Electronic Supplementary Information

Ionic Liquid Functionalized 3D Mesoporous FDU-12 for Effective SO₂ Capture

Shuaiqi Gao, Pengling Zhang*, Zhenzhen Wang, Guokai Cui, Jikuan Qiu, and

Jianji Wang*

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China E-mail: <u>zhangpengling@htu.edu.cn</u> (P. Zhang), <u>jwang@htu.cn</u> (J. Wang).

Number of pages: 12 Number of Figures: 12 Number of Tables: 4

Table of Contents

1. ¹ H NMR data of the IL		
2. Scheme S1. Schematic illum	ination of the IL grafting	S3
3. Tables S1-S4		
Table S1. The properties of por	cosity for neat FDU-12 samples synthesized at diffe	erent
temperatures		S3
Table S2. Elemental analysis re	esults for the IL@FDU-12-1 samples prepared at d	ifferent IL
loadings		S4
Table S3. The properties of por	cosity and SO ₂ adsorption capacity for IL@FDU-12	2-1, IL@FDU-
12-2, IL@FDU-12	2-3 and IL@FDU-12-4 samples synthesized at	
<i>R</i> =1.5		S4
Table S4. The effect of water c	ontent on SO ₂ capture by IL@FDU-12-1 sample p	repared at
<i>R</i> =1.5		S5
4. Figures S1-S12		
Figure S1. N_2 absorption isothe	erms (A) and BJH pore size distribution (B) for nea	ıt FDU-12
samples	· · · · · · · · · · · · · · · · · · ·	S6
Figure S2. SAXS patterns for n	eat FDU-12 samples with different pore sizes	S7
Figure S3. The stability of mes	oporous structure of FDU-12-1 sample	S7
Figure S4. TEM image of the n	eat FDU-12-1 sample	S8
Figure S5. SEM images and the	e corresponding EDS elemental mapping images of	f the IL-FDU-
12-1 sample prepare	ed at <i>R</i> =1.5	S8
Figure S6. The effect of the gra	afted IL content on SO ₂ absorption capacity	S9
Figure S7. SAXS patterns of th	the IL@FDU-12 samples prepared at $R = 1.5$	S9
Figure S8. N ₂ adsorption isothe	erms (A) and pore size distribution (B) of the IL@F	FDU-12
samples prepared at	<i>R</i> =1.5	S10
Figure S9. The effect of partial	pressure on SO ₂ adsorption capacity	S10
Figure S10. FT-IR spectrum of	FDU-12-1 and IL@FDU-12-1 synthesized at $R = 1$.5 before and
after capture of SC)2	S11
Figure S11. FT-IR spectrum of	`neat IL before and after capture of SO ₂	S11
Figure S12. CO ₂ uptake by IL@	\hat{y} -FDU-12-1 synthesized at $R = 1.5$	S12

¹H NMR data of the IL

[C₆Mim][Tetz]: ¹H NMR (D₂O): 0.75 (t, 3H, NC₅H₁₀CH₃), 1.16 (m, 6H, NC₂H₄(CH₂) 3), 1.74 (m, 2H, NCH₂CH₂), 3.76 (s, 3H, NCH₃), 4.02 (m, 2H, NCH₂), 7.29 (t, 1H, Im C5), 7.33(t, 1H, Im C4), 8.47 (s, 1H, Tetz C2), 8.55 (s, 1H, Im C2) ppm.

Scheme S1. Schematic illumination of the IL grafting.

Table S1. The properties of porosity for neat FDU-12 samples synthesized at different temperatures ^a

comple	т/∘С	S _{BET} /	V_t	D _c /	D _w /
sample	1/°C	m²/g	cm ³ /g	nm	nm
FDU-12-1	14	651	0.74	17.5	3.8
FDU-12-2	20	741	0.69	12.3	3.8
FDU-12-3	25	602	0.65	12.5	3.8
FDU-12-4	35	630	0.68	7.8	3.8

^a S_{BET} , BET specific surface area; V_t , single-point pore volume; D_c , cage size calculated from the adsorption branch; D_{w} , entrance size calculated from the desorption branch.

sample	N (wt %) ^b	C (wt %) ^b	Grafted IL content ^c (mmol/g)
R = 0.5	1.91	3.97	0.23
R = 1.0	2.76	6.26	0.33
<i>R</i> = 1.5	3.39	6.00	0.40
R = 3.0	4.37	8.35	0.52
R = 3.5	4.42	7.46	0.53
R = 4.0	1.25	4.04	0.15

Table S2. Elemental analysis results for the IL@FDU-12-1samples prepared at different IL loadings ^a

^a *R* stands for the mass ratio of IL to FDU-12-1; ^b obtained from elemental analysis,

^c calculated from N content.

Table S3. The properties of porosity and SO2 adsorption capacity forIL@FDU-12-1, IL@FDU-12-2, IL@FDU-12-3 and IL@FDU-12-4 samples synthesized at R = 1.5

sample	$\frac{S_{BET/^a}}{m^2/g}$	V _t / ^b cm ³ /g	D _c /c nm	D _w /d nm	SO ₂ uptake ^e (mmol/g)
IL@FDU-12-1	415	0.62	17.5	3.8	7.21
IL@FDU-12-2	332	0.41	12.3	3.8	6.49
IL@FDU-12-3	351	0.52	12.5	3.8	6.52
IL@FDU-12-4	391	0.51	7.8	3.8	6.11

^a S_{BET}, BET specific surface area; ^b V_t, single-point pore volume; ^cD_c, cage size calculated from the adsorption branch; ^d D_w, entrance size calculated from the desorption branch; ^e SO₂ adsorption capacity at 25°C and 1 bar.

adsorbant	water loading ^b	dry SO ₂	wet SO ₂ ^c		
adsorbent	mmol/g	mmol/g	mmol/g		
FDU-12-1	1.73	5.01	5.21		
IL@FDU-12-1	4.86	7.22	7.32		

Table S4. The effect of water content on SO₂ capacity by IL@FDU-12-1 sample prepared at R = 1.5 ^a

^a Performed at 25 °C and 1 bar for 90 min. ^b Relative humidity is 100%. ^c Does not include mass of loaded water.

Figure S1. N₂ absorption isotherms (A) and BJH pore size distribution (B) for neat FDU-12 samples: (a) FDU-12-1, (b) FDU-12-2, (c) FDU-12-3, (d) FDU-12-4.

Figure S2. SAXS patterns for the neat FDU-12 samples with different pore sizes: (a) FDU-12-1, (b) FDU-12-2, (c) FDU-12-3, (d) FDU-12-4.

Figure S3. The stability of mesoporous structure of FDU-12-1 sample: (a) mass ratio of IL to FDU-12-1= 20 : 1, (b) mass ratio of IL : FDU-12-1 : NaOH= 20 : 1 : 2.

Figure S4. TEM image of the neat FDU-12-1 sample.

Figure S5. SEM images and the corresponding EDS elemental mapping images of the IL-FDU-12-1 sample prepared at R = 1.5.

Figure S6. The effect of grafted IL content on SO₂ absorption capacity: -**-**-, no grafting; -**-**-, 0.23 mmol/g; -**A**-, 0.33 mmol/g; -**V**-, 0.40 mmol/g; -*****-, 0.52 mmol/g; -**•**-, 0.53 mmol/g; -**-**-, 0.15 mmol/g.

Figure S7. SAXS patterns of the IL@FDU-12 samples prepared at R = 1.5: (a), IL@FDU-12-1; (b), IL@FDU-12-2; (c), IL@FDU-12-3; (d), IL@FDU-12-4.

Figure S8. N₂ adsorption isotherms (A) and pore size distribution (B) of the IL@FDU-12 samples prepared at R = 1.5: (a), IL@FDU-12-1; (b), IL@FDU-12-2; (c), IL@FDU-12-3; (d), IL@FDU-12-4.

Figure S9. The effect of partial pressure on SO₂ adsorption capacity by neat FDU-12-1 and the IL@-FDU-12-1 synthesized at R = 1.5: -•-, neat FDU-12-1/0.1 bar SO2; - \blacktriangle -, IL@-FDU-12-1/0.1 bar SO₂; - \blacksquare -, IL@-FDU-12-1/1.0 bar SO₂.

Figure S10. FT-IR spectra of FDU-12-1 and IL@FDU-12-1 synthesized at R = 1.5 before and after capture of SO_{2.}

Figure S11. FT-IR spectra of the neat IL before and after capture of SO₂.

Figure S12. CO₂ uptake at 25 °C and 1 bar as a function of absorption time by IL@-FDU-12-1 synthesized at R = 1.5: -**•**-, neat FDU-12-1 and -•-, IL@-FDU-12-1.