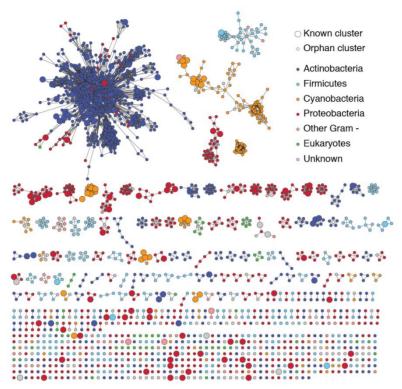

Evolution and Diversity of Assembly-Line Polyketide Synthases


Aleksandra Nivina^{a,b}, Kai P. Yuet^{a,b}, Jake Hsu^{b,c}, and Chaitan Khosla^{a,b,c,*}

^aDepartment of Chemistry, ^bStanford ChEM-H, ^cDepartment of Chemical Engineering Stanford University, Stanford, CA 94305, USA *Corresponding author, khosla@stanford.edu

Supplementary information

Supplementary Figure S1. Schematic representation of phylogenetic relationships between KS domains from different types of FASs and PKSs, as inferred by Bayesian statistics. Adapted from Jenke-Kodama *et al.* 2005¹ and Jenke-Kodama *et al.* 2009.²

Supplementary Figure S2. Network of 3,551 distinct assembly-line PKS clusters, visualized by Cytoscape 3.7.2³. Nodes correspond to known clusters (larger circles) and "orphans" (smaller circles), color coded according to the phylum of their host (graphical legend). Edges represent >50% sequence similarity between two clusters, calculated as described in ⁴.

The catalog, the dendrogram and the network file are available online: http://web.stanford.edu/group/orphan_pks/

The code used in this work is available on GitHub: https://github.com/aleksnivina/Orphan_PKS_catalog

- Jenke-Kodama, H.; Sandmann, A.; Müller, R.; Dittmann, E. Evolutionary Implications of Bacterial Polyketide Synthases. *Mol. Biol. Evol.* 2005, *22*, 2027– 2039.
- (2) Jenke-Kodama, H.; Dittmann, E. Evolution of Metabolic Diversity: Insights From Microbial Polyketide Synthases. *Phytochemistry* **2009**, *70*, 1858–1866.
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a Software Environment for Integrated Models of Biomolecular Interaction Networks. *Genome Res.* 2003, 13, 2498–2504.
- (4) O'Brien, R. V.; Davis, R. W.; Khosla, C.; Hillenmeyer, M. E. Computational Identification and Analysis of Orphan Assembly-Line Polyketide Synthases. *J. Antibiot.* **2014**, *67*, 89–97.