Supporting Information

The Hibonite Blue: A New Class of Intense Inorganic Blue Colorants

Brett A. Duell, Jun Li, M. A. Subramanian*

Department of Chemistry, Oregon State University, Corvallis, OR 97331

L*a*b* Color Space

Visible diffuse reflectance measurements were converted to CIEL*a*b* color space coordinates using a Konica Minolta CM-700d Spectrophotometer and the SpectraMagic NX program. The L*, or brightness coordinate is measured against black and white calibration standards, while the a* and b* values are converted directly from the diffuse reflectance spectrum. The a* value is measure of the "greenness" to "redness" of a material from negative to positive values, respectively. Likewise, the b* value is a measure of the "blueness" to "yellowness" of a material. This is shown in SI figure 1.

Figure S1. CIEL*a*b* coordinate space.

Determination of cobalt oxidation state

The magnetic susceptibility of CaAl₁₁Co_{0.5}Ti_{0.5}O₁₉ and CaAl₁₀CoTiO₁₉ was measured using a Quantum Design Model 6000 Physical Properties Measurement System in a constant 0.5 T field from 5 – 300 K (SI fig. 2(a)). The data was then fit to the Curie-Weiss Law in the region of 150 – 300 K. The resultant magnetic moments are higher than the expected spin-only values for a high-spin d^7 electron configuration. However, Co²⁺ commonly has much higher measured magnetic moments due to *L+S* coupling resulting in moments ranging from 4.2 to 5.2 µ_B. The magnetic moments of CaAl₁₁Co_{0.5}Ti_{0.5}O₁₉ and CaAl₁₀CoTiO₁₉ fit within the framework of *L+S* coupled high spin Co²⁺.

Figure S2. Magnetic susceptibility of CaAl₁₁Co_{0.5}Ti_{0.5}O₁₉ and CaAl₁₀CoTiO₁₉.

Table 1. Calculated magnetic moments of and theoretical spin-only magnetic moments for high spin Co^{2+}

Composition	Mag. Moment (th) (μ_B)	Mag. Moment (obs) (μ_B)
CaAl ₁₀ CoTiO ₁₉	3.87	4.39
CaAl ₁₁ Co _{0.5} Ti _{0.5} O ₁₉	3.87	4.09

Site	Х	у	Z	Occ.
Са	1/3	2/3	3/4	1
<i>M</i> 1 (Al ³⁺)	0	0	0	1
<i>M</i> 2 (Al ³⁺)	0	0	0.2622(2)	0.370(6)
<i>M</i> 2 (Co ²⁺)	0	0	0.2622(2)	0.084(1)
<i>M</i> 2 (Ti ⁴⁺)	0	0	0.2622(2)	0.046(5)
<i>M</i> 3 (Al ³⁺)	1/3	2/3	0.0268(2)	0.74(2)
<i>M</i> 3 (Co ²⁺)	1/3	2/3	0.0268(2)	0.26(2)
<i>M</i> 4 (Al ³⁺)	1/3	2/3	0.1886(2)	0.753(4)
<i>M</i> 4 (Ti ⁴⁺)	1/3	2/3	0.1886(2)	0.247(4)
<i>M</i> 5 (Al ³⁺)	0.1676(2)	0.3353(4)	0.89206(6)	0.981(2)
<i>M</i> 5 (Ti ⁴⁺)	0.1676(2)	0.3353(4)	0.89206(6)	0.019(2)
<i>M</i> 5 (Co ⁴⁺)	0.1676(2)	0.3353(4)	0.89206(6)	0
01	0	0	0.1500(1)	1
O2	0.33333	0.66667	0.9427(1)	1
O3	0.1811(2)	0.3623(3)	1/4	1
O4	0.1528(1)	0.3055(2)	0.05312(4)	1
05	0.5041(1)	0.0082(2)	0.15009(4)	1

Table S2. Rietveld refinement results of atomic sites of $CaAl_{10.6}Co_{0.7}Ti_{0.7}O_{19}$. Al^{3+} occupancies are not shown for clarity. All *M* sites have an occupancy of 1, except for *M*2, which has a total occupancy of 0.5.

Site	Х	у	Z	Occ.
Са	1/3	2/3	3/4	1
<i>M</i> 1 (Al ³⁺)	0	0	0	1
<i>M</i> 2 (Al ³⁺)	0	0	0.2629(3)	0.366(7)
<i>M</i> 2 (Co ²⁺)	0	0	0.2629(3)	0.087(3)
<i>M</i> 2 (Ti ⁴⁺)	0	0	0.2629(3)	0.042(6)
<i>M</i> 3 (Al ³⁺)	1/3	2/3	0.0269(1)	0.65(4)
<i>M</i> 3 (Co ²⁺)	1/3	2/3	0.0269(1)	0.35(4)
<i>M</i> 4 (Al ³⁺)	1/3	2/3	0.1880(6)	0.605(7)
<i>M</i> 4 (Ti ⁴⁺)	1/3	2/3	0.1880(6)	0.395(7)
<i>M</i> 5 (Al ³⁺)	0.1671(2)	0.3342(4)	0.89246(6)	0.950(8)
<i>M</i> 5 (Ti ⁴⁺)	0.1671(2)	0.3342(4)	0.89246(6)	0.026(4)
<i>M</i> 5 (Co ⁴⁺)	0.1671(2)	0.3342(4)	0.89246(6)	0.024(4)
01	0	0	0.1498(1)	1
O2	0.33333	0.66667	0.9413(1)	1
O3	0.1815(2)	0.3632(4)	1/4	1
O4	0.1514(1)	0.3029(2)	0.05343(5)	1
05	0.5046(1)	0.0092(2)	0.15005(4)	1

Table S3. Rietveld refinement results of atomic sites of $CaAl_{10}CoTiO_{19}$. Al^{3+} occupancies are not shown for clarity. All *M* sites have an occupancy of 1, except for *M*2, which has a total occupancy of 0.5.

Figure S3. X-ray diffraction patterns of CaAl_{12-2x}Co_xTi_xO₁₉.

Figure S4. Rietveld refinement model and data of CaAl_{10.6}Co_{0.7}Ti_{0.7}O₁₉.