Supporting Information

Energy and nutrient recovery from sewage sludge and manure via anaerobic digestion with hydrothermal pretreatment

Ci Fang^{1,3}, Rixiang Huang¹, Christy M. Dykstra², Rongfeng Jiang³, Spyros G. Pavlostathis², Yuanzhi Tang^{1,2} *

 ¹ School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332-0340, United States
² School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332-0512, United States
³ Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

> *Corresponding author. Telephone: 404-894-3814; Email: <u>yuanzhi.tang@eas.gatech.edu</u>

Total 13 pages 7 tables 4 figures

Spectral domain	Chemical shift region (ppm)	Representative structure	Chemical shift (ppm)	Refs		
		mobile (CCH ₃)	13	1		
Alkyl	0–50	methyl carbon (-CH ₃)	23	1		
		mobile methylene carbon (-CH ₂ -)	30, 31	1, 2		
Mathanul	50 (0	O-CH ₃	57, 56	1, 3		
Methoxyi	50-60	lignin-like structures	56	2, 4		
		amino acid	61.5	5		
		CH ₂ OH	62	3		
		crystalline components of C6 in hexose,	65 2, 4			
		or C5 in pentose	0.5	65 2, 4 71.29 6 72 3 73 1 72-74 4		
		hydrocarbon	71.29	65 2, 4 71.29 6 72 3 73 1		
		-CHOH-	72	3		
		C-O-C	73	1		
		C2, C3, C5 from cellulose	72–74	4		
O/N-alkyl	60–110	non-crystalline components of C4	83	4,7		
		crystalline components of C4	88	2, 4		
		0-C-0	103.00	3		
		deoxygenated anomeric C1 from cellulose	105	4		
		anomeric carbon	105.00 2			
		0-C-0	110	1		
		anomeric carbon	102, 106, 111.50	5		
		aromatic C	129	1		
		-C=C-	130	3		
Aromatic	110–160	syringyl-like systems	137	7		
		phenolic carbon, aromatic ethers N-	150 5	5		
		substitute aromatic C	152.7	3		
Carboxyl,	160 210	hydroxyls	168.86	6		
carbonyl	100-210	COO/N-C=O	172, 174	1, 2		

Table S1. Peak assignments for ¹³C NMR spectra of sludge, manure, and their treatment samples.

Table S2. Significant analysis of biogas production (after seed blank correction). Different lowercase letters behind the same row groupings indicate significant differences at P < 0.05 among different samples according to a Tukey HSD test.

Sample	Total Gas (mL/g VS)	Total CH4 (mL/g VS)	Total CO ₂ (mL/g VS)	$\frac{CH_4-COD}{COD_{initial}} (\%)$
Sludge	308.7±2.1 ^d	283.6±1.2 ^f	99.2±1.7 °	42.0±0.2 °
S125	567.4±4.0 °	383.8±1.6 °	140.1 ± 2.5 ^d	53.3±0.2 °
S225	551.9±5.4 °	404.9±2.5 ^d	103.2±3.3 °	37.7±0.1 ^f
Manure	742.2±28.2 ^b	490.1±2.3 °	226.9±2.6 ^b	79.0±0.3 ^b
M125	1152.0±10.1 ^a	738.9±5.2 ª	366.3±5.8 ª	86.8±0.3 ^a
M225	558.6±6.8 °	503.7±1.5 ^b	172.6±2.2 °	45.9±0.2 ^d

Sample	COD _{initial} ^a (mg/L)	COD _{final} ^b (mg/L)	COD _{destroyed} ^c (%)	CH ₄ content (%)	$\frac{CH_4-COD}{COD_{initial}} (\%)$	COD _{balance} ^d (%)
Sludge	1986±17	1228±18	38.2	74.1±0.2	42.0±0.2	-3.8
S125	1753±20	915±18	47.8	73.3±0.2	53.3±0.2	-5.5
S225	1663±3	992±17	40.3	79.7±0.3	37.7±0.1	2.6
Manure	2233±112	693±26	69.0	68.4±0.1	79.0±0.3	-10.0
M125	2159±82	621±53	71.3	66.9±0.2	86.8±0.3	-15.5
M225	1834±29	1281±15	30.1	79.8±0.3	45.9±0.2	-15.8

Table S3. Results of the batch ultimate digestibility test (after seed blank correction).

^a COD_{initial} is the mean value of parallel samples stored in 4 °C.

^b COD_{final} is the mean value of repeated samples incubated in the dark at 35 °C.

 c COD_{destroyed} is calculated using the mean value of COD_{initial} and COD_{final}, and the specific calculation formula is as follows:

$$COD_{destroyed}(\%) = \frac{COD_{initial} - COD_{final}}{COD_{initial}} \times 100$$

^d COD_{balance} is the difference between the mean value of COD_{destroyed} (%) and $\frac{CH_4-COD}{COD_{initial}}$ (%).

Table S4. Percent contribution of carbon functional groups derived from ¹³C solid-state NMR spectra of DI water (CK), sludge (S), and sludge hydrochars (S125 and S225) before (labeled as 0) and after (labeled as 63) anaerobic digestion ^a.

	Functional group (chemical shift)								
Sample	Alkyl	Methoxyl	O/N-alkyl	Aromatic	Carboxyl and carbonyl				
	(0–50 ppm)	(50–60 ppm)	(60–110 ppm)	(110–160 ppm)	(160–210 ppm)				
CK-0	38.8	10.3	22.3	5.3	23.1				
CK-63	37.5	9.4	15.8	5.2	32.1				
S-0	44.4	9.5	19.4	0.5	26.1				
S-63	38.7	8.2	10.8	4.5	37.7				
S125-0	41.8	8.3	9.7	0.4	39.8				
\$125-63	38.7	5.9	4.1	3.9	47.4				
S225-0	43.8	6.5	3.6	2.9	43.2				
\$225-63	44.5	7.9	13.2	6.5	27.8				

^a Data expressed as the relative percentage of peak area of each functional group divided by total peak area.

Table S5. Percent contribution of carbon functional groups derived from ¹³C solid-state NMR spectra of DI water (CK), manure (M), and manure hydrochars (M125 and M225) before (labeled as 0) and after (labeled as 63) anaerobic digestion^a.

	Functional group (chemical shift)								
Samples	Alkyl	Methoxyl	O/N-alkyl	Aromatic	Carboxyl and carbonyl				
	(0–50 ppm)	(50–60 ppm)	(60–110 ppm)	(110–160 ppm)	(160–210 ppm)				
CK-0	38.8	10.3	22.3	5.3	23.1				
CK-63	37.5	9.4	15.8	5.2	32.1				
M-0	33.1	7.0	38.4	4.3	17.0				
M-63	41.1	9.7	20.2	2.4	26.6				
M125-0	32.7	8.3	36.3	4.9	17.5				
M125-63	39.8	10.0	22.4	6.8	20.9				
M225-0	58.4	6.8	9.8	8.2	16.8				
M225-63	45.7	6.7	7.4	17.4	22.8				

^a Data expressed as the relative percentage of peak area of each functional group divided by total peak area.

Sample	Reaction time	pHª	SCOD (g/L)	ΔTCOD ^b (g/L)	ΔSCOD ^c (g/L)	SCOD Contribution ^d (%)	
Cludes	Day 0	7.52	0.51±0.02	0.76	0.00	121	
Sludge	Day 63	7.32	-0.50 ± 0.01	0.70	0.99	151	
S125	Day 0	7.45	0.52±0.02	0.84	0.51	61	
5125	Day 63	7.30	0.00 ± 0.04	0.84	0.31		
S225	Day 0	7.53	1.30±0.00	0.67	1.42	212	
	Day 63	7.43	-0.13±0.01	0.07	1.42	212	
Monuno	Day 0	7.49	1.45±0.01	1.54	1.94	120	
Manure	Day 63	7.11	-0.40±0.03	1.34	1.64	120	
M125	Day 0	7.43	0.54 ± 0.01	1.54	0.85	55	
W1125	Day 63	7.09	-0.32±0.01	1.34	0.85	33	
M225	Day 0	7.44	0.54±0.02	0.55	0.08	14	
	Day 63	7.34	0.61±0.02	0.55	-0.08	-14	

Table S6. Characteristics of organic contents of sludge, manure, and their hydrochars before (0 day) and after (63 day) anaerobic digestion (after seed blank correction).

^a pH was measured immediately after opening the bottles. The standard deviation are not shown because they are smaller than 0.02.

 $\label{eq:dtcod} ^{b} \Delta TCOD = \left| \ TCOD_{initial} \ \right| \ - \ \left| \ TCOD_{final} \ \right|$

^c Δ SCOD = | SCOD_{initial} | - | SCOD_{final} |

^d SCOD contribution (%) = Δ SCOD / Δ TCOD×100

	Liqu	ıid-TP	Liquio	Liquid-TP/TP		monia	Mg (mmol/L)		nH *	Ρ·Ν·Μα
Sample	(mn	(mmol/L)		(%)		(mmol/L)				1 .11.111g
	Day 0	Day 63	Day 0	Day 63	Day 0	Day 63	Day 0	Day 63	Day 63	Day 63
CV	4.95	5.13	86.7	90.0	14.66	16.22	0.0584	0.232	8.11	1 2 1 6 0 05
CK	± 0.01	±0.02	±0.2	±0.3	±0.02	±0.01	±0.004	±0.003		1:5.10:0.05
S	5.20	5.36	68.8	69.7	15.55	18.19	0.0567	0.229	9.07	1. 2.20. 0.04
(Sludge)	±0.01	±0.00	±0.1	±0.0	±0.08	±0.13	±0.0014	±0.005	8.07	1: 3.39: 0.04
S125	5.13	5.78	70.5	74.6	16.76	21.18	0.0944	0.258	7.87	1: 3.66: 0.04
	±0.02	±0.07	±0.2	±0.9	±0.03	±0.15	±0.0023	±0.006		
5225	5.25	4.49	67.4	60.4	17.92	16.89	0.0868	0.214	8.22	1: 3.76: 0.05
8225	±0.01	±0.01	±0.1	±0.2	±0.03	±0.16	±0.0021	±0.004		
М	5.25	4.69	77.4	77.6	17.19	17.48	0.126	0.450	8.04	1, 2, 72, 0, 10
(Manure)	±0.00	±0.02	±0.0	±0.4	±0.02	±0.06	±0.003	±0.011	8.04	1: 5.75: 0.10
M125	4.93	4.97	73.9	76.7	17.04	18.03	0.0935	0.258	8.23	1.2.62.0.05
	±0.04	±0.05	±0.5	±0.8	±0.13	±0.10	±0.0022	±0.006		1: 5.05: 0.05
N/225	3.69	5.09	60.8	73.4	12.21	16.65	0.125	0.190	8.19	1. 2.27. 0.04
M225	±0.01	±0.06	±0.2	±0.9	±0.07	±0.15	±0.003	±0.004		1: 3.27: 0.04

Table S7. Solution concentration of total P (liquid-TP), ammonia, and Mg, the percentage of liquid-TP to total P in both solid and solution phases (TP), solution pH, as well as the molar ratio of solution P, N, and Mg contents.

*pH value of liquid supernantant of samples, which was measured after opening the bottles and solid-liquid separation. Standard deviations are not shown because they are smaller than 0.02.

Figure S1. Cumulative total gas (A), methane (B), and carbon dioxide (C) production during the 63-day incubation period. Gas data obtained at 35 °C and 1 atm with seed blank correction. Error bars represent mean values \pm one standard deviation (n = 3).

Figure S2. Normalized methane COD production from S (A), S125 (B), S225 (C), M (D), M125 (E), and M225 (F) over the incubation period. Solid lines are non-linear fits of the experimental data. Dashed lines are 95% confidence region.

Figure S3. Relative percentage of P species in each sequential extraction step (color bars) and the total P content (open symbol) in sludge, manure, and their hydrothermally treated samples. Error bar represent results from two replicate extraction experiments.

Figure S4. Normalized P XANES spectra of DI water sample (CK) at day 0 (labeled as 0) and day 63 (labeled as 63) of anaerobic digestion.

References

1. Wang, L.; Li, A.; Chang, Y., Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge. *Water Res* **2017**, *112*, 72-82.

2. Cimo, G.; Kucerik, J.; Berns, A. E.; Schaumann, G. E.; Alonzo, G.; Conte, P., Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure. *J Agric Food Chem* **2014**, *62*, (8), 1912-8.

3. Cao, X.; Ro, K. S.; Chappell, M.; Li, Y.; Mao, J., Chemical Structures of Swine-Manure Chars Produced under Different Carbonization Conditions Investigated by Advanced Solid-State13C Nuclear Magnetic Resonance (NMR) Spectroscopy. *Energy & Fuels* **2011**, *25*, (1), 388-397.

4. Gomez, X.; Diaz, M. C.; Cooper, M.; Blanco, D.; Moran, A.; Snape, C. E., Study of biological stabilization processes of cattle and poultry manure by thermogravimetric analysis and ¹³C NMR. *Chemosphere* **2007**, *68*, (10), 1889-97.

5. Amir, S.; Hafidi, M.; Merlina, G.; Hamdi, H.; Revel, J.-C., Elemental analysis, FTIR and ¹³C-NMR of humic acids from sewage sludge composting. *Agronomie* **2004**, *24*, (1), 13-18.

6. Jouraiphy, A.; Amir, S.; Winterton, P.; El Gharous, M.; Revel, J. C.; Hafidi, M., Structural study of the fulvic fraction during composting of activated sludge-plant matter: elemental analysis, FTIR and ¹³C NMR. *Bioresour Technol* **2008**, *99*, (5), 1066-72.

7. Conte, P.; De Pasquale, C.; Novotny, E. H.; Caponetto, G.; Laudicina, V. A.; Ciofalo, M.; Panno, M.; Palazzolo, E.; Badalucco, L.; Alonzo, G., CPMAS 13C NMR characterization of leaves and litters from the reafforestated area of Mustigarufi in Sicily (Italy). *Open Magnetic Resonance Journal* **2010**, *3*, 89-95.