA

AlpD-HindIII-SpeI-R AAAAAGCTTACTAGTCAGAAGTTGCCGAGGCCGC

AlpE-NdeI-F AAACATATGAGCCTCATGACCACACG

AlpE-HindIII-SpeI-R AAAAAGCTTACTAGTCAGCCCTTCTTCTGCTCGG

AlpF-NdeI-F AAACATATGGCAGCGGACGCCCTG

AlpF-*Hind*III-*Spe*I-R AAAAAGCTTACTAGTCAGCGGGGGGGGGGGGCCCGAA

AlpG-NdeI-F AAACATATGGAAGGGACAGCGGCGG

MCAT-NdeI-F AAACATATGCTCGTACTCGTCGCTC

MCAT-*Hind*III-*Spe*I- AAAAAGCTTACTAGTCAGGCCTGGGTGTGCTC

R

whiE-orfIII-NdeI-F ACATATGACCCGGCGCGGGTCG

whiE-orfIV-HindIII-R AAAAGCTTACTAGTCAGCGGCCCTCGGG

whiE-orfV-NdeI-F AAACATATGACCGATCAGCAGCTGG

whiE-orfV-HindIII-R AAAAAGCTTACTAGTCACACTCCCGTCTTGAG

whiE-orfVI-NdeI-F AAACATATGGCAGGGCACACCGACAA

whiE-orfVI-HindIII-R AAAAAGCTTACTAGTCAGTCGGCGAGCACCGA

Table S3. The ¹H NMR and ¹³C NMR data of UWM6^{*a*} in CD₂Cl₂.

	ÓH ÓF	ΙÖ
no. ^b	¹³ C	$^{1}\mathrm{H}^{c}$
1	208.1	
2	51.4	2.47 (d, $J = 14.4$)
		2.74 (d, $J = 14.4$)
3	76.2	
4	42.8	1.98 (s, 2H)
4a	76.3	
5	50.8	a 2.95 (d, <i>J</i> = 17.4)
		b 3.00 (d, <i>J</i> = 17.4)
6	202.5	
6a	108.5	
7	167.2	
7a	113.3	
8	158.5	
9	112.4	6.89 (d, $J = 7.8$)
10	133.8	7.53 (t, $J = 7.8$)
11	119.2	7.16 (d, <i>J</i> = 7.8)
11a	139.5	
12	117.9	6.76 (d, <i>J</i> = 1.8)
12a	132.7	
12b	62.2	3.93 (s)
13	30.9	1.23 (s, 3H)

 $\begin{array}{c} & & & & 13 \\ & & & CH_3 \\ & & & CH_3 \\ & & & & \\$

^{*a*} Spectra were obtained at 600 MHz for proton and 150 MHz for carbon and were recorded in CD_2Cl_2 . Chemical shifts are reported in δ (ppm). ^{*b*} Carbons are labeled according to their number in the polyketide backbone. ^{*c*} Coupling constants are presented in hertz. Unless otherwise indicated, all proton signals integrate to 1H.

Table S4. The ¹H NMR and ¹³C NMR data of TW95c^a in CD₃OD.

no. ^b	¹³ C	$^{1}\mathrm{H}^{c}$
1	167.1	
2	90.2	5.22 (d, $J = 2.0$)
3	172.7	
4	103.9	5.67 (d, $J = 2.0$)
5	163.3	
6	37.3	a 3.42 (d, <i>J</i> = 15.6)
		b 3.32 (d, <i>J</i> = 15.5)
7	136.0	
8	130.8	6.81 (s)
9	141.7	
10	110.3	6.39 (d, <i>J</i> = 2.2)
11	169.0	
12	103.1	6.20 (d, J=2.2)
13	167.8	
14	106.7	
15	194.1	
16	94.7	
17	192.6	
18	110.4	
19	178.2	
20	97.2	6.39 (d, <i>J</i> = 1.9)
21	168.9	

22	114.6	6.36 (s)	
23	143.8		
24	18.0	2.32 (s, 3H)	

^{*a*} Spectra were obtained at 600 MHz for proton and 150 MHz for carbon and were recorded in CD₃OD. Chemical shifts are reported in δ (ppm). ^{*b*} Carbons are labeled according to their number in the polyketide backbone. ^{*c*} Coupling constants are presented in hertz. Unless otherwise indicated, all proton signals integrate to 1H.

Fig. S1. Purification attempt of heterologously produced AlpA and AlpB. W: whole

cell lysate of induced cells; S: soluble fraction of induced cells; E: purified protein from affinity chromatography.

Fig. S2. (A) Plasmid designs used to test the heterologous expression of AlpA and AlpB. (B) Purification of AlpA and AlpB using different expression constructs. W: whole cell lysate of induced cells; S: soluble fraction of induced cells; E: purified protein from affinity chromatography.

Fig. S3. Plasmids used for the heterologous production of Type II aromatic polyketides in this study

Fig. S4. Q-TOF mass analysis of the BAP1 heterologous posttranslational modification of AlpC and RavC. A) Q-TOF mass spectra of AlpC. The peak at 11520.05 Da is representative of apo-AlpC (cal. MW 111519.69 Da). B) Q-TOF mass spectra of apo- and holo-RavC. The peaks at 11197.68 and 11375.78 Da represent apo-RavC (cal. MW 11197.21 Da) and apo-RavC with fMet; whereas, the peaks at

11538.11 and 11716.13 Da represent holo-RavC and holo-RavC with fMet.

Fig. S5. Q-TOF MS spectra of UWM6.

Fig. S6. HPLC analysis of dehydrorabelomycin production in *E. coli* BAP1without (i; BAP1/pGro7/pXY-1/pXY-3/pXY-6) or with (ii; BAP1/pGro7/pXY-2/pXY-3/pXY-6) MCAT.

Fig. S7. SDS-PAGE analysis of proteins from the *whiE* biosynthetic pathway. M: protein marker; W: whole cell lysate of induced cells; S: soluble fraction of induced cells; E: purified protein from affinity chromatography.

Fig. S8. Q-TOF ESI analyses of TW95c. (A) HR-QTOF mass spectrum of TW95c

under ESI positive mode. (B) HRMS analysis data of TW95c.

Fig. S9. ¹H NMR spectrum of UWM6 in CD₂Cl₂ (600 MHz)

Fig. S10. ¹³C NMR spectrum of UWM6 in CD₂Cl₂ (150 MHz)

Fig. S12. ¹³C NMR spectrum of TW95c in CD₃OD (150 MHz)

Fig. S13. DEPT-135 spectrum of TW95c in CD₃OD

Fig. S14. ¹H-¹H COSY spectrum of TW95c in CD₃OD

Fig. S15 HSQC spectrum of TW95c in CD₃OD

Fig. S16. HMBC spectrum of TW95c in CD₃OD

References

1. Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, & Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of *E. coli. Science* 291, 1790-1792.