1	Granular Sludge Coupling Nitrate/Nitrite Dependent	
2	Anaerobic Methane Oxidation with Anammox: from Proof-	
3	of-Concept to High Rate Nitrogen Removal	
4		
5	Sheng-Qiang Fan ¹ , Guo-Jun Xie ^{*,1} , Yang Lu ² , Bing-Feng Liu ¹ , De-Feng Xing ¹ , Hong-	
6	Jun Han ¹ , Zhiguo Yuan ³ and Nan-Qi Ren ¹	
7		
8	¹ State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of	
9	Technology, Harbin 150090, China	
10		
11	² Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang	
12	Technological University, Singapore 637551, Singapore	
13		
14	³ Advanced Water Management Centre, The University of Queensland, St Lucia,	
15	Brisbane QLD 4072, Australia	
16		
17	*Corresponding author	
18	E-mail: xgj@hit.edu.cn (G.J.X)	
19	Tel/Fax: +86 451 86282008.	
20		
21		
22		
23		
24		

25 Supporting Information

- 26 Number of Pages: 6
- 27 Number of Table: 2
- 28 Number of figure: 3

29 Feeding medium

- 30 The compositions of medium were as follows: KH_2PO_4 , 0.075 g L⁻¹; CaCl₂·2H₂O, 0.3
- 31 g L⁻¹; MgSO₄·7H₂O, 0.2 g L⁻¹; acidic trace element solution, 0.5 mL L⁻¹, alkaline
- 32 trace element solution, 0.2 mL L⁻¹. The compositions of acidic trace element solution
- and alkaline trace element solution were described in Table S1 and S2.
- 34 **Table S1**. The compositions of acidic trace element solution per liter.

component	quality(g)
FeSO ₄ ·7H ₂ O	5.560
ZnSO ₄ ·7H ₂ O	0.068
CoCl ₂ ·6H ₂ O	0.120
$MnCl_2 \cdot 4H_2O$	0.500
$CuSO_4$	1.600
NiCl ₂ ·6H ₂ O	0.095
H ₃ BO ₃	0.014
HCL	3.65

35

36 **Table S2**. The compositions of alkaline trace element solution per liter.

component	Quality(g)
SeO ₂	0.067
$Na_2WO_4 \cdot 2H_2O$	0.050
Na ₂ MoO ₄	0.242
NaOH	0.4

37

38 Inoculum reactor

39 A sequencing batch reactor (SBR) with a working volume of 2 L was operated at 35 $^{\circ}$ C

40 to cultivate a co-culture of n-DAMO and Anammox microorganisms. Concentrated

41 stock solution of nitrate and ammonium was pulse injected into the reactor to maintain

42 the nitrate and ammonium concentrations. A mixed gas of 95% CH₄ and 5% CO₂ was 43 flushed in the reactor to supply methane for n-DAMO microorganism. 200 mL flocs 44 from the parent reactor and 200 mL anaerobic granular sludge treating paper mill 45 wastewater were transferred to MGSR-I as inoculum. Upon inoculation, the parent 46 reactor reached a nitrate and ammonium removal rate of approximately 60 mg N L⁻¹ d⁻¹ and 50 mg N L⁻¹ d⁻¹. The biomass concentration of the biomass was about 3 g VSS L⁻¹. 47 The high throughput analysis result showed that the parent reactor was dominated by 48 49 Candidatus Methanoperedens and Candidatus Kuenenia, with a relative abundance of

50 37.3 % and 8.8 %, respectively.

51

- 53 DARCH-0872-a-A-18 for n-DAMO archaea (Green), S-*-NC10-1162-a-A-18 for n-
- 54 DAMO Bacteria (blue), and S-*-Amx-820-a-A-18 for Anammox bacteria (red).
- 55 Determination of biological reaction rates

- 56 Based on mass balance and Reaction S1-S3, theoretical nitrate available for n-DAMO
- 57 archaea (rNO3⁻ available for n-DAMO archaea) and nitrate produced by Anammox bacteria
- 58 $(rNO_{3}-Anamonto Anamonto Anamont$

59
$$NH_4^+ + 1.32NO_2^- \rightarrow 1.02N_2 + 0.26NO_3^-$$
 (S1)

$$60 \quad CH_4 + 2.67NO_2^- + 2.67H^+ \rightarrow CO_2 + 1.33N_2 + 3.33H_2O \tag{S2}$$

$$61 \quad CH_4 + 4NO_3^- \rightarrow CO_2 + 4NO_2^- + 2H_2O \tag{S3}$$

62 Nitrate production by anammox:

63
$$rNO_{3}^{-}Anammox = 0.26*rNH_{4}^{+}$$
 (S4)

64 Nitrite consumption by anammox:

65
$$rNO_2^-Anammon} = 1.32*rNH_4^+$$

- 66 Theoretical nitrate available for n-DAMO archaea:
- 67 rNO_3^- available for n-DAMO archaea = rNO_3^- loading + rNO_3^- Anammox (S5)
- 68 Nitrate reduction rate by n-DAMO archaea:
- $69 \quad rNO_{3}^{-}_{n-DAMO \text{ archaea}} = rNO_{3}^{-}_{\text{ loading}} + rNO_{3}^{-}_{\text{ Anammox}} rNO_{3}^{-}$ (S6)
- 70 Nitrite production rate by n-DAMO archaea:
- 71 $rNO_2^{-} n-DAMO archaea = rNO_3^{-} n-DAMO archaea$ (S7)
- 72 Nitrite consumption of n-DAMO bacteria:
- 73 $rNO_2^{-} n-DAMO bacteria = rNO_2^{-} + rNO_3^{-} Anammox rNO_2^{-} Anammox$ (S8)

74 Determination of methane oxidation rates

75 Based on mass balance and Reaction S1-S3, methane oxidation rates are calculated as

- 76 follows:
- 77 Methane oxidation rate by n-DAMO archaea:
- 78 $rCH_{4 n-DAMO archaea} = 0.286 * rNO_3^{-}_{n-DAMO archaea}$ (S9)
- 79 Methane oxidation rate by n-DAMO bacteria:

- 80 $rCH_{4 n-DAMO bacteria} = 0.428 * rNO_2^{-} n-DAMO bacteria$
- 81 Total methane oxidation rate:

82
$$rCH_4 = rCH_{4 n-DAMO archaea} + rCH_{4 n-DAMO bacteria}$$
 (S11)

(S10)

86

Figure S3. Methane oxidation rate and methane supplementation rate of the MGSR-II
during 234 days' continuous operation.

89 Methane mass balance

90 The CH₄ flux of membrane module was determined based on the previous method¹, and the methane delivery capacity at 100 kPa was 32.5 g m⁻² d⁻¹. With the membrane 91 surface area/reactor volume ratio of 33 m² m⁻³, the CH₄ delivery rate to the reactor is 92 93 1070 mg L⁻¹ d⁻¹. At the final steady stage of MGSR-II, the effluent dissolved methane 94 concentration and the methane utilization efficiency was determined. Based on the 95 calculation above, CH₄ oxidation rate was about 975 mg L⁻¹ d⁻¹, including 541 mg L⁻¹ d⁻¹ by n-DAMO archaea and 434 mg L⁻¹ d⁻¹ by n-DAMO bacteria. Thus, the CH₄ 96 97 utilization efficiency was 91.1%. The dissolved methane in effluent could hardly be 98 detected, which may be caused by the high methane utilization efficiency."

99

100 **Reference**

Bandara, W. M. K. R. T. W.; Satoh, H.; Sasakawa, M.; Nakahara, Y.; Takahashi,
 M.; Okabe, S., Removal of residual dissolved methane gas in an upflow anaerobic
 sludge blanket reactor treating low-strength wastewater at low temperature with
 degassing membrane. *Water Research* 2011, 45, (11), 3533-3540.

S6 / S6