Supporting Information for:

Microporous Polysulfones with Enhanced Separation Performance via Integration of the Triptycene Moiety

Tanner Corrado, Zihan Huang, Joseph Aboki, Ruilan Guo*

Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. *Corresponding author: <u>rguo@nd.edu</u>

 $\begin{array}{c}
1.0\\
0.8\\
0.8\\
0.6\\
0.4\\
0.4\\
0.2\\
4000 \quad 3500 \quad 3000 \quad 2500 \quad 2000 \quad 1500 \quad 1000 \\ Wavenumber (cm¹)
\end{array}$

Figure S1. IR spectrum for Trip-PSf. Relevant peaks at 1221 (C-O stretch) and 1323 (S=O stretch).

Figure S2. IR spectrum for PHPHT-PSf. Relevant peaks at 1767 (C=O stretch), 1236, 1148, 1101 (C-O stretches), 1323 (S=O stretch).

Polymer	Tensile Strength	Young's Modulus	Elongation at Break
	(MPa)	(MPa)	(%)
Trip-PSf	31 ± 8	1550 ± 282	2.0 ± 0.2
PHPHT-PSf	69 ± 10	717 ± 52	17.7 ± 2.2
Commercial	3.33 ± 0.28^{1}	187 ± 11^{1}	482
PSf	54.2 ²	2000^{2}	

Table S1. Mechanical properties of Trip-PSf and PHPHT-PSf polymer films

References:

- Ionita, M.; Pandele, A. M.; Crica, L.; Pilan, L. Improving the Thermal and Mechanical Properties of Polysulfone by Incorporation of Graphene Oxide. *Compos. Part B Eng.* 2014, *59*, 133–139.
- (2) Sur, G. .; Sun, H. .; Lyu, S. .; Mark, J. . Synthesis, Structure, Mechanical Properties, and Thermal Stability of Some Polysulfone/Organoclay Nanocomposites. *Polymer.* **2001**, *42*, 9783–9789.