SUPPORTING INFORMATION

B-H Functionalization of Hydrogen-Rich [(Cp^*V)₂(B_2H_6)₂]: Synthesis and Structures of [(Cp^*V)₂(B_2X_2)₂ H_8] (X = CI, SePh; $Cp^* = \eta^5$ -C₅Me₅)

Anagha Haridas,[†] Sourav Kar,[†] Beesam Raghavendra,[†] Thierry Roisnel,[‡] Vincent Dorcet,[‡] and Sundargopal Ghosh^{*},[†]

[†]Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. Tel: +91 44- 22574230; Fax: +91 44-22574202; E-mail: <u>sghosh@iitm.ac.in</u>

[‡]Université de Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, F-35000 Rennes, France

I EXPERIMENTAL

I.1 Supplementary Data

Figure S1. Molecular structure and labeling diagram for compound Figure S2. Molecular structure and labeling diagram for compound Figure S3. Molecular structure and labeling diagram for compound Figure S4. Molecular structure and labeling diagram for compound Figure S5. Molecular structure and labeling diagram for compound Figure S6. Molecular structure and labeling diagram for compound

I.2 Spectroscopic details

Figure S7. ESI-MS spectrum of compound 1 Figure S8. ¹H NMR spectrum of compound Figure S9. ¹¹B{¹H} NMR spectrum of compound Figure S10. ¹³C{¹H} NMR spectrum of compound Figure S11. ¹H-¹¹B HSQC NMR spectrum of compound **1** in CDCI₃ Figure S12. ESI-MS spectrum of compound 2 Figure S13. ¹H NMR spectrum of compound Figure S14. ¹¹B{¹H} NMR spectrum of compound Figure S15. ¹³C{¹H} NMR spectrum of compound Figure S16. ESI-MS spectrum of compound 3 Figure S17. ¹H NMR spectrum of compound Figure S18. $^{11}B{^1H}$ NMR spectrum of compound Figure S19. $^{13}C{^{1}H}$ NMR spectrum of compound Figure S20. ¹H-¹¹B HSQC NMR spectrum of compound Figure S21. ESI-MS spectrum of compound 4 Figure S22. ¹H NMR spectrum of compound Figure S23. ¹¹B{¹H} NMR spectrum of compound Figure S24. ¹³C{¹H} NMR spectrum of compound Figure S25. ESI-MS spectrum of compound 5 Figure S26. ¹H NMR spectrum of compound

Figure S27. ¹¹B{¹H} NMR spectrum of compound Figure S28. ¹³C{¹H} NMR spectrum of compound Figure S29. ESI-MS spectrum of compound Figure S30. ¹H NMR spectrum of compound Figure S31. ¹¹B{¹H} NMR spectrum of compound Figure S32. ¹³C{¹H} NMR spectrum of compound Figure S33. UV-Vis spectra of compounds **1-6** in CH₂Cl₂

II Computational Data

Table S1. Experimental and calculated bond distances of **1-6** (**E** = Cl or Se).

Table S2. Calculated natural charges (q_V , q_B , and q_E), natural valance population (**Pop**) and HOMO–LUMO gaps of **1-6** (**E** = Cl or Se).

Table S3. Electron density, $\rho(r)$, Laplacian of electron density, $\nabla^2 \rho(r)$, total energy density, H(r), potential energy density, V(r) and kinetic energy density, G(r) in a.u. of selected bond critical points (BCPs) of **1**, **2** and **5**.

Figure S34. Selected frontier molecular orbitals of compound 1

Figure S35. Selected frontier molecular orbitals of compound 2

Figure S36. Selected frontier molecular orbitals of compound 5

Figure S37. HOMO-1 of 1 and 2, HOMO-4 of 5 showing V-V interactions.

Figure S38. Contour line diagrams of the Laplacian of the electron density, $\nabla^2 \rho(\mathbf{r})$ of V1-V2-H, V1-V2-H and V1-V1-H planes in **1** (a), **2** (b) and **5** (c) respectively. Solid red lines indicate areas of charge concentration ($\nabla^2 \rho(\mathbf{r}) < 0$) while dashed black lines show areas of charge depletion ($\nabla^2 \rho(\mathbf{r}) > 0$). Blue dots indicate BCPs.

Table S4. TD-DFT calculated electronic transition configuration for **1** along with their corresponding excitation energies, wavelength and oscillator strengths

Table S5. TD-DFT calculated electronic transition configuration for **2** along with their corresponding excitation energies, wavelength and oscillator strengths

Table S6. TD-DFT calculated electronic transition configuration for **5** along with their corresponding excitation energies, wavelength and oscillator strengths

I Experimental

I.1 Supplementary Data

Figure S1. Molecular structure and labeling diagram for compound **1**. Selected bond lengths (Å) and bond angles (°): V1-V2 2.7820(9), V1-B1 2.300(4), V1-B2 2.295(4), V1-B3 2.301(4), V1-B4 2.307(4), B1-B2 1.752(7); B2-V1-V2 53.20(11), B2-V1-B1 44.81(16), B2-B1-V1 67.4(2), B2-V1-B1 44.81(16), B1-V1-B4 88.98(16).

Figure S2. Molecular structure and labeling diagram for compound **2**. Selected bond lengths (Å) and bond angles (°): V1-V2 2.8389(6), V1-B1 2.302(3), V1-B2 2.302(3), V1-B3 2.306(3), B1-Cl1 1.844(3),B2-Cl2 1.844(3) B1-B2 1.755(5); B2-V1-V2 52.06(8), B1-V2-B2 44.64(12), B2-B1-V1 67.61(16), B2-V1-B1 44.80(12), B1-V1-B4 86.86(12), V1-B2-Cl2 140.52(18),V2-B2-Cl2 143.26(19), B2-B1-Cl1 115.7(2).

Figure S3. Molecular structure and labeling diagram for compound **3**. Selected bond lengths (Å) and bond angles (°): V1-V2 2.7946(7), V1-B1 2.304(3), V1-B2 2.293(3), B2-Cl1 1.791(3), B1-B2 1.746(4); B2-V1-V2 52.40(7), V1-B2-V2 75.14(9), B2-V2-B1 105.14(10), B2-B1-V1 67.61(16), B2-V1-B1 44.64(10), B2-V1-B1 105.02(10), B2-V1-B2 88.38(14), V1-B2-Cl1 143.38(15), V2-B2-Cl1 141.02(15), B1-B2-Cl1 113.63(19).

Figure S4. Molecular structure and labeling diagram for compound **4**. Selected bond lengths (Å) and bond angles (°): V1-V2 2.8105(15), V1-B2 2.268(9), V1-B22 2.295(7), B1-Cl1 1.825(9), V1-B21 2.328(9), B1-B2 1.732(13), B21-B22 1.749(15) ; V1-V2-B1 52.0(2), B1-V2-B21 88.6(4), B1-V2-B22 104.2(3), B21-V2-B22 44.3(5), B1-V2-B2 44.6(4), V2-B22-Cl3 143.8(5), V1-B22-Cl3 140.9(5), V2-B22-V1 75.3(2), V2-B21-V1 74.3(3), V2-B1-B2 66.8(4).

Figure S5. Molecular structure and labeling diagram for compound **5**. Selected bond lengths (Å) and bond angles (°): V1-V1 2.8595(10), V1-B11 2.331(3), V1-B21 2.333(3), B11-Se1 2.029(3), B11-B21 1.741(5) ; V1-V1-B11 52.28(8), B21-V1-B21 104.22(10), B21-V1-B11 87.56(12), B21-V1-B11 44.00(11), V1-B21-V1 75.78(10), V1-B21-Se2 145.44(16), V1-B21-B11 67.38(15).

Figure S6. Molecular structure and labeling diagram for compound **6**. Selected bond lengths (Å) and bond angles (°): V1-V2 2.7996(5), V1-B2 2.320(2), V1-B1 2.310(2), B1-B2 1.745(3), B3-B4 1.759(3), B1-Se1 2.024(2) ; V2-V1-B1 52.78(5), V2-V1-B2 52.95(5), B3-V1-B2 88.58(8), B4-V1-B1 88.50(8), B2-V1-B1 44.29(8), B3-V1-B4 44.99(8), V1-B1-V2 74.55(6), B1-B2-V2 67.60(10), V1-B1-Se1 143.06(11).

I.2 Spectroscopic details

Figure S10. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound 1 in CDCI3

Figure S11. ¹H-¹¹B HSQC NMR spectrum of compound 1 in CDCI₃

Figure S12. ESI-MS spectrum of compound 2

Figure S16. ESI-MS spectrum of compound 3

Figure S18. ¹¹B{¹H} NMR spectrum of compound 3 in CDCI₃

Figure S20. ¹H-¹¹B HSQC NMR spectrum of compound 3 in CDCI₃

Figure S26. ¹H NMR spectrum of compound 5 in CDCI₃

S17

Figure S30. ¹H NMR spectrum of compound 6 in CDCI₃

Figure S33. UV-Vis spectra of compounds 1-6 in CH_2CI_2

II. Supplementary Data

	d _{V-V}		d _{V-B}			d _{B-B}		d _{B-E}	
	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	Expt.	Cal.	
1	2.78	2.73	2.30	2.27	1.75	1.75	-	-	
2	2.83	2.79	2.30	2.28	1.75	1.76	1.84	1.85	
3	2.79	2.76	2.29	2.27	1.74	1.75	1.79	1.86	
4	2.81	2.77	2.29	2.27	1.74	1.75	1.84	1.85	
5	2.85	2.79	2.32	2.26	1.74	1.74	2.03	2.01	
6	2.79	2.75	2.30	2.26	1.75	1.74	2.02	2.00	

Table S1. Experimental and calculated bond distances of 1-6 (E = Cl or Se).

Table S2. Calculated natural charges $(\mathbf{q}_V, \mathbf{q}_B, \text{ and } \mathbf{q}_E)$, natural valance population (**Pop**) and HOMO–LUMO gaps of **1-6** (**E** = Cl or Se).

	qv	qв	q _E	Pop(V _{val})	Pop(B _{val})	Pop(E _{val})	∆E _{H-L} (ev)
1	0.527	-0.428	-	4.480	3.408	-	2.72
	0.527	-0.428	-	4.480	3.407	-	
		-0.428	-		3.408	-	
		-0.428	-		3.407	-	
2	0.487	-0.241	-0.191	4.519	3.208	7.180	2.76
	0.487	-0.242	-0.189	4.519	3.209	7.179	
		-0.231	-0.190		3.198	7.179	
		-0.231	-0.191		3.199	7.180	
3	0.510	-0.452	-	4.497	3.432	-	2.74
	0.510	-0.212	-0.212	4.497	3.179	7.201	
		-0.452	-		3.432	-	
		-0.212	-0.212		3.179	7.201	
4	0.496	-0.463	-	4.510	3.443	-	2.76
	0.496	-0.217	-0.207	4.510	3.184	7.197	
		-0.226	-0.193		3.194	7.182	
		-0.229	-0.194		3.197	7.183	
5	0.547	-0.456	0.247	4.457	3.435	5.734	2.32
	0.548	-0.467	0.259	4.456	3.446	5.722	
		-0.457	0.249		3.435	5.732	
		-0.467	0.259		3.445	5.722	
6	0.474	-0.515	0.269	4.534	3.494	5.712	1.39
	0.474	-0.468	-	4.533	3.449	-	
		-0.462	-		3.449	-	
		-0.464	-		3.443	-	

Table S3. Electron density, $\rho(r)$, Laplacian of electron density, $\nabla^2 \rho(r)$, total energy density, H(r), potential energy density, V(r) and kinetic energy density, G(r) in a.u. of selected bond critical points (BCPs) of **1**, **2** and **5**.

Compound	ВСР	ρ(r)	∇²ρ(r)	H(r)	G(r)	V(r)
1	V1-V2	0.0487	-0.0039	-0.0173	0.0164	-0.0337
2	V1-V2	0.0464	-0.0066	-0.0157	0.0141	-0.0299
5	V1-V1	0.0461	-0.0005	-0.0152	0.0151	-0.0304

Figure S34. Selected frontier molecular orbitals of compound 1.

Figure S35. Selected frontier molecular orbitals of compound 2.

Figure S36. Selected frontier molecular orbitals of compound 5.

Figure S37. HOMO-1 of 1 and 2, HOMO-4 of 5 showing V-V interactions.

Figure S38. Contour line diagrams of the Laplacian of the electron density, $\nabla^2 \rho(\mathbf{r})$ of V1-V2-H, V1-V2-H and V1-V1-H planes in **1** (a), **2** (b) and **5** (c) respectively. Solid red lines indicate areas of charge concentration ($\nabla^2 \rho(\mathbf{r}) < 0$) while dashed black lines show areas of charge depletion ($\nabla^2 \rho(\mathbf{r}) > 0$). Blue dots indicate BCPs.

Table S4. TD-DFT calculated electronic transition configuration for **1** along with their corresponding excitation energies, wavelength and oscillator strengths

|--|

No	Transition configurations	Excitation	Wavelength (nm)		Osc,
	(%) ^[a]	Energy (ev)	Cal.	Expt.	Strength
1	HOMO-1→LUMO(98)	1.7797	696.6578		0.0
2	HOMO-1→LUMO+3(12)	2.2491	551.2613	579	0.0598
	HOMO→LUMO(89)				
3	HOMO→LUMO+2(100)	2.4513	505.7895		0.0008
4	HOMO→LUMO+1(97)	2.5359	488.9159		0.0
5	HOMO-1→LUMO+1(94)	2.6002	476.8256		0.0001
6	HOMO-1→LUMO+2(99)	2.6908	460.7707		0.0
7	HOMO-1→LUMO+4(95)	2.9858	415.2461		0.0
8	HOMO-2→LUMO(79)	2.9896	414.7183		0.0
	HOMO→LUMO+4(18)				
9	HOMO→LUMO+3(93)	3.0186	410.7340		0.0
10	HOMO-3→LUMO(45)	3.0706	403.7783		0.0
	HOMO-1→LUMO+5(53)				

^[a]components with greater than 10% contribution shown

Table S5. TD-DFT calculated electronic transition configuration for **2** along with their corresponding excitation energies, wavelength and oscillator strengths

HOMO	is	146
1101010	15	140

No	Transition configurations	Excitation	Wavelength (nm)		Osc,
	(%) ^[a]	Energy (ev)	Cal.	Expt.	Strength
1	HOMO-1→LUMO(95)	2.0406	607.5869		0.0001
2	HOMO→LUMO+1(100)	2.1822	568.1614		0.0
3	HOMO-1→LUMO+3(11)	2.2947	540.3067	565	0.0591
	HOMO→LUMO(89)				
4	HOMO→LUMO+2(97)	2.5959	477.6154		0.0
5	HOMO-1→LUMO+1(99)	2.6093	475.1626		0.0001
6	HOMO-2→LUMO(89)	2.7357	453.2082	410(S) ^[b]	0.0168
7	HOMO-1→LUMO+2(93)	2.8448	435.8274		0.0002
8	HOMO-3→LUMO(27)	2.8908	428.8923		0.0
	HOMO→LUMO+4(72)				
9	HOMO→LUMO+3(92)	2.9502	420.2569		0.0
10	HOMO-4→LUMO(95)	2.9873	415.0376		0.0

^[a]components with greater than 10% contribution shown, ^[b]shoulder peak

Table S6. TD-DFT calculated electronic transition configuration for **5** along with their corresponding excitation energies, wavelength and oscillator strengths

No	Transition configurations	Excitation	Wavelength (nm)		Osc,
	(%) ^[a]	Energy (ev)	Cal.	Expt.	Strength
1	HOMO-5→LUMO(14)	1.6763	739.6300		0.0278
	HOMO-2→LUMO(18)				
	HOMO→LUMO(66)				
2	HOMO-1→LUMO(89)	1.6856	735.5493		0.0001
3	HOMO-2→LUMO(80)	1.7349	714.6474	630	0.0304
	HOMO→LUMO(13)				
4	HOMO-3→LUMO(88)	1.7578	705.3373		0.0001
5	HOMO-4→LUMO(91)	1.8168	682.4317		0.0001
6	HOMO→LUMO+1(100)	2.0281	611.3317		0.0021
7	HOMO-5→LUMO(62)	2.2907	541.2502	508(s) ^[b]	0.0326
	HOMO-2→LUMO+1(26)				
8	HOMO-3→LUMO+1(17)	2.4002	516.5577		0.0001
	HOMO-1→LUMO+1(78)				
9	HOMO→LUMO+2(94)	2.4178	512.7975		0.0
10	HOMO-4→LUMO+1(13)	2.4982	496.2941		0.0
	HOMO-3→LUMO+1(72)				

^[a]components with greater than 10% contribution shown, ^[b]shoulder peak