Supporting Information for

Cooperativity in Bimetallic SACs: An Efficient Strategy for Designing Bifunctional Catalysts for Overall Water Splitting

Afshan Mohajeri^{*} and Nasimeh Lari Dashti

Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran E-mail: <u>amohajeri@shirazu.ac.ir</u>, Phone: +98 71 36137161

Content:

Calculation details for OER and HER

Table S1. Cohesive Energy (eV) and Electronegativity of Transition Metals from 3d Atoms.

Table S2. Adsorption Energies, Structural Parameters, and Spin Multiplicity for Different Orientation of Adsorbate (X=O, OH, and OOH) on TM/B₃₆ Systems.

Table S3. Gibbs Free Energy for the Adsorption of OER Intermediates on Pristine and Doped
 B₃₆.

Table S4. Previous Reports of Overpotentials for OER and Gibbs Free energy for HER on Some

 Catalysts.

Table S5. Gibbs Free Energy for the Adsorption of HER Intermediates on Pristine and Doped B₃₆.

Table S6. Adsorption Energies, Structural Parameters, and Spin Multiplicity for Different Orientation of Adsorbate (X=O, OH, OOH, and H) on FeTM2/B₃₈ Systems.

Table S7. Gibbs Free Energy for the Adsorption of OER Intermediates on Bimetal Doped B₃₈.

Table S8. Gibbs Free Energy for the Adsorption of HER Intermediates Bimetal Doped B_{38.}

Figure S1. Reaction free energy profile for OER at zero potential ($\phi = 0$) for TM/B₃₆ systems.

Figure S2. Reaction free energy profile for OER at zero potential (ϕ = 0) for FeTM2/B₃₈ systems.

Figure S3. The structures of OER intermediates together with their spin multiplicity (M) for TM/B₃₆ systems.

Figure S4. The structures of OER intermediates together with their spin multiplicity (M) for $FeTM2/B_{38}$ systems.

REFERENCES

Calculation details for OER and HER

The Gibbs reaction free energy for the adsorption of the intermediate are expressed as

 $\Delta G_{*OH} = (G+ZPE)_{*OH} - (G+ZPE)_{*} - (G+ZPE)_{H2O} + 1/2 (G+ZPE)_{H2}$ $\Delta G_{*O} = (G+ZPE)_{*O} - (G+ZPE)_{*} - (G+ZPE)_{H2O} + (G+ZPE)_{H2}$ $\Delta G_{*OOH} = (G+ZPE)_{*OOH} - (G+ZPE)_{*} - 2(G+ZPE)_{H2O} + 3/2 (G+ZPE)_{H2}$

The value of ΔG_i for reactions 2-5 in the manuscript text can be calculated by

 $\Delta G_1 = E_{*OH} - E_* - E_{H2O} + 1/2 E_{H2} + \Delta ZPE - T\Delta S - e\phi$

 $\Delta G_2 = E_{*O} - E_{*OH} + 1/2 E_{H2} + \Delta ZPE - T\Delta S - e\phi$

 $\Delta G_3 = E_{*OOH} - E_{*O} - E_{H2O} + 1/2 E_{H2} + \Delta ZPE - T\Delta S - e\phi$

 $\Delta G_4 = E_* - E_{*OOH} + 2E_{H2O} + 3/2 E_{H2} + 4.92 + \Delta ZPE - T\Delta S - e\phi$

E _{Cohesive} (eV)	Electronegativity
3.90	1.30
4.85	1.54
5.31	1.63
4.10	1.66
2.92	1.55
4.28	1.83
4.39	1.88
4.44	1.91
3.49	1.90
1.35	1.60
	Ecohesive (eV) 3.90 4.85 5.31 4.10 2.92 4.28 4.39 4.44 3.49 1.35

Table S1. Cohesive Energy (eV) and Electronegativity of Transition Metals from 3d Atoms.*

*Cohesive energies are taken from Reference (1)

Table S2. Adsorption Energies, Structural Parameters, and Spin Multiplicity for Different Orientation of Adsorbate (X=O, OH, OOH, and H) on TM/B₃₆ Systems.

TM/B ₃₆ -X	TM-X (Å)	TM-B (Å)	Eads (eV)	Spin Multiplicity
Ti/B ₃₆₋ OH	1.774	2.236	-4.87	2
Ti/B ₃₆₋ OH	1.779	2.240	-3.44	4
Ti/B ₃₆₋ O	1.608	2.315	-8.28	1
Ti/B ₃₆₋ O	1.604	2.336	-8.45	3
Ti/B ₃₆₋ O	1.603	2.352	-7.24	5
Ti/B ₃₆₋ OOH	1.787	2.245	-3.15	2
Ti/B ₃₆₋ OOH	1.791	2.241	-1.73	4
Ti/B ₃₆₋ H	1.739	2.219	-2.21	2
Ti/B ₃₆₋ H	1.767	2.231	-0.87	4
Ti/B ₃₆₋ BH	1.309	2.22	-2.39	2
V/B ₃₆₋ OH	1.708	2.126	-4.89	1
V/B ₃₆₋ OH	2.698	2.145	-4.16	3
V/B ₃₆₋ OH	1.750	2.144	-2.51	5
V/B ₃₆₋ O	1.563	2.171	-9.16	2
V/B ₃₆₋ O	1.578	2.166	-7.48	4
V/B ₃₆₋ O	1.579	2.176	-6.33	6
V/B ₃₆₋ OOH	1.749	2.128	-3.27	1

V/B ₃₆₋ OOH	1.755	2.160	-2.40	3
V/B ₃₆₋ OOH	1.774	2.124	-0.96	5
V/B ₃₆₋ H	1.650	2.118	-2.25	1
V/B ₃₆₋ H	1.713	2.138	-1.51	3
$V/B_{36}-H$	1.703	2.128	-0.05	5
V/B ₃₆₋ BH	1.479	2.080	-1.54	1
Cr/B ₃₆₋ OH	1.796	2.088	-4.14	4
Cr/B ₃₆₋ OH	1.790	2.113	-3.31	6
$Cr/B_{36}-O$	1.530	2.094	-10.04	1
$Cr/B_{36}-O$	1.543	2.096	-8.46	3
$Cr/B_{36}-O$	1.555	2.098	-7.21	5
$Cr/B_{36}-O$	1.561	2.137	-6.09	7
Cr/B ₃₆₋ OOH	1.732	2.093	-2.33	2
Cr/B ₃₆₋ OOH	1.765	2.096	-2.75	4
Cr/B ₃₆₋ OOH	1.780	2.111	-1.57	6
Cr/B ₃₆₋ H	1.604	2.070	-2.25	2
$Cr/B_{36}-H$	1.605	2.120	-2.36	4
Cr/B ₃₆₋ H	1.690	2.339	-2.33	6
Cr/B ₃₆₋ BH	1.688	1.962	-1.99	2
Cr/B ₃₆₋ BH	1.866	2.084	-3.51	4
Cr/B ₃₆₋ BH	1.807	2.073	-2.29	6
Mn/ B ₃₆₋ OH	1.728	2.088	-2.98	3
Mn/ B ₃₆₋ OH	1.785	2.101	-2.57	5
Mn/ B ₃₆₋ OH	1.793	2.139	-1.76	7
Mn B ₃₆₋ O	1.544	2.046	-7.16	2
Mn/ B ₃₆₋ O	1.567	2.043	-5.97	4
Mn/ B ₃₆₋ O	1.573	2.043	-4.62	6
Mn/ B ₃₆₋ O	1.598	2.115	-3.98	8
Mn/ B ₃₆₋ OOH	1.650	2.060	-1.50	1
Mn/ B ₃₆₋ OOH	1.712	2.077	-1.48	3
Mn/ B ₃₆₋ OOH	1.783	2.076	-0.93	5
Mn/ B ₃₆₋ OOH	1.799	2.131	-0.27	7
Mn/ B ₃₆₋ H	1.565	2.047	0.12	1
Mn/ B ₃₆₋ H	1.559	2.057	-1.36	3
Mn/ B ₃₆₋ H	1.614	2.057	-0.90	5
Mn/ B ₃₆₋ H	1.623	2.106	-0.08	7
Mn/ B ₃₆₋ BH	1.562	1.921	-0.77	1
Mn/ B ₃₆₋ BH	1.551	1.934	-1.48	3
Mn/ B ₃₆₋ BH	1.330	1.965	-1.09	5
Fe/ B ₃₆₋ OH	1.722	2.059	-2.62	2
Fe/ B ₃₆₋ OH	1.773	2.088	-3.68	4
Fe/ B ₃₆₋ O	1.575	2.076	-6.25	1
$Fe/B_{36}O$	1.572	2.082	-6.64	3
$Fe/B_{36}O$	1.616	2.036	-5.74	5
$Fe/B_{36}O$	1.617	2.098	-4.84	7
Fe/ B ₃₆₋ OOH	1.694	2.063	-1.50	2
JU - U				

Fe/ B ₃₆₋ OOH	1.771	2.090	-2.12	4
Fe/ B ₃₆₋ H	1.493	2.456	-1.02	2
Fe/ B ₃₆₋ H	1.594	2.061	-2.02	4
Fe/ B ₃₆₋ H	1.596	2.083	-1.08	6
Fe/ B ₃₆₋ BH	1.495	1.945	-1.61	2
Fe/ B ₃₆₋ BH	1.358	1.956	-1.72	4
Co/ B ₃₆₋ OH	1.764	2.071	-2.24	1
Co/ B ₃₆₋ OH	1.772	2.073	-3.41	3
Co/ B ₃₆₋ OH	1.735	2.156	-2.44	5
Co/ B ₃₆₋ O	1.617	2.088	-5.91	2
Co/ B ₃₆₋ O	1.624	2.073	-6.64	4
Co/ B ₃₆₋ O	1.622	2.071	-5.76	6
Co/ B ₃₆₋ OOH	1.744	2.019	-1.03	1
Co/ B ₃₆₋ OOH	1.778	2.033	-1.92	3
Co/ B ₃₆₋ OOH	1.755	2.109	-0.97	5
Co/ B ₃₆₋ H	1.441	1.978	-1.37	1
Co/ B ₃₆₋ H	1.541	2.038	-1.71	3
Co/ B ₃₆₋ H	1.575	2.074	-0.70	5
Co/ B ₃₆₋ BH	1.452	1.881	-1.71	1
Co/ B ₃₆₋ BH	1.314	1.943	-2.04	3
Ni/B ₃₆₋ OH	1.794	2.119	-2.60	2
Ni/B ₃₆₋ OH	1.753	2.170	-1.72	4
Ni/B ₃₆₋ O	1.668	2.134	-4.37	1
Ni/B ₃₆₋ O	1.684	2.116	-5.76	3
Ni/B ₃₆₋ O	1.661	2.122	-4.75	5
Ni/B ₃₆₋ OOH	1.810	2.087	-1.35	2
Ni/B ₃₆₋ OOH	1.752	2.148	-0.32	4
Ni/B ₃₆₋ H	1.484	1.995	-1.30	2
Ni/B ₃₆₋ H	1.542	2.103	0.09	4
Ni/B ₃₆₋ BH	1.281	1.931	-1.59	2
Cu/B_{36} -OH	1.816	2.167	-3.17	1
Cu/B_{36} -OH	1.794	2.198	-1.86	3
Cu/B_{36} -O	1.762	2.135	-4.88	2
Cu/B_{36} -O	1.723	2.217	-5.00	4
Cu/B ₃₆₋ OOH	1.844	2.129	-1.81	1
Cu/B ₃₆₋ OOH	1.875	2.140	-0.97	3
$Cu/B_{36}-H$	1.532	2.132	-2.15	1
Cu/B ₃₆₋ H	1.598	2.131	-0.75	3
$Cu/B_{36}-BH$	1.231	2.088	-2.58	1

System	ΔG _{*OH} (eV)	$\Delta G_{*0}(eV)$	ΔG* _{OOH} (eV)
Pristine B ₃₆	0.55	0.37	4.95
Ti/B ₃₆	-2.12	-0.28	1.18
V/B ₃₆	-1.89	-1.59	1.32
Cr/B ₃₆	-1.36	1.54	2.10
Mn/B ₃₆	-1.39	-0.85	1.76
Fe/B ₃₆	0.06	2.49	3.09
Co/B ₃₆	0.44	1.78	4.13
Ni/B ₃₆	0.33	1.88	3.16
Cu/B ₃₆	2.28	4.83	4.57

Table S3. Gibbs Free Energy for the Adsorption of OER Intermediates on Pristine and DopedB36.

Table S4. Previous Reports of Overpotentials for OER and Gibbs Free energy for HER on SomeCatalysts.

Catalyst	$\eta^{OER}\left(V\right)$	$\Delta G_{^{*}H}$ (eV)	Ref
Transition metal doped boron -β ₁₂	$\begin{array}{l} Ti/\beta_{12}=\!2.12 \\ V/\beta_{12}\!=\!2.16 \\ Mn/\beta_{12}\!=\!1.92 \\ Fe/\beta_{12}\!=\!1.31 \\ Co/\beta_{12}\!=\!0.85 \\ Ni/\beta_{12}\!=\!0.40 \\ Ti/\beta_{12}\!=\!2.12 \\ Ti/\beta_{12}\!=\!2.12 \\ Ti/\beta_{12}\!=\!2.12 \\ Ti/\beta_{12}\!=\!2.12 \end{array}$	Ni/β12=0.06 and 0.20	(2)
Pd-Co@CN	Pd-Co@CN = 1.00	Site1=0.08 Site2=0.02 Site6= 1.06	(3)
Transition metal doped- BH(borophene hydride)	Cr-BH= 1.77 Mn-BH= 1.09 Fe-BH= 0.55 Co-BH= 0.37 Ni-BH= 0.74		(4)

	Cu-BH = 0.70		
	$R_{\rm H}-BH=1.02$		
	Rh-BH= 0.24		
	Ag-BH=0.98		
	6	Cu/MoP=0.17	
		Cr/MoP=0.14	
		Mn/MoP=0.00	
Transition metal doped on		W/MoP=-0.03	(5)
MoP		Fe/MoP=-0.06	
		Ni/MoP=-0.07	
		N/MoP=-0.08	
		Co/MoP=-0.09	
		S/MoP= -0.17	
		Nb/LNS=1.25	
Transition metal doped on		V/LNS=0.75	
Single layer TiO ₂		Cr/LNS=0.03	
nanosheet		Mn/LNS=-0.03	(6)
		Fe/LNS=1.00	
		Ni/LNS=-1.15	
		Co/LNS=-1.50	
		Cu/LNS=-1.70	
		Zn/LNS=-2.7	
	Pure $Fe_2O_3=0.71$		(7)
Pt@Fe ₂ O ₃	$Pt@Fe_2O_3-site1=1.77$		(7)
	Pt@Fe2O3-Site2=1.72		
	Pure $Ti(OH)_3$ -O- $Ti(OH)_3 = 3.53$		
	TiO ₂ anatase(001)=1.31		
	Co-TiO ₂ anatase(100)=0.32		
	Co@TiO2NC(nanocrystaline)=0.43		
	$Ti@Ti(OH)_3-O-Ti(OH)_3 = 3.50$		
Transition metal doned on	$V@Ti(OH)_3-O-Ti(OH)_3 = 3.48$		
TiO, surfaces	$Cr@Ti(OH)_3-O-Ti(OH)_3 = 0.56$		
110 ₂ surfaces	$Mn@Ti(OH)_3-O-Ti(OH)_3 = 1.17$		(8)
	$Fe@Ti(OH)_3-O-Ti(OH)_3 = 0.78$		
	$Co@Ti(OH)_3-O-Ti(OH)_3 = 1.15$		

	$Ni@Ti(OH)_3-O-Ti(OH)_3 = 1.30$		
	$V@Ti(OH)_2-O_2-Ti(OH)_2 = 3.53$		
	$Cr@Ti(OH)_2-O_2-Ti(OH)_2 = 3.40$		
	$Mn@Ti(OH)_2-O_2-Ti(OH)_2 = 0.53$		
	$Fe@Ti(OH)_2-O_2-Ti(OH)_2 = 0.55$		
	Ni@Ti(OH) ₂ -O ₂ -Ti(OH) ₂ = 0.48		
	Co@Ti@Ti(OH) ₂ -O ₂ -Ti(OH) ₂ =0.4		
C ₃ N ₄ quantume dots and g-C ₃ N ₄ Nanosheets		CNQDs=-0.85 CNQDs@G=1.17 CNNSs=-0.53 CNNSs@G=-0.10	(9)
Metal free boron sheet		α- sheet site1= 0.03 site2=-0.61 β- sheet site1=0.11 site2=0.95 site3=0.02 β12-Ag(111) site1=0.08 site2=-0.22 site3=0.1 β12-Cu(111) site1=-0.28 site2=-0.82 site3=-0.31	(10)
	Fe@CdS NT= 1.03 Co@CdS NT=0.64 Ni@CdS NT=1.06 Cu@CdS NT=1.39 Ru@CdS NT=2.12	Fe@CdS NT= -0.88 Co@CdS NT=-0.42 Ni@CdS NT=-0.28 Cu@CdS NT=0.36 Ru@CdS NT=0.19	
	Rh@CdS NT=1.03 Pd@CdS NT=0.53 Ag@CdS NT=1.09	Rh@CdS NT=0.36 Pd@CdS NT=-0.50 Ag@CdS NT=0.52	(11)

Os@CdS NT=2.24	Os@CdS NT=-0.34
Ir@CdS NT=1.66	Ir@CdS NT=-0.56
Pt@CdS NT=0.66	Pt@CdS NT=-0.36
Au@CdS NT=0.76	Au@CdS NT=0.52
Bulk CdS=1.65	Bulk CdS=1.20
CdS NT=1.55	CdS NT=1.60
Sc@GDY=1.68	Sc@GDY=0.39
Ti@GDY =1.92	Ti@GDY = -0.10
V@GDY=2.22	V@GDY=0.08
Cr@GDY=1.80	Cr@GDY=0.38
Mn@GDY= 1.81	Mn@GDY = 0.62 (12)
Fe@GDY=1.66	Fe@GDY=0.22
Co@GDY=0.84	Co@GDY=0.22
Ni@GDY=0.29	Ni@GDY= 1.02
Cu@GDY=0.92	Cu@GDY=0.24
Pt@GDY =0.46	Pt@GDY =0.73
	$\begin{array}{c} \text{Os} @ \text{CdS} \ \text{NT}=2.24 \\ \text{Ir} @ \text{CdS} \ \text{NT}=1.66 \\ \text{Pt} @ \text{CdS} \ \text{NT}=0.66 \\ \text{Au} @ \text{CdS} \ \text{NT}=0.76 \\ \text{Bulk} \ \text{CdS}=1.65 \\ \text{CdS} \ \text{NT}=1.55 \\ \end{array}$

Table S5. Gibbs Free Energy for the Adsorption of HER Intermediates on Pristine and Doped B₃₆.

System	ΔG_{*H} (TM- reaction site)	ΔG_{*H} (Boron-reaction site)
Pristine B ₃₆	-	2.00
Ti/B ₃₆	0.12	0.28
V/B ₃₆	0.41	1.07
Cr/B ₃₆	-0.17	0.20
Mn/B ₃₆	0.60	0.53
Fe/B ₃₆	1.37	1.05
Co/B ₃₆	1.24	0.85
Ni/B ₃₆	1.17	1.01
Cu/B ₃₆	0.69	0.26

	$TM2 \mathbf{V}(\mathbf{\hat{\lambda}})$	$TM2 D(\mathring{A})$	\mathbf{E} (aV)	Spin
	1 M2-A (A)	Т МІ2-В (А)	$E_{ads}(ev)$	Multiplicity
FeCr/B ₃₈₋ OH(Fe)	1.732	2.053	-1.48	2
FeCr/B ₃₈₋ OH(Fe)	1.768	2.109	-3.69	4
FeCr/B ₃₈₋ OH(Fe)	1.758	2.112	-3.47	6
FeCr/B ₃₈₋ OH(Fe)	1.775	2.154	-3.68	8
FeCr/B ₃₈₋ O(Fe)	1.556	2.062	-5.18	1
FeCr/B ₃₈₋ O(Fe)	1.561	2.072	-6.47	3
FeCr/B ₃₈₋ O(Fe)	1.570	2.076	-6.83	5
FeCr/B ₃₈₋ O(Fe)	1.577	2.106	-6.82	7
FeCr/B ₃₈₋ O(Fe)	1.596	2.099	-6.35	9
FeCr/B ₃₈₋ OOH(Fe)	1.702	2.06	-0.81	2
FeCr/B ₃₈₋ OOH(Fe)	1.724	2.052	-1.62	4
FeCr/B ₃₈₋ OOH(Fe)	1.760	2.112	-2.09	6
FeCr/B ₃₈₋ OOH(Fe)	1.765	2.118	-2.06	8
FeCr/B ₃₈₋ OH(Cr)	1.715	2.048	-2.35	2
FeCr/B ₃₈₋ OH(Cr)	1.729	2.111	-4.04	4
FeCr/B ₃₈₋ OH(Cr)	1.717	2.071	-4.17	6
FeCr/B ₃₈₋ OH(Cr)	1.712	2.075	-3.05	8
FeCr/B ₃₈₋ O(Cr)	1.536	2.011	-5.32	1
FeCr/B ₃₈₋ O(Cr)	1.543	2.11	-6.52	3
FeCr/B ₃₈₋ O(Cr)	1.546	2.083	-6.78	5
FeCr/B ₃₈₋ O(Cr)	1.556	2.09	-8.46	7
FeCr/B ₃₈₋ O(Cr)	1.572	2.159	-8.71	9
FeCr/B ₃₈₋ OOH(Cr)	1.720	2.055	-0.62	2
FeCr/B ₃₈₋ OOH(Cr)	1.719	2.062	-1.76	4
FeCr/B ₃₈₋ OOH(Cr)	1.715	2.068	-2.62	6
FeCr/B ₃₈₋ OOH(Cr)	1.726	2.052	-1.39	8
FeCr/B ₃₈₋ H(Fe)	1.509	2.022	-1.10	2
FeCr/B ₃₈₋ H(Fe)	1.584	2.048	-1.39	4
FeCr/B ₃₈₋ H(Fe)	1.605	2.099	-2.04	6
FeCr/B ₃₈₋ H(Fe)	1.612	2.138	-1.98	8
FeCr/B ₃₈₋ H(Cr)	1.625	2.002	-0.29	2

Table S6. Adsorption Energies, Structural Parameters, and Spin Multiplicity for Different Orientation of Adsorbate (X=O, OH, OOH, and H) on FeTM2/B₃₈ Systems.

FeCr/B ₃₈₋ H(Cr)	1.630	2.013	-1.12	4
FeCr/B ₃₈₋ H(Cr)	1.638	2.009	-1.86	6
FeCr/B ₃₈₋ H(Cr)	1.630	2.011	-1.01	8
FeCr/B ₃₈₋ B1H	1.597	1.903	-1.16	2
FeCr/B ₃₈₋ B1H	1.633	1.922	-1.39	4
FeCr/B ₃₈₋ B1H	1.816	1.278	-1.48	6
FeCr/B ₃₈₋ B1H	1.964	2.007	-2.05	8
FeCr/B ₃₈₋ B2H	1.511	2.002	-2.12	2
FeCr/B ₃₈₋ B2H	1.501	2.043	-2.15	4
FeCr/B ₃₈₋ B2H	1.506	2.001	-2.08	6
FeCr/B ₃₈₋ B2H	1.423	2.063	-2.18	8
FeCr/B ₃₈₋ B3H	1.629	1.971	-2.07	2
FeCr/B ₃₈₋ B3H	1.637	1.965	-2.07	4
FeCr/B ₃₈₋ B3H	1.657	1.972	-2.62	6
FeCr/B ₃₈₋ B3H	1.700	1.977	-2.08	8
FeCo/B ₃₈₋ OH(Fe)	1.730	2.065	-1.58	1
FeCoB ₃₈₋ OH(Fe)	1.747	2.069	-3.60	3
FeCo/B ₃₈₋ OH(Fe)	1.740	2.074	-3.43	5
FeCo/B ₃₈₋ OH(Fe)	1.779	2.102	-3.81	7
FeCo/B ₃₈₋ O(Fe)	1.593	2.119	-5.71	2
FeCo/B ₃₈₋ O(Fe)	1.576	2.095	-6.71	4
FeCo/B ₃₈₋ O(Fe)	1.632	2.081	-6.60	6
FeCo/B ₃₈₋ O(Fe)	1.614	2.086	-6.22	8
FeCo/B ₃₈₋ OOH(Fe)	1.821	2.056	-0.27	1
FeCo/B ₃₈₋ OOH(Fe)	1.727	2.068	-1.88	3
FeCo/B ₃₈₋ OOH(Fe)	1.801	2.112	-2.21	5
FeCo/B ₃₈₋ OOH(Fe)	1.842	2.144	-2.56	7
FeCo/B ₃₈₋ OH(Co)	1.779	1.956	-1.91	1
FeCo/B ₃₈₋ OH(Co)	1.775	1.986	-2.64	3
FeCo/B ₃₈₋ OH(Co)	1.776	2.006	-3.01	5
FeCo/B ₃₈₋ OH(Co)	1.747	2.061	-3.73	7
FeCo/B ₃₈₋ O(Co)	1.958	1.974	-7.59	2
FeCo/B ₃₈₋ O(Co)	1.849	2.040	-7.18	4
FeCo/B ₃₈₋ O(Co)	1.618	2.044	-6.39	6
FeCo/B ₃₈₋ O(Co)	1.599	2.060	-6.08	8
FeCo/B ₃₈₋ OOH(Co)	1.778	1.948	-0.44	1

FeCo/B ₃₈₋ OOH(Co)	1.770	2.002	-1.04	3
FeCo/B ₃₈₋ OOH(Co)	1.803	2.037	-1.91	5
FeCo/B ₃₈₋ OOH(Co)	1.848	2.054	-2.38	7
FeCo/B ₃₈₋ H(Fe)	1.522	2.035	-0.51	1
FeCo/B ₃₈₋ H(Fe)	1.516	2.040	-1.72	3
FeCo/B ₃₈₋ H(Fe)	1.530	2.058	-1.84	5
FeCo/B ₃₈₋ H(Fe)	1.593	2.087	-2.14	7
FeCo/B ₃₈₋ H(Co)	1.508	1.968	-0.39	1
FeCo/B ₃₈₋ H(Co)	1.538	1.964	-1.23	3
FeCo/B ₃₈₋ H(Co)	1.498	1.992	-1.97	5
FeCo/B ₃₈₋ H(Co)	1.528	2.003	-2.06	7
FeCo/B ₃₈₋ B1H	1.547	1.925	-0.40	1
FeCo/B ₃₈₋ B1H	1.609	1.947	-1.83	3
FeCo/B ₃₈₋ B1H	1.601	1.984	-1.83	5
FeCo/B ₃₈₋ B1H	1.728	1.996	-1.12	7
FeCo/B ₃₈₋ B2H	1.795	1.941	-0.41	1
FeCo/B ₃₈₋ B2H	1.575	1.965	-1.74	3
FeCo/B ₃₈₋ B2H	1.718	1.952	-1.45	5
FeCo/B ₃₈₋ B2H	1.760	1.967	-1.62	7
FeCo/B ₃₈₋ B3H	1.520	1.923	-1.47	1
FeCo/B ₃₈₋ B3H	1.892	1.975	-1.04	3
FeCo/B ₃₈₋ B3H	1.669	1.981	-2.03	5
FeCo/B ₃₈₋ B3H	1.610	1.986	-1.61	7
FeNi/B ₃₈ -OH(Fe)	1.732	2.072	-2.28	2
FeNi/B ₃₈ -OH(Fe)	1.750	2.117	-3.44	4
FeNi/B ₃₈ -OH(Fe)	1.748	2.119	-3.26	6
FeNi/B ₃₈ -OH(Fe)	1.751	2.132	-3.44	8
FeNi/B ₃₈ -O(Fe)	1.596	2.065	-5.26	1
FeNi/B ₃₈ -O(Fe)	1.643	2.160	-7.70	3
FeNi/B ₃₈ -O(Fe)	1.630	2.095	-7.44	5
FeNi/B ₃₈ -O(Fe)	1.656	2.080	-6.06	7
FeNi/B ₃₈ -O(Fe)	1.708	2.147	-5.96	9
FeNi/B ₃₈ -OOH(Fe)	1.726	2.077	-1.14	2
FeNi/B ₃₈ -OOH(Fe)	1.803	2.112	-1.95	4
FeNi/B ₃₈ -OOH(Fe)	1.798	2.113	-1.88	6
FeNi/B ₃₈ -OOH(Fe)	1.813	2.113	-1.80	8

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
FeNi/BaseOH(Ni) 1.772 2.037 -2.82 6 FeNi/BaseOH(Ni) 1.817 2.066 -3.07 8 FeNi/BaseO(Ni) 1.657 2.002 -6.00 5 FeNi/BaseO(Ni) 1.656 2.021 -5.30 7 FeNi/BaseO(Ni) 1.677 2.077 -6.23 9 FeNi/BaseOOH(Ni) 1.790 1.994 -1.87 4 FeNi/BaseOOH(Ni) 1.780 2.073 -1.90 8 FeNi/BaseOOH(Ni) 1.780 2.073 -1.90 8 FeNi/BaseH(Fe) 1.502 2.044 -1.67 4 FeNi/BaseH(Fe) 1.502 2.044 -1.67 4 FeNi/BaseH(Fe) 1.603 2.121 -1.75 8 FeNi/BaseH(Fe) 1.503 2.001 -1.92 6 FeNi/BaseBiH 1.673 2.003 -1.92 6 FeNi/BaseBiH 2.067 2.063 -1.82 8 FeNi/BaseBiH 1.677 2.063 <	FeNi/B ₃₈ -OH(Ni)	1.778	2.016	-2.78	4
FeNi/Bas-OH(Ni)1.8172.066-3.078FeNi/Bas-O(Ni)1.6572.002-6.005FeNi/Bas-O(Ni)1.6562.021-5.307FeNi/Bas-O(Ni)1.6772.077-6.239FeNi/Bas-O(Ni)1.7901.994-1.874FeNi/Bas-OOH(Ni)1.7002.073-1.908FeNi/Bas-OOH(Ni)1.7002.073-1.908FeNi/Bas-OOH(Ni)1.7002.073-1.908FeNi/Bas-H(Fe)1.5022.044-1.674FeNi/Bas-H(Fe)1.6032.121-1.758FeNi/Bas-H(Fe)1.6032.121-1.758FeNi/Bas-H(Ni)1.5132.011-1.748FeNi/Bas-BH2.0302.007-1.868FeNi/Bas-BH2.0302.007-1.868FeNi/Bas-B2H1.7492.001-1.996FeNi/Bas-B3H1.6471.972-2.216FeNi/Bas-B3H1.6471.972-2.216FeNi/Bas-B3H1.6471.972-2.216FeCu/Bas-OH(Fe)1.7552.158-4.195FeCu/Bas-OH(Fe)1.7472.180-3.977FeCu/Bas-OH(Fe)1.7472.180-3.977FeCu/Bas-OH(Fe)1.7472.180-3.977FeCu/Bas-OH(Fe)1.7472.180-3.977FeCu/Bas-OH(Fe)1.7472.180-3.977FeCu/Bas-OH(Fe	FeNi/B ₃₈ -OH(Ni)	1.772	2.037	-2.82	6
FeNi/Bas-O(Ni)1.6572.002-6.005FeNi/Bas-O(Ni)1.6562.021-5.307FeNi/Bas-O(Ni)1.6772.077-6.239FeNi/Bas-O(Ni)1.7901.994-1.874FeNi/Bas-O(Ni)1.8082.014-2.066FeNi/Bas-O(Ni)1.7802.073-1.908FeNi/Bas-H(Fe)1.5022.044-1.674FeNi/Bas-H(Fe)1.5952.101-2.826FeNi/Bas-H(Fe)1.6032.121-1.758FeNi/Bas-H(Ni)1.5252.009-2.566FeNi/Bas-BH1.6732.003-1.926FeNi/Bas-BH2.0302.007-1.868FeNi/Bas-BH2.0672.063-1.828FeNi/Bas-B2H1.7492.001-1.996FeNi/Bas-B3H1.6471.972-2.216FeNi/Bas-B3H1.6471.972-2.216FeNi/Bas-B3H1.6471.972-2.216FeNi/Bas-B3H1.6471.972-2.216FeNi/Bas-B3H1.6471.972-2.216FeNi/Bas-O(Fe)1.6162.152-6.764FeCu/Bas-O(Fe)1.6162.152-6.764FeCu/Bas-O(Fe)1.6112.176-6.138FeCu/Bas-O(Fe)1.6112.176-6.138FeCu/Bas-O(H(cu)1.8012.116-2.265FeCu/Bas-O(H(cu)1.795 </td <td>FeNi/B₃₈-OH(Ni)</td> <td>1.817</td> <td>2.066</td> <td>-3.07</td> <td>8</td>	FeNi/B ₃₈ -OH(Ni)	1.817	2.066	-3.07	8
FeNi/Base-O(Ni)1.6562.021-5.307FeNi/Base-O(Ni)1.6772.077-6.239FeNi/Base-O(Ni)1.7901.994-1.874FeNi/Base-O(Ni)1.8082.014-2.066FeNi/Base-O(Ni)1.7802.073-1.908FeNi/Base-O(Nii)1.7802.073-1.908FeNi/Base-H(Fe)1.5022.044-1.674FeNi/Base-H(Fe)1.6032.121-1.758FeNi/Base-H(Fe)1.5022.009-2.566FeNi/Base-H(Ni)1.5132.011-1.748FeNi/Base-B1H1.6732.003-1.926FeNi/Base-B1H2.0302.007-1.868FeNi/Base-B1H2.0302.007-1.868FeNi/Base-B2H1.7492.001-1.996FeNi/Base-B3H1.6471.972-2.216FeNi/Base-B3H1.6471.972-2.216FeNi/Base-B3H1.6471.972-2.216FeCu/Base-O(Fe)1.6162.152-6.764FeCu/Base-OH(Fe)1.7772.180-3.977FeCu/Base-OH(Fe)1.7872.220-2.657FeCu/Base-OH(Fe)1.7872.220-2.657FeCu/Base-OH(Fe)1.7872.220-2.657FeCu/Base-OH(Fe)1.7872.220-2.657FeCu/Base-OH(Fe)1.7652.075-6.286 <tr<< td=""><td>FeNi/B₃₈-O(Ni)</td><td>1.657</td><td>2.002</td><td>-6.00</td><td>5</td></tr<<>	FeNi/B ₃₈ -O(Ni)	1.657	2.002	-6.00	5
FeNi/Bas-O(Ni)1.6772.077-6.239FeNi/Bas-OOH(Ni)1.7901.994-1.874FeNi/Bas-OOH(Ni)1.8082.014-2.066FeNi/Bas-OOH(Ni)1.7802.073-1.908FeNi/Bas-H(Fe)1.5022.044-1.674FeNi/Bas-H(Fe)1.5952.101-2.826FeNi/Bas-H(Fe)1.6032.121-1.758FeNi/Bas-H(Fe)1.5132.009-2.566FeNi/Bas-H(Ni)1.5132.011-1.748FeNi/Bas-B1H1.6732.003-1.926FeNi/Bas-B1H2.0302.007-1.868FeNi/Bas-B2H1.7492.001-1.996FeNi/Bas-B3H1.6471.972-2.216FeNi/Bas-B3H1.7001.977-1.918FeCu/Bas-O(Fe)1.6162.152-6.764FeCu/Bas-O(Fe)1.6112.176-6.138FeCu/Bas-O(Fe)1.6112.176-6.138FeCu/Bas-O(Fe)1.6112.176-6.138FeCu/Bas-O(Fe)1.6112.176-6.138FeCu/Bas-O(Fe)1.6112.176-6.138FeCu/Bas-O(Fe)1.6112.176-6.138FeCu/Bas-O(Fe)1.6112.176-6.286FeCu/Bas-O(H(Fe)1.7872.220-2.657FeCu/Bas-O(H(Fe)1.7852.075-6.286FeCu/Bas-O(H(FeNi/B ₃₈ -O(Ni)	1.656	2.021	-5.30	7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FeNi/B ₃₈ -O(Ni)	1.677	2.077	-6.23	9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FeNi/B ₃₈ -OOH(Ni)	1.790	1.994	-1.87	4
FeNi/B38-OOH(Ni)1.7802.073-1.908FeNi/B38-H(Fe)1.5022.044-1.674FeNi/B38-H(Fe)1.5952.101-2.826FeNi/B38-H(Fe)1.6032.121-1.758FeNi/B38-H(Fe)1.6132.009-2.566FeNi/B38-B1H1.5132.011-1.748FeNi/B38-B1H1.6732.003-1.926FeNi/B38-B1H2.0302.007-1.868FeNi/B38-B2H2.0672.063-1.828FeNi/B38-B2H2.0672.063-1.828FeNi/B38-B3H1.6471.972-2.216FeNi/B38-B3H1.6471.972-2.216FeNi/B38-B3H1.6471.977-1.918FeCu/B38-OH(Fe)1.7552.158-4.195FeCu/B38-OH(Fe)1.6162.152-6.764FeCu/B38-O(Fe)1.6162.152-6.764FeCu/B38-O(Fe)1.6112.176-6.138FeCu/B38-O(Fe)1.6112.176-6.138FeCu/B38-O(H(Fe)1.7872.220-2.657FeCu/B38-O(H(Fe)1.7792.103-2.535FeCu/B38-O(H(Fe)1.7702.107-3.007FeCu/B38-O(H(Fe)1.7822.075-6.286FeCu/B38-O(H(Cu)1.8442.076-1.725FeCu/B38-O(Cu)1.7702.114-4.808FeCu/B38-O(H(Cu	FeNi/B ₃₈ -OOH(Ni)	1.808	2.014	-2.06	6
FeNi/Bas-H(Fe)1.5022.044-1.674FeNi/Bas-H(Fe)1.5952.101-2.826FeNi/Bas-H(Fe)1.6032.121-1.758FeNi/Bas-H(Ni)1.5252.009-2.566FeNi/Bas-H(Ni)1.5132.011-1.748FeNi/Bas-B1H1.6732.003-1.926FeNi/Bas-B1H2.0302.007-1.868FeNi/Bas-B2H2.0672.063-1.828FeNi/Bas-B2H2.0672.063-1.828FeNi/Bas-B3H1.6471.972-2.216FeNi/Bas-B3H1.6471.972-2.216FeNi/Bas-B3H1.6471.977-1.918FeCu/Bas-OH(Fe)1.7552.158-4.195FeCu/Bas-OH(Fe)1.6162.152-6.764FeCu/Bas-O(Fe)1.6162.152-6.764FeCu/Bas-O(Fe)1.6112.176-6.138FeCu/Bas-O(Fe)1.6112.176-6.138FeCu/Bas-O(Fe)1.7872.220-2.657FeCu/Bas-O(H(Fe)1.7792.103-2.535FeCu/Bas-O(H(Fe)1.7702.114-4.808FeCu/Bas-O(H(Fe)1.7702.114-4.808FeCu/Bas-O(H(Cu)1.8442.076-1.725FeCu/Bas-O(H(Cu)1.8522.077-1.517FeCu/Bas-O(H(Cu)1.8522.071-2.835FeCu/Bas-O(H(FeNi/B ₃₈ -OOH(Ni)	1.780	2.073	-1.90	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FeNi/B ₃₈ -H(Fe)	1.502	2.044	-1.67	4
FeNi/Bas-H(Fe)1.6032.121-1.758FeNi/Bas-H(Ni)1.5252.009-2.566FeNi/Bas-H(Ni)1.5132.011-1.748FeNi/Bas-B1H1.6732.003-1.926FeNi/Bas-B1H2.0302.007-1.868FeNi/Bas-B2H1.7492.001-1.996FeNi/Bas-B2H2.0672.063-1.828FeNi/Bas-B3H1.6471.972-2.216FeNi/Bas-B3H1.6471.972-2.216FeNi/Bas-B3H1.7001.977-1.918FeCu/Bas-OH(Fe)1.7552.158-4.195FeCu/Bas-OH(Fe)1.6162.152-6.764FeCu/Bas-OH(Fe)1.6272.156-6.966FeCu/Bas-OH(Fe)1.7822.103-2.535FeCu/Bas-OH(Fe)1.7872.220-2.657FeCu/Bas-OH(Fe)1.7872.20-2.657FeCu/Bas-OH(Fe)1.7702.114-4.808FeCu/Bas-OH(Cu)1.8012.116-2.265FeCu/Bas-OH(Cu)1.7702.114-4.808FeCu/Bas-OH(Cu)1.8522.077-1.517FeCu/Bas-OH(Cu)1.8522.077-1.517FeCu/Bas-H(Cu)1.5182.071-2.835FeCu/Bas-H(Cu)1.5182.071-2.835FeCu/Bas-H(Cu)1.5342.083-1.407FeCu/Bas-H(Cu) <td>FeNi/B₃₈-H(Fe)</td> <td>1.595</td> <td>2.101</td> <td>-2.82</td> <td>6</td>	FeNi/B ₃₈ -H(Fe)	1.595	2.101	-2.82	6
FeNi/Bas-H(Ni)1.5252.009-2.566FeNi/Bas-H(Ni)1.5132.011-1.748FeNi/Bas-B1H1.6732.003-1.926FeNi/Bas-B1H2.0302.007-1.868FeNi/Bas-B2H1.7492.001-1.996FeNi/Bas-B2H2.0672.063-1.828FeNi/Bas-B3H1.6471.972-2.216FeNi/Bas-B3H1.6471.972-2.216FeCu/Bas-OH(Fe)1.7552.158-4.195FeCu/Bas-OH(Fe)1.7472.180-3.977FeCu/Bas-OH(Fe)1.6162.152-6.764FeCu/Bas-O(Fe)1.6112.176-6.138FeCu/Bas-O(Fe)1.6112.176-6.138FeCu/Bas-O(Fe)1.7872.220-2.657FeCu/Bas-O(Fe)1.7872.220-2.657FeCu/Bas-O(Cu)1.7952.107-3.007FeCu/Bas-O(Cu)1.7052.075-6.286FeCu/Bas-O(Cu)1.7052.075-6.286FeCu/Bas-O(Cu)1.7002.114-4.808FeCu/Bas-O(Cu)1.8442.076-1.725FeCu/Bas-O(Cu)1.8522.077-1.517FeCu/Bas-O(Cu)1.5182.071-2.835FeCu/Bas-H(Cu)1.5182.071-2.835FeCu/Bas-B1H2.0752.002-2.425	FeNi/B ₃₈ -H(Fe)	1.603	2.121	-1.75	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FeNi/B ₃₈ -H(Ni)	1.525	2.009	-2.56	6
FeNi/Bas-B1H1.6732.003 -1.92 6FeNi/Bas-B1H2.0302.007 -1.86 8FeNi/Bas-B2H1.7492.001 -1.99 6FeNi/Bas-B2H2.0672.063 -1.82 8FeNi/Bas-B3H1.647 1.972 -2.21 6FeNi/Bas-B3H1.700 1.977 -1.91 8FeCu/Bas-OH(Fe)1.755 2.158 -4.19 5FeCu/Bas-OH(Fe)1.747 2.180 -3.97 7FeCu/Bas-O(Fe)1.616 2.152 -6.76 4FeCu/Bas-O(Fe)1.627 2.156 -6.96 6FeCu/Bas-O(Fe)1.611 2.176 -6.13 8FeCu/Bas-O(Fe)1.611 2.176 -6.13 8FeCu/Bas-O(Fe)1.787 2.220 -2.65 7FeCu/Bas-O(H(Fe)1.787 2.220 -2.65 7FeCu/Bas-O(Cu)1.705 2.107 -3.00 7FeCu/Bas-O(Cu)1.765 2.075 -6.28 6FeCu/Bas-O(Cu)1.700 2.114 -4.80 8FeCu/Bas-O(Cu)1.844 2.076 -1.72 5FeCu/Bas-O(Cu)1.852 2.077 -1.51 7FeCu/Bas-O(Cu)1.518 2.071 -2.83 5FeCu/Bas-H(Cu)1.518 2.071 -2.83 5FeCu/Bas-H(Cu)1.534 2.083 -1.40 7FeCu/Bas-B1H 2.075 2.002 -2.42 5	FeNi/B ₃₈ -H(Ni)	1.513	2.011	-1.74	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FeNi/B ₃₈ -B1H	1.673	2.003	-1.92	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FeNi/B ₃₈ -B1H	2.030	2.007	-1.86	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FeNi/B ₃₈ -B2H	1.749	2.001	-1.99	6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FeNi/B ₃₈ -B2H	2.067	2.063	-1.82	8
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	FeNi/B ₃₈ -B3H	1.647	1.972	-2.21	6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	FeNi/B ₃₈ -B3H	1.700	1.977	-1.91	8
FeCu/B38-OH(Fe)1.7472.180-3.977FeCu/B38-O(Fe)1.6162.152-6.764FeCu/B38-O(Fe)1.6272.156-6.966FeCu/B38-O(Fe)1.6112.176-6.138FeCu/B38-OOH(Fe)1.7822.103-2.535FeCu/B38-OOH(Fe)1.7872.220-2.657FeCu/B38-OH(Cu)1.8012.116-2.265FeCu/B38-OH(Cu)1.7952.107-3.007FeCu/B38-OH(Cu)1.7652.075-6.286FeCu/B38-O(Cu)1.7002.114-4.808FeCu/B38-OOH(Cu)1.8442.076-1.725FeCu/B38-OOH(Cu)1.8522.077-1.517FeCu/B38-OOH(Cu)1.8522.071-2.835FeCu/B38-H(Fe)1.5982.148-2.247FeCu/B38-H(Cu)1.5142.083-1.407FeCu/B38-H(Cu)1.5342.002-2.425	FeCu/B ₃₈ -OH(Fe)	1.755	2.158	-4.19	5
FeCu/B38-O(Fe)1.6162.152-6.764FeCu/B38-O(Fe)1.6272.156-6.966FeCu/B38-O(Fe)1.6112.176-6.138FeCu/B38-OOH(Fe)1.7822.103-2.535FeCu/B38-OOH(Fe)1.7872.220-2.657FeCu/B38-OH(Cu)1.8012.116-2.265FeCu/B38-OH(Cu)1.7952.107-3.007FeCu/B38-OH(Cu)1.7652.075-6.286FeCu/B38-O(Cu)1.7702.114-4.808FeCu/B38-OOH(Cu)1.8442.076-1.725FeCu/B38-OOH(Cu)1.8522.077-1.517FeCu/B38-OOH(Cu)1.5182.071-2.835FeCu/B38-H(Cu)1.5182.071-2.835FeCu/B38-H(Cu)1.5342.083-1.407FeCu/B38-B1H2.0752.002-2.425	FeCu/B ₃₈ -OH(Fe)	1.747	2.180	-3.97	7
FeCu/B38-O(Fe)1.6272.156-6.966FeCu/B38-O(Fe)1.6112.176-6.138FeCu/B38-OOH(Fe)1.7822.103-2.535FeCu/B38-OOH(Fe)1.7872.220-2.657FeCu/B38-OH(Cu)1.8012.116-2.265FeCu/B38-OH(Cu)1.7952.107-3.007FeCu/B38-OH(Cu)1.7652.075-6.286FeCu/B38-O(Cu)1.7702.114-4.808FeCu/B38-OOH(Cu)1.8442.076-1.725FeCu/B38-OOH(Cu)1.8522.077-1.517FeCu/B38-H(Fe)1.5982.148-2.247FeCu/B38-H(Cu)1.5182.071-2.835FeCu/B38-H(Cu)1.5342.083-1.407FeCu/B38-B1H2.0752.002-2.425	FeCu/B ₃₈ -O(Fe)	1.616	2.152	-6.76	4
FeCu/B38-O(Fe)1.6112.176-6.138FeCu/B38-OOH(Fe)1.7822.103-2.535FeCu/B38-OOH(Fe)1.7872.220-2.657FeCu/B38-OH(Cu)1.8012.116-2.265FeCu/B38-OH(Cu)1.7952.107-3.007FeCu/B38-O(Cu)1.7652.075-6.286FeCu/B38-O(Cu)1.7702.114-4.808FeCu/B38-OOH(Cu)1.8442.076-1.725FeCu/B38-OOH(Cu)1.8522.077-1.517FeCu/B38-H(Fe)1.5982.148-2.247FeCu/B38-H(Cu)1.5182.071-2.835FeCu/B38-H(Cu)1.5342.083-1.407FeCu/B38-B1H2.0752.002-2.425	FeCu/B ₃₈ -O(Fe)	1.627	2.156	-6.96	6
FeCu/B38-OOH(Fe)1.7822.103-2.535FeCu/B38-OOH(Fe)1.7872.220-2.657FeCu/B38-OH(Cu)1.8012.116-2.265FeCu/B38-OH(Cu)1.7952.107-3.007FeCu/B38-O(Cu)1.7652.075-6.286FeCu/B38-O(Cu)1.7702.114-4.808FeCu/B38-OOH(Cu)1.8442.076-1.725FeCu/B38-OOH(Cu)1.8522.077-1.517FeCu/B38-H(Fe)1.5982.148-2.247FeCu/B38-H(Cu)1.5182.071-2.835FeCu/B38-H(Cu)1.5342.083-1.407FeCu/B38-B1H2.0752.002-2.425	FeCu/B ₃₈ -O(Fe)	1.611	2.176	-6.13	8
FeCu/B ₃₈ -OOH(Fe) 1.787 2.220 -2.65 7 FeCu/B ₃₈ -OH(Cu) 1.801 2.116 -2.26 5 FeCu/B ₃₈ -OH(Cu) 1.795 2.107 -3.00 7 FeCu/B ₃₈ -O(Cu) 1.765 2.075 -6.28 6 FeCu/B ₃₈ -O(Cu) 1.770 2.114 -4.80 8 FeCu/B ₃₈ -OH(Cu) 1.844 2.076 -1.72 5 FeCu/B ₃₈ -OOH(Cu) 1.852 2.077 -1.51 7 FeCu/B ₃₈ -H(Fe) 1.598 2.148 -2.24 7 FeCu/B ₃₈ -H(Cu) 1.518 2.071 -2.83 5 FeCu/B ₃₈ -H(Cu) 1.534 2.083 -1.40 7 FeCu/B ₃₈ -B1H 2.075 2.002 -2.42 5	FeCu/B ₃₈ -OOH(Fe)	1.782	2.103	-2.53	5
FeCu/B38-OH(Cu)1.8012.116-2.265FeCu/B38-OH(Cu)1.7952.107-3.007FeCu/B38-O(Cu)1.7652.075-6.286FeCu/B38-O(Cu)1.7702.114-4.808FeCu/B38-OOH(Cu)1.8442.076-1.725FeCu/B38-OOH(Cu)1.8522.077-1.517FeCu/B38-H(Fe)1.5982.148-2.247FeCu/B38-H(Cu)1.5182.071-2.835FeCu/B38-H(Cu)1.5342.083-1.407FeCu/B38-B1H2.0752.002-2.425	FeCu/B ₃₈ -OOH(Fe)	1.787	2.220	-2.65	7
FeCu/B38-OH(Cu)1.7952.107-3.007FeCu/B38-O(Cu)1.7652.075-6.286FeCu/B38-O(Cu)1.7702.114-4.808FeCu/B38-OOH(Cu)1.8442.076-1.725FeCu/B38-OOH(Cu)1.8522.077-1.517FeCu/B38-H(Fe)1.5982.148-2.247FeCu/B38-H(Cu)1.5182.071-2.835FeCu/B38-H(Cu)1.5342.083-1.407FeCu/B38-B1H2.0752.002-2.425	FeCu/B ₃₈ -OH(Cu)	1.801	2.116	-2.26	5
FeCu/B38-O(Cu)1.7652.075-6.286FeCu/B38-O(Cu)1.7702.114-4.808FeCu/B38-OOH(Cu)1.8442.076-1.725FeCu/B38-OOH(Cu)1.8522.077-1.517FeCu/B38-H(Fe)1.5982.148-2.247FeCu/B38-H(Cu)1.5182.071-2.835FeCu/B38-H(Cu)1.5342.083-1.407FeCu/B38-B1H2.0752.002-2.425	FeCu/B ₃₈ -OH(Cu)	1.795	2.107	-3.00	7
FeCu/B38-O(Cu)1.7702.114-4.808FeCu/B38-OOH(Cu)1.8442.076-1.725FeCu/B38-OOH(Cu)1.8522.077-1.517FeCu/B38-H(Fe)1.5982.148-2.247FeCu/B38-H(Cu)1.5182.071-2.835FeCu/B38-H(Cu)1.5342.083-1.407FeCu/B38-B1H2.0752.002-2.425	FeCu/B ₃₈ -O(Cu)	1.765	2.075	-6.28	6
FeCu/B38-OOH(Cu)1.8442.076-1.725FeCu/B38-OOH(Cu)1.8522.077-1.517FeCu/B38-H(Fe)1.5982.148-2.247FeCu/B38-H(Cu)1.5182.071-2.835FeCu/B38-H(Cu)1.5342.083-1.407FeCu/B38-B1H2.0752.002-2.425	FeCu/B ₃₈ -O(Cu)	1.770	2.114	-4.80	8
FeCu/B38-OOH(Cu)1.8522.077-1.517FeCu/B38-H(Fe)1.5982.148-2.247FeCu/B38-H(Cu)1.5182.071-2.835FeCu/B38-H(Cu)1.5342.083-1.407FeCu/B38-B1H2.0752.002-2.425	FeCu/B ₃₈ -OOH(Cu)	1.844	2.076	-1.72	5
FeCu/B38-H(Fe)1.5982.148-2.247FeCu/B38-H(Cu)1.5182.071-2.835FeCu/B38-H(Cu)1.5342.083-1.407FeCu/B38-B1H2.0752.002-2.425	FeCu/B ₃₈ -OOH(Cu)	1.852	2.077	-1.51	7
FeCu/B38-H(Cu)1.5182.071-2.835FeCu/B38-H(Cu)1.5342.083-1.407FeCu/B38-B1H2.0752.002-2.425	FeCu/B ₃₈ -H(Fe)	1.598	2.148	-2.24	7
FeCu/B38-H(Cu)1.5342.083-1.407FeCu/B38-B1H2.0752.002-2.425	FeCu/B ₃₈ -H(Cu)	1.518	2.071	-2.83	5
FeCu/B ₃₈ -B1H 2.075 2.002 -2.42 5	FeCu/B ₃₈ -H(Cu)	1.534	2.083	-1.40	7
	FeCu/B ₃₈ -B1H	2.075	2.002	-2.42	5

FeCu/B ₃₈ -B1H	2.043	2.045	-1.86	7
FeCu/B ₃₈ -B2H	1.260	2.064	-2.84	5
FeCu/B ₃₈ -B2H	1.268	2.056	-1.65	7
FeCu/B ₃₈ -B3H	1.999	1.967	-2.44	5
FeCu/B ₃₈ -B3H	2.086	1.996	-2.07	7

System	Fe- reaction site			
	$\Delta G_{*OH}(eV)$	$\Delta G_{*0}(eV)$	$\Delta G_{*OOH}(eV)$	$\eta^{\text{OER}}(V)$
FeCr/B ₃₈	-0.03	-0.62	1.86	1.82
FeCo/B ₃₈	-0.35	1.09	2.87	0.81
FeNi/B ₃₈	-0.13	1.70	3.46	0.59
FeCu/B ₃₈	-1.51	0.99	3.46	1.28
System	TM2 -reaction site			
	$\Delta G_{*OH}(eV)$	$\Delta G_{*0}(eV)$	$\Delta G_{*OOH}(eV)$	$\eta^{\text{OER}}(V)$
FeCr/B ₃₈	-2.58	-2.20	1.05	2.63
FeCo/B ₃₈	0.10	0.55	3.47	1.69
FeNi/B ₃₈	0.56	1.68	2.79	0.89

Table S7. Gibbs Free Energy for the Adsorption of OER Intermediates on Bimetal Doped B_{38} .

Table S8. Gibbs Free Energy for the Adsorption of HER Intermediates Bimetal Doped B_{38}

System	ΔG_{*H} (Fe)	ΔG_{H} (TM2)	$\Delta G_{*H}(B1)$	ΔG_{*H} (B2)	$\Delta G_{H}(B3)$
Pristine B ₃₈			1.17	0.45	0.34
FoCr/Pag	0.74	0.20	0.38	1.00	0.00
1°C1/D38	-0.74	-0.20	0.38	-1.00	-0.99
FeCo/B ₃₈	0.79	0.59	0.85	0.57	0.99
FeNi/B ₃₈	0.77	0.26	0.77	0.89	0.55
FeCu/B ₃₈	0.27	0.83	0.16	0.90	0.20

Figure S1. Reaction free energy profile for OER at zero potential (ϕ = 0) for TM/B₃₆ systems.

Figure S2. Reaction free energy profile for OER at zero potential (ϕ = 0) for FeTM2/B₃₈ systems.

Figure S3. The structures of intermediates together with their spin multiplicity (M) for each step of OER for TM/B_{36} systems.

Figure S3. The structures of intermediates together with their spin multiplicity (M) for each step of OER for TM/B_{36} systems.

Figure S4. The structures of intermediates together with their spin multiplicity (M) for each step of OER for FeTM2/ B_{38} systems.

Figure S4. The structures of intermediates together with their spin multiplicity (M) for each step of OER for FeTM2/B₃₈ systems.

REFERENCES

(1) Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005.

(2) Ling, C.; Shi, L.; Ouyang, Y.; Zeng, XC.; Wang, J. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting. *Nano Lett.* **2017**, *17*, 5133-5139.

(3) Xie, L.; Li, X.; Wang, Xi., Ge, G.; Zhang, J.; Jiang, J.; Zhang, Gu. Bimetallic Pd/Co Embedded in Two-Dimensional Carbon-Nitride for Z-Scheme Photocatalytic Water Splitting. *J. Phys. Chem. C* **2019**, *123*, 3, 1846-1851.

(4) Singh, Y.; Back, S.; Jung, Y. Computational Exploration of Borophane-supported Single Transition Metal Atoms as Potential Oxygen Reduction and Evolution Electrocatalysts. *Phys. Chem. Chem. Phys.*, **2018**, *20*, 21095-21104.

(5) Zhang, Y.; Lei, H.; Duan, D.; Villota, El.; Liu, C.; Ruan, R. New Insight into Mechanism of Hydrogen Evolution Reaction on MoP (001) from First Principles. *ACS Appl. Mater. Interfaces* **2018**, *10*, *24*, 20429-20439.

(6) Yuan, J.; Wang, Ch.; Liu, Y.; Wu, P.; Zhou, W. Tunable Photocatalytic HER Activity of Single Layered TiO₂ Nanosheet with Transition Metal Doping and Biaxial Strain. *J. Phys. Chem. C* **2019**, *123*, *1*, 526-533.

(7) Hu, Y.; Kleiman-Shwarsctein, A.; Forman, A. J.; Hazen, D.; Park, J. N.; McFarland, E.
W. Pt-Doped α-Fe₂O₃ Thin Films Active for Photoelectrochemical Water Splitting. *Chem. Mater.* 2008, 20, 12, 3803-3805.

(8) Rodriguez-Hernandez, F.; Tranca, D. C.; Mesa, A. M.; Uranga-Pina, L.; Seifert, G. Water Splitting on Transition Metal Active Sites at TiO₂-Based Electrodes: a Small Cluster Study. *J. Phys. Chem. C* **2016**, *120*, 437-449.

(9) Zhong, H.; Zhang, Q.; Wang, J.; Zhang, X.; Wei, XL.; Wu, Zh.; Li, K.; Meng, F. L.; Bao, D.;
Yan, J. M. Engineering Ultrathin C₃N₄ Quantum Dots on Graphene as a Metal-free Water Reduction Electrocatalyst. *ACS Catal.*2018, *8*, 3965-3970.

(10) Liu, Ch.; Dai, Zh.; Zhang, J.; Jin, Y.; Li, D.;Sun, Ch. Two-Dimensional Boron Sheets as Metal-Free Catalysts for Hydrogen Evolution Reaction. *J. Phys. Chem. C* **2018**, *122*, *33*, 19051-19055.

(11) Garg, P.; Nair, A. S.; Rawat, K. S.; Pathak, B. Computational Screening of Electrocatalytic Activity of Transition Metal Anchored CdS Nanotubes for Water Splitting. *J. Phys. Chem. C* **2019**, *123*, 22.

(12) He, T.; Matta, S. K.; Will, G.; Du, A. Transition-Metal Single Atoms Anchored on Graphdiyne as High-Efficiency Electrocatalysts for Water Splitting and Oxygen Reduction. *Small Methods* **2019**, 1800419.