Supporting Information

Strategies To Improve the Activity While Maintaining the Selectivity of Oxidative Coupling of Methane at La₂O₃: A Density Functional Theory Study

Zhi-Qiang Wang, Dong Wang and Xue-Qing Gong*

Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.

*Corresponding author: xgong@ecust.edu.cn

	Lattice parameters					
Bulk La ₂ O ₃	PBE HSE06		Experimental ¹			
	a = b = 3.920 Å	a = b = 3.939 Å	a = b = 3.939 Å			
	c = 6.093 Å	c = 6.136 Å	c = 6.136 Å			
	O _v formation energies					
	PBE		HSE06			
La ₂ O ₃ (001)	6.60 eV		6.65 eV			
Sr/Ce-La ₂ O ₃ (001)	4.18 eV		4.28 eV			

Table S1. Calculated lattice parameters of bulk La_2O_3 and the O_v formation energies at the $La_2O_3(001)$ and Sr/Ce-La₂O₃(001) surfaces using the PBE and HSE06 functionals.

Figure S1. Calculated DOSs of the La₂O₃(001) surface with adsorbed H.

Figure S2. Calculated structures and the spin-polarized charge densities of H adsorption on the $La_2O_3(001)$ surface with the electron being delocalized in the system.

Figure S3. Calculated structures and the corresponding spin-polarized charge densities of (a, c) adsorbed methane and (b, d) transition states for their dissociation at the (a, b) La₂O₃(001) and (c, d) CeO₂(111) surfaces.

Figure S4. Calculated Bader charges of the dissociated methane on the La₂O₃(001) surface.

Figure S5. Calculated structures and the corresponding spin-polarized charge densities of the $La_2O_3(001)$ surface with dissociative adsorbed methane: (a) methyl group on O site and (b) further dissociated methyl.

Figure S6. Calculated structures and the corresponding spin-polarized charge densities of the $La_2O_3(210)$ surface with an oxygen vacancy formed by removing one (a) O_{2c} or (b) O_{3c} .

Figure S7. Calculated structures and the corresponding spin-polarized charge densities of (a) the adsorbed methane and (b) its dissociation transition state on the $La_2O_3(210)$ surface.

Figure S8. Calculated Bader charges of the dissociated methane on the La₂O₃(210) surface.

Table S2. Calculated Bader charges of Ce cations at different surfaces and sites, including the $CeO_2(111)$ with and without an O_v on the surface, Ce-La₂O₃(001), Sr/Ce-La₂O₃(001) with and without one adsorbed hydrogen.

	Ce ⁴⁺		Ce ³⁺		
Ce cations	CeO ₂ (111)	Sr/Ce- La ₂ O ₃ (001)	CeO ₂ (111) with a surface O _v	Ce- La ₂ O ₃ (001)	Sr/Ce-La ₂ O ₃ (001) with H
Bader charge / e	+2.39	+2.29	+2.06	+2.04	+2.05

Figure S9. Calculated structures and the corresponding spin-polarized charge densities of the (a) $Sr-La_2O_3(001)$ surface and those with (b) adsorbed H or (c) methane molecule, as well as the (d) transition state and (e) intermediate state of methane dissociation. The energy profiles of methane dissociation on the $Sr-La_2O_3(001)$ and $Sr/Ce-La_2O_3(001)$ surfaces were also presented (f).

Figure S10. Calculated DOSs of the Sr/Ce-La₂O₃(001) surface.

Figure S11. Calculated structures and the corresponding spin-polarized charge densities of (a, c) adsorbed methane and (b, d) its dissociation transition states on the (a, b) Ce-La₂O₃(001) and (c, d) Sr/Ce-La₂O₃(001) surfaces.

Figure S12. Calculated Bader charges of methyl group and hydrogen adsorbed on the Ce-La₂O₃(001) surface.

Figure S13. Calculated energy profile of methane dissociation with (a) the enthalpy changes and (b) the Gibbs free energies at the 873 K on the Sr/Ce-La₂O₃(001) surface.

Figure S14. Calculated structures, adsorption energies and the corresponding spin-polarized charge densities of the methane molecule in the absence (upper row) or presence (bottom row) of a neighboring methane molecule on the $2(Sr/Ce)-La_2O_3(001)$ surface.

Figure S15. Calculated structures and the corresponding spin-polarized charge densities of the key species within the complete OCM reactions on the Sr/Ce-La₂O₃(001) surface.

References

(1) Zhou, W.; Jefferson, D. A.; Liang, W. Y. Surface Atomic Imaging of La₂O₃ and La₂CuO₄. *Surf. Sci.* **1989**, 209, 444–454.