Supporting information for

Theoretical prediction and experimental verification of the chemically-ordered atomic-laminate *i*-MAX phases $(Cr_{2/3}Sc_{1/3})_2GaC$ and $(Mn_{2/3}Sc_{1/3})_2GaC$

Andrejs Petruhins*, Martin Dahlqvist, Jun Lu, Lars Hultman, and Johanna Rosen*

Thin Film Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden

*Corresponding author. Email: andrejs.petruhins@liu.se, johanna.rosen@liu.se

This file includes:

Tables SI-SVIII

Figures S1-S4

α-Ga

Ga

Ga

 $Cr_{23}C_6$

С

Ga

Ga

Ga

 $Cr_{23}C_6$

C (graphite)

oC8

oC4

mC4

hP4

cF116

energy per formula unit for considered competing phases within present paper.								
Phase	Prototype	Pearson symbol	Space group	Energy (eV/fu)				
Cr	W	cI2	Im-3m (229)	-9.6430				
Cr	Cu	cF4	Fm-3m (225)	-9.2408				
Cr	Mg	hP2	P6 ₃ /mmc (194)	-9.2298				
Mn	α-Mn	cI58	I-43m (217)	-9.1582				
Mn	β-Mn	cP20	P4 ₁ 32 (213)	-9.1056				
Mn	AuCu	tP4	P4/mmm (123)	-9.1297				
Mn	CsCl	cP2	Pm-3m (221)	-9.0107				
Sc	Mg	hP2	P6 ₃ /mmc (194)	-6.3327				
Sc	Np	tP4	P4/nmm (129)	-6.2230				
Sc	Sc	hP6	P6122 (178)	-6.2006				

Table SI. Prototype structure, with corresponding structural information, and calculated total energy per formula unit for considered competing phases within present paper.

Cmca (64)

Cmcm (63)

P6₃/mmc (194)

Fm-3m (225)

C2/c (15)

-3.0302

-3.0121

-3.0119

-9.2246

-279.3407

Cr ₃ C	Fe ₃ C	oP16	Pnma (62)	-38.4634
Cr_7C_3	Cr_7C_3	oP40	Pnma (62)	-96.2272
Cr_3C_2	Sb_2S_3	oP20	Pnma (62)	-47.9107
$Mn_{23}C_6$	$Cr_{23}C_6$	cF116	Fm-3m (225)	-268.6277
Mn ₃ C	Fe ₃ C	oP16	C2/c(15)	-64.7226
Mn ₅ C ₂	Mn ₅ C ₂	mS28	Pnma(62)	-92,4925
Mn ₇ C ₂	Cr_7C_2	oP40	P63mc (186)	-92,4221
MnC	NiAs	hP4	$P6_{2}/mmc$ (194)	-18,1687
Sc ₂ C	CdL	hP3	P3m1(156)	-23 2708
Sc ₂ C	Ti ₂ C	cF48	Fd-3m(227)	-23 2657
Sc ₂ C	Th ₂ O	cI28	$I_{-43d}(220)$	-56 4192
ScCo oze	NaCl	cF8	Fm-3m (225)	-14 9227
ScC	NaCl	cF8	Fm-3m(225)	-15 8395
Sec C	NaCi So C	tD70	$P_{1}^{(223)}$	-15.8595
SC_3C_4	Cr Si (B W)	u /0	$\frac{14}{11110}(128)$	-36.7036
CrGa	MnGa	61 0 hD 79	$P_{2m}(166)$	-32.1332
Cr Ca		mS_{12}	$C_{12/m1}(100)$	-12.7091
Cr_3Ga_4	Fe_3Ga_4	m542	$C_{12}/m_{1}(12)$	-41.218/
$CrGa_4$	Hg_4Pt	CI10	Im-3m(229)	-22.5270
Mn ₃ Ga	I_1AI_3	t18	14/mmm(139)	-30.9155
Mn ₃ Ga	N1 ₃ Sn	nP8	$P6_3/mmc (194)$	-30.646/
MnGa MnGa	AuCu	tP2 hD22	P4/mmm(123) $P_{2}m(166)$	-12.4531
Millida MinGa	Curt	hD2	R-5111(100)	-12.1092
MnGa	MnGa	hP78	R_{-3m} (166)	-12.2389
Mn-Ga	Cr.Al	hR26	$R^{-511}(100)$	-70 6863
Mn ₂ Ga ₆	Mn ₂ Hg	tP14	P4/mbm(127)	-34 3720
MnGa ₄	PtHg ₄	cI10	Im-3m(229)	-22,1774
MnGa ₆	MnAl ₆	oC28	Cmcm (63)	-27.5430
Sc ₅ Ga ₃	Y ₅ Ga ₃	mS32	C12/m1 (12)	-44.9893
Sc11Ga10	Ho ₁₁ Ge ₁₀	tI84	I4/mmm (139)	-112.2262
ScGa	TII	oS8	Cmcm (63)	-9.0837
ScGa ₂	KHg ₂	oI12	Imma (74)	-14.0796
ScGa ₃	AuCu ₃	cP4	Pm-3m (221)	-17.3922
Cr ₂ GaC	CaTiO ₂	cP5	Pm-3m (221)	-41.0458
Cr ₂ GaC	Re ₂ B	oP20	Cmcm (63)	-41 4353
CraGaC	CraAlC	hP8	$P_{6_2}/mmc(194)$	-32,0973
Cr ₂ GaC ₂	TiaSiCa	hP12	P_{6_2}/mmc (194)	-50 6991
Cr ₄ GaC ₂	TiAlN	hP12	P_{6_2}/mmc (194)	-69 3788
Mn ₂ GaC	CaTiO	cP5	Pm-3m(221)	-40 2921
Mn ₂ GaC	Re ₂ B	oP20	Cmcm(63)	-40 3287
Mn ₂ GaC	Cr ₂ AsN	tI20	$I_{4/mcm}(140)$	-40 2893
Mn ₂ GaC	CraAlC	hP8	P_{6_2}/mmc (194)	-31 1598
Mn ₂ GaC	TiaSiCa	hP12	P_{6_2}/mmc (194)	-49 2157
Mn ₃ GaC ₂	Ti AlNa	hP12	P_{6}/mmc (194)	-67.0531
So GoC		oP5	$Pm \ 3m \ (221)$	24 2248
Sc3GaC		613 6D9	$P62/mm_2(104)$	-34.2340
$Sc_2 GaC$	CI_2AIC	11F 0 hD12	$P62/mm_{2}(104)$	-27.0471
$Su_3 Ga C_2$	$1 1_3 SIC_2$	ու 12 հը14	F03/IIIIIC (194) P62/mma (104)	-43.0331
Sc_4GaC_3	Γ_4AIN_3	0D24	$\frac{194}{100}$	-38.9402
$SC_2 \cup C_3$	$Sc_2 CrC_3$	0P24	PDam (33)	-52.4088
p-ScUrU ₂	$SCUTU_2$	NP8	Po_{3}/mmc (194)	-35.8144
Cr_2ScGaC_2	$Cr_2 TIAIC_2$	hP12	$P6_3/mmc$ (194)	-48.4666
Sc ₂ CrGaC ₂	$Cr_2 I I A I C_2$	nP12	$P6_3/mmc$ (194)	-45.8395
$CrSc_2C$	$CuHg_2I_1$	cF16	F-43m (216)	-27.7394

Figure S1. Schematic representation of 12 collinear spin configurations considered for $(M_{2/3}^1 \text{Sc}_{1/3})_2 \text{GaC}, M^1 = \text{Cr or Mn}$, where the spin direction at each M^1 site is represented by a black arrow.

Table SII. Identified equilibrium simplex and corresponding formation enthalpy for Cr₂GaC, Mn₂GaC and Sc₂GaC phases ($P6_3/mmc$ structure), and the hypothetical *i*-MAX phases (Sc_{2/3}Cr_{1/3})₂GaC and (Sc_{2/3}Mn_{1/3})₂GaC. Please note that the former *i*-MAX phase diverge from an *i*-MAX structure upon relaxation, i.e. the phase is not stable for such atom configuration. Relaxation performed using the PBE exchange-correlation functional.

Phase	equilibrium simplex	Spin configuration [†]	ΔH_{cp} (meV/atom)	experimental observation
Cr ₂ GaC	Cr_3C_2 , $CrGa_4$, Cr_7C_3	in-AFM1	-19	yes
Mn ₂ GaC	Mn ₃ GaC, C, MnGa ₄	AFM[0001] ^A	-31	yes
Sc ₂ GaC	Sc ₃ GaC, ScGa ₂ , Sc ₃ C ₄	NM	11	no
$(Sc_{2/3}Cr_{1/3})_2GaC$	$(Cr_{2/3}Sc_{1/3})_2GaC, ScGa_2, Sc_3GaC, Sc_2CrC_3$	NM	-5	no
(Sc _{2/3} Mn _{1/3}) ₂ GaC	$(Mn_{2/3}Sc_{1/3})_2GaC, Sc_3GaC, ScGa_2, Sc_3C_4$	NM	+12	no

 † Results attained form Ref. [10] for Cr₂GaC and Ref. [11] for Mn₂GaC.

Table SIII. Calculated energy and corresponding structural and magnetic information for $(Cr_{2/3}Sc_{1/3})_2GaC$ when considering different spin configurations. Relaxation performed using the PBE exchange-correlation functional.

Spin configuration	Space group	a (Å)	b (Å)	c (Å)	Notes	$\Delta E_{\rm NM}$ (meV/atom)	magnetic moment $(\mu_B / Cr atom)$
NM	63	9.0569	5.1800	12.7669		0	0.00
FM	63	9.0926	5.2088	12.7481		-0.7	0.73
AFM1			goes to th	e NM state			
X2	63	9.0708	5.1951	12.7722		-1.7	0.72
A2			goes to th	e NM state			
X4	12	5.2075	9.0888	12.7550	β=90.0872°	-1.0	0.79, 0.80
A4	38	12.7541	9.0600	5.1864	mix of A2 and AFM1	-0.7	0.48, 0.61
in-AFM1			goes to th	e NM state			
in-AFM2			goes to th	e NM state			
in-AFM3			goes to th	e NM state			
in-AFM4			goes to th	e NM state			
in-AFM5			goes to th	e NM state			
in-AFM6	63	9.0791	5.1957	12.7547		-2.7	0.63

Table SIV. Calculated energy and corresponding structural and magnetic information for $(Mn_{2/3}Sc_{1/3})_2GaC$ when considering different spin configurations. Relaxation performed using the PBE exchange-correlation functional.

Spin configuration	Space group	a (Å)	b (Å)	c (Å)	Notes	$\Delta E_{\rm NM}$ (meV/atom)	magnetic moment $(\mu_B / Mn atom)$
NM	63	8.9901	5.1385	12.5482		0	0.00
FM			goes to th	e NM state			
AFM1	63	8.9900	5.1419	12.5850		-1.1	0.72
X2			goes to th	e NM state			
A2			goes to th	e NM state			
X4	12	5.1397	8.9914	12.5611	β=90.0032° mix of A2 and AFM1	-0.2	0.24, 0.50
A4			goes to th	e NM state			
in-AFM1			goes to th	e NM state			
in-AFM2			goes to th	e NM state			
in-AFM3			goes to th	e NM state			
in-AFM4			goes to th	e NM state			
in-AFM5			goes to th	e NM state			
in-AFM6			goes to th	e NM state			

Table SV. Calculated energy and corresponding structural and magnetic information for $(Cr_{2/3}Sc_{1/3})_2GaC$ when considering different spin configurations. Relaxation performed using the PBE exchange-correlation functional with +U method, where $U_{eff} = 1 \text{ eV}$.

Spin configuration	Space group	a (Å)	b (Å)	c (Å)	Notes	$\frac{\Delta E_{\rm NM}}{(meV/atom)}$	magnetic moment (µB / Cr atom)
NM	63	9.0533	5.1824	12.7838		0	0.00
FM	63	9.0995	5.2364	12.8101		-24	1.29
AFM1	63	9.1256	5.2570	12.8569		-23	1.57
X2	63	9.1169	5.2460	12.8462		-31	1.56
A2	63	9.1105	5.2521	12.8189		-22	1.37
X4	12	5.2422	9.1015	12.8323	β=90.0220°	-28	1.30, 1.54
A4	38	12.8135	9.1030	5.2444		-24	1.29, 1.36
in-AFM1	63	9.0833	5.1917	12.7655		-1.5	0.55
in-AFM2	63	9.0572	5.1995	12.7896		-0.6	0.54
in-AFM3			goes to th	e NM state			
in-AFM4	63	9.0748	5.2260	12.7770		-5.7	1.00
in-AFM5	63	9.0598	5.2282	12.8228		-29	1.06
in-AFM6	63	9.1202	5.2123	12.7778		-29	1.06

Table SVI. Calculated energy and corresponding structural and magnetic information for $(Mn_{2/3}Sc_{1/3})_2GaC$ when considering different spin configurations. Relaxation performed using the PBE exchange-correlation functional with +U method, where $U_{eff} = 1 \text{ eV}$.

Spin configuration	Space group	a (Å)	b (Å)	c (Å)	Notes	$\Delta E_{\rm NM}$ (meV/atom)	magnetic moment $(\mu_B / Mn atom)$
NM	63	8.9848	5.1348	12.5553		0	0.00
FM	63	9.1086	5.2834	12.7238		-25	2.16
AFM1	63	9.0510	5.1932	12.7282		-39	1.90
X2	63	9.0618	5.2280	12.7330		-31	2.07
A2	63	9.1072	5.2792	12.6762		-26	2.31
X4	12	5.2438	9.0707	12.6985	90.2385	-28	2.05, 2.21
A4	38	12.6983	9.1109	5.2807		-26	2.34, 2.40
in-AFM1	63	9.0407	5.1684	12.6277		-4.2	1.27
in-AFM2	63	8.9809	5.2704	12.8601		-25	2.24
in-AFM3	63	9.1208	5.1892	12.7721		-22	2.10
in-AFM4	63	8.9605	5.2779	12.8983		-2.8	2.29
in-AFM5	63	9.0087	5.2494	12.7079		-15	1.92
in-AFM6	63	9.0231	5.2354	12.6943		-16	1.84

Figure S2. Schematic representation of the Cr_2GaC MAX phase and $(Cr_{2/3}Sc_{1/3})_2GaC$ *i*-MAX phase when viewed along a) [100], b) [010] and c) [110] zone axis. The primary structural difference between the MAX phase and the *i*-MAX phase is the in-plane chemical order within the *M*-layer,

to allow formation of a honeycomb pattern where the larger elements approach the A-layer. The A-layer, in turn, change its structure into Kagomé-like ordering, altogether resulting in an orthorhombic crystal structure of space group *Cmcm* for the herein reported phases. Based on previously reported theoretical analysis of structure, bonding, and related stability, we suggest that the formation of *i*-MAX is favored for increasing size difference between the two metals, and with decreasing size of the A-element.

Figure S3. Selected area electron diffraction (SAED) of $(Cr_{2/3}Sc_{1/3})_2$ GaC along the [100] (a) and [110] (b) zone axis, and of $(Mn_{2/3}Sc_{1/3})_2$ GaC along the [100] (c) and [110] (d) zone axis.

Figure S4. Rietveld refinement of XRD data for the $(Cr_{2/3}Sc_{1/3})_2GaC$ sample.

Figure S5. Rietveld refinement of XRD data for the $(Mn_{2/3}Sc_{1/3})_2GaC$ sample.

Space group	<i>Cmcm</i> (#63)	<i>Cmcm</i> (#63)
System	Cr-Sc-Ga-C	Mn-Sc-Ga-C
χ^2	13.0	10.1
a (Å)	9.05649(34)	8.99827(60)
b (Å)	5.21497(20)	5.19006(36)
c (Å)	12.76932(40)	12.62758(46)
	$\alpha = \beta$	$=\gamma = 90^{\circ}$
M^1	Cr, 16h	Mn, 16h
	0.8364(2)	0.8364(14)
	0.3269(17)	0.3251(30)
	0.5771(3)	0.5761(4)
Sc	8f	8f
	0.0000	0.0000
	0.1671(23)	0.1815(31)
	0.3914(5)	0.3910(5)
Ga	4c	4c
	0.0000	0.0000
	0.6799(16)	0.6762(18)
	0.2500	0.2500
	8g	8g
	0.7655(5)	0.76362(9)
	0.4071(11)	0.43975(13)
	0.2500	0.2500
С	8e	8e
	0.8410(30)	0.8590(32)
	0.0000	0.0000
	0.0000	0.0000
	4b	4b
	0.0000	0.0000
	0.5000	0.5000
	0.0000	0.0000
	0.0000	0.0000

Table SVII. Cell parameters and atom coordinates obtained from XRD Rietveld refinement at RT. Upon attempted change in occupancy (from 1.0) as well as Cr/Mn intermixing, there was no improvement in the refinement.

System	Composition								
Cr-Sc-Ga-C	(Cr _{2/3} Sc _{1/3}) ₂ GaC 86.8%	Cr ₂ GaC 6.1%	Sc 4.	Sc ₂ O ₃ 4.1%					
Mn-Sc-Ga-C	$\frac{(Mn_{2/3}Sc_{1/3})_2GaC}{61.4\%}$	C (graphite) 25.1%	Sc ₂ OC 6.8%	Mn ₃ GaC 3.2%	Ga ₃ Sc 3.5%				

Table SVIII. Phase purity obtained from Rietveld refinement in wt.%