Supporting Information

High Redox Potential Chromophores for Visible Light-Driven Water Oxidation at Low pH

Lei Wang,[§] David W. Shaffer,[†] Gerald F. Manbeck,[⊥] Dmitry E. Polyansky, [⊥] Javier J. Concepcion[⊥]*

[§]Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States

[⊥]Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States Corresponding author email address: jconcepc@bnl.gov

Experimental Methods	5
Materials.	5
Physical Methods	5
Figure S1. Absorption and emission spectra for the chromophores in 0.1 M HClO.	46
Table S1. Photophysical properties for the chromophores $[Ru(L)_3]^{2+}$	7
Table S2. Photophysical parameters for the chromophores $[Ru(L)_3]^{2+}$ based on Ta	ble S18
Figure S2. UV-vis spectra of chromophores after photochemical water oxidation	experiments.
Figure S3. TON as a function of time for chromophores in $0.1M$ HClO ₄ and DC temperature.	ClO ₄ at room
Figure S4. (<i>left</i>) Square wave voltammograms and (right) spectra reco spectroelectrochemical experiment of 1mM [(bpy) ₂ Ru(5-PO(OH) ₂ -bpy)]Cl ₂ in 0.1	rded during M HClO ₄ .10
Figure S5. Absorbance vs pH traces at 315nm for [(bpy) ₂ Ru(5-PO(OH) ₂ -bpy) potential: 1.56V vs NHE.]Cl ₂ , applied
Figure S6. Stern Volmer Plots for chromophores in 0.1 M HClO ₄ and DC temperature.	1O ₄ at room
Table S3. K _{sv} , $\underline{\tau_0}$ and k _q data for the chromophores [Ru(L) ₃] ²⁺ in 0.1 M HClO ₄ and	d DClO ₄ 12
Table S4. Calculated required $Na_2S_2O_8$ concentration (M) to quench 90% em chromophores $[Ru(L)_3]^{2+}$ in 0.1M HClO ₄ and DClO ₄	ission of the13
Figure S7. (<i>left</i>) Electron density distribution. (<i>right</i>) TOF calibration of Ru(4-C bpy) ₃] ²⁺ in 0.1M HClO ₄ .	² F ₃ -5-PO ₃ H ₂ 13
Figure S8. Ru(bda)(isq) ₂ TOF as a function of catalyst concentration in 0.1 M HClC 200 μ M, chromophore [Ru(5-PO ₃ H ₂ -bpy) ₃] ²⁺ , 1.5M Na ₂ S ₂ O ₈ at 25 °C	04. Condition: 14
Table S5. KIEs of chromophores [Ru(L) ₃] ²⁺ in 0.1 M Nitric Acid (pH 1)	15
Figure S9. Stern Volmer Plots for $[Ru(5-PO_3H_2-bpy)_3]^{2+}$ in (<i>left</i>) 0.1M HClO ₄ and HNO ₃ at room temperature.	(<i>right</i>) 0.1M
Figure S10. [Ru(5-Me-5'-CH ₂ -PO ₃ H ₂ -bpy) ₃]Cl ₂ properties: (<i>top left</i>) molecular st <i>right</i>) square wave voltammograms; (<i>bottom left</i>) Stern Volmer Plot; (<i>bottom right</i>) function of time	tructure; (<i>top</i> <i>ht</i>) TON as a 16
Synthetic Procedures	17
Figure S11. Synthesis of diethyl (4'-(trifluoromethyl)-[2,2'-bipyridin]-4-yl)phosph	onate ligand.
Synthesis of 4-chloro-4'-(trifluoromethyl)-2, 2'-bipyridine	17
Synthesis of diethyl (4'-(trifluoromethyl)-[2,2'-bipyridin]-4-yl)phosphonate	17
Figure S12. ¹ H NMR spectrum for 4'-CF ₃ -4-PO ₃ Et ₂ -bpy in CDCl ₃	18
Synthesis of diethyl (4'-(trifluoromethyl)-[2,2'-bipyridin]-5-yl)phosphonate	18
Figure S13. ¹ H NMR spectrum for 4'-CF ₃ -5-PO ₃ Et ₂ -bpy in CDCl ₃	18

Synthesis of diethyl [2,2'-bipyridin]-4-ylphosphonate.	18
Figure S14. ¹ H NMR spectrum for 4-PO ₃ Et ₂ -bpy in CDCl ₃ .	19
Synthesis of diethyl [2,2'-bipyridin]-5-ylphosphonate.	19
Figure S15. ¹ H NMR spectrum for 5-PO ₃ Et ₂ -bpy in CDCl ₃ .	19
Figure S16. Synthesis of 4-(trifluoromethyl)-2,2'-bipyridine ligand	20
Synthesis of 4-(trifluoromethyl)-2,2'-bipyridine.	20
Figure S17. ¹ H NMR spectrum for 4-CF ₃ -bpy in CDCl ₃	20
Synthesis of 5-(trifluoromethyl)-2,2'-bipyridine.	20
Figure S18. ¹ H NMR spectrum for 5-CF ₃ -bpy in CDCl ₃	20
Figure S19. Synthesis of diethyl ((5' -methyl-[2,2'-bipyridin]-5-yl)methyl)phosphonate	20
Synthesis of diethyl ((5'-methyl-[2,2'-bipyridin]-5-yl)methyl)phosphonate.	21
Figure S20. ¹ H NMR spectrum for 5-Me-5'-CH ₂ -PO ₃ Et ₂ -bpy in CDCl ₃ .	21
Figure S21. Synthesis of [Ru(4-CF ₃ -5'-PO ₃ H ₂ -bpy) ₃]Cl ₂ chromophore	21
Synthesis of [Ru(4'-CF ₃ -4-PO ₃ H ₂ -bpy) ₃]Cl ₂ .	21
Figure S22. ¹ H NMR spectrum for [Ru(4'-CF ₃ -4-PO ₃ H ₂ -bpy) ₃]Cl ₂ in D ₂ O	22
Figure S23. Mass spectrum for [Ru(4'-CF ₃ -4-PO ₃ H ₂ -bpy) ₃]Cl ₂	22
Synthesis of [Ru(4'-CF ₃ -5-PO ₃ H ₂ -bpy) ₃]Cl ₂ .	22
Figure S24. ¹ H NMR spectrum for [Ru(4'-CF ₃ -5-PO ₃ H ₂ -bpy) ₃]Cl ₂ in D ₂ O	23
Figure S25. Mass spectrum for [Ru(4'-CF ₃ -5-PO ₃ H ₂ -bpy) ₃]Cl ₂	23
Synthesis of [Ru(4-PO ₃ H ₂ -bpy) ₃]Cl ₂ .	23
Figure S26. ¹ H NMR spectrum for [Ru(4-PO ₃ H ₂ -bpy) ₃]Cl ₂ in D ₂ O.	24
Figure S27. Mass spectrum for [Ru(4-PO ₃ H ₂ -bpy) ₃]Cl ₂	24
Synthesis of [Ru(5-PO ₃ H ₂ -bpy) ₃]Cl ₂ .	24
Figure S28. ¹ H NMR spectrum for [Ru(5-PO ₃ H ₂ -bpy) ₃]Cl ₂ in D ₂ O.	25
Figure S29. Mass spectrum for [Ru(5-PO ₃ H ₂ -bpy) ₃]Cl ₂ .	25
Figure S30. Synthesis of [Ru(4-CF ₃ -bpy) ₃](OTf) ₂ chromophore	25
Synthesis of [Ru(4-CF ₃ -bpy) ₃](OTf) ₂ .	25
Figure S31. ¹ H NMR spectrum for [Ru(4-CF ₃ -bpy) ₃](OTf) ₂ in CD ₃ CN	26
Figure S32. Mass spectrum for [Ru(4-CF ₃ -bpy) ₃](OTf) ₂ .	26
Synthesis of [Ru(5-CF ₃ -bpy) ₃](PF ₆) ₂	26
Figure S33. ¹ H NMR spectrum for [Ru(5-CF ₃ -bpy) ₃](PF ₆) ₂ in CD ₃ CN	27
Figure S34. Mass spectrum for [Ru(5-CF ₃ -bpy) ₃](PF ₆).	27
Synthesis of [Ru(bpy) ₂ (5-PO ₃ H ₂ -bpy)]Cl ₂ .	27
Figure S35. ¹ H NMR spectrum for [Ru(bpy) ₂ (5-PO ₃ H ₂ -bpy)]Cl ₂ in D ₂ O	28

References	30
Figure S38. Mass spectrum for [Ru(5-Me-5'-CH ₂ -PO ₃ H ₂ -bpy) ₃]Cl ₂	29
Figure S37. ¹ H NMR spectrum for [Ru(5-Me-5'-CH ₂ -PO ₃ H ₂ -bpy) ₃]Cl ₂ in D ₂ O	29
Synthesis of [Ru(5-Me-5'-CH ₂ -PO ₃ H ₂ -bpy) ₃]Cl ₂	29
Figure S36. Mass spectrum for [Ru(bpy) ₂ (5-PO ₃ H ₂ -bpy)]Cl ₂	

Experimental Methods

Materials. High-purity water was obtained by passing house-distilled water through a Millipore Milli-Q Synthesis A-10 system. Perchloric and nitric acids (70%, Aldrich, 99.999% trace metals grade) were used to prepare 0.1 M HNO₃ or HClO₄. 4-bromo-2,2'-bipyridine and 5-bromo-2,2'-bipyridine were purchased from Ark Pharm, Inc. All other reagents and solvents were purchased from commercial sources and used as received.

Physical Methods. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III 400 spectrometer. ¹H NMR spectra were referenced to the residual protio impurities of the solvent.¹ All chemical shifts (δ) are reported in ppm. High resolution Electrospray ionization mass spectrometry (HR-ESI-MS) was performed with a Thermo ScientificTM O ExactiveTM Mass Spectrometer using methanol as the eluent. Elemental analyses (EA) were performed by Robertson Microlit Laboratories (Ledgewood, NY, USA). Reported pH values were measured on a Fisher Scientific Accumet Micro glass electrode after calibration with standard buffer solutions. Electronic absorption spectra were recorded with a UV-visible Agilent 8453 diode-array spectrophotometer and were corrected for the background spectrum of the solvent. Fluorescence spectroscopy were measured with a PTI QuantaMaster system with the FelixGX software. Electrochemical measurements were performed with a CH Instruments CH-760E bipotentiostat at ambient temperature (21-24 °C) in a single compartment cell with a 3.0 mm glassy carbon disc working electrode, platinum wire counter electrode, and Ag/AgCl (3 M NaCl) reference electrode. The reference electrode was calibrated to the Ru(III/II) couple of an internal [Ru(bpy)₃][NO₃]₂ standard at 1.26 V vs NHE.² Emission lifetimes (τ_0) were recorded using optically dilute samples in quartz cuvettes that were sealed with septa and deoxygenated by bubbling with argon. Samples were excited with a continuously tunable OPO (Opotek) pumped by a Q-switched Nd: YAG at 355 nm. The instrument was operated at 5 Hz with 2.5–3 mJ per pulse and ~6 ns pulse width. Emission was probed at 90° to the laser pulse and focused on an ISA monochromator. The signal was detected using a Hamamatsu R955 PMT, digitized with an oscilloscope, and fit to single exponential decay kinetics. Each reported lifetime is an average of 32 kinetic traces.

Pressure measurements were conducted in a 4 mL cuvette with constant stirring at room temperature (22 ± 1 °C). The cuvette was sealed with a septum that was connected to a Honeywell pressure sensor (SDX30G2-A or SDX05G2-A). The pressure changes of the headspace were recorded with a real-time data acquisition system (InstruNet i555). The 454 nm monochromatic

light source was an LED driven by an American Reliance Inc. (AMREL) programmable DC power supply (applied current: 5A). For a typical measurement, 20 μ M Ru(bda)(isq)₂, 200 μ M chromophore and 1 M (or 1.58M) Na₂S₂O₈ were dissolved in 0.1 M HClO₄ in the cuvette then a septum was inserted and the pressure inside the flask was released through a needle until the pressure reading reached zero (vs. atmospheric). After removing the needle, the pressure sensor was connected, the light was turned on, and the software was triggered to record the changes of headspace pressure with time. The rate and turnover frequency (TOF) were obtained from the maximum slope of the oxygen evolution plot. The turnover numbers (TONs) were calculated from the total amount of oxygen generated.

The molar extinction coefficients, ε (M⁻¹cm⁻¹), were calculated by the Beer-Lambert Law: $\varepsilon = \frac{A}{cl}$, where the concentration, c, is measured in mol dm⁻³ (M⁻¹) and the cell path length, l, in cm. The emission intensity was measured by using 20 μ M chromophores in 0.1 M HClO₄.

Figure S1. Absorption and emission spectra for the chromophores in 0.1 M HClO₄.

The photophysical properties of the chromophores are summarized in Table S1. λ_{00} was taken as the wavelength value at which the tangent of the high energy side of the emission crosses the wavelength-axis. Other parameters were calculated as follows:

$$E (cm^{-1}) = 10^7 / \lambda (nm) \text{ (eq. S1)}$$

$$E (eV) = E(cm^{-1}) / 8065 \text{ (eq. S2)}$$

$$E_{1/2} (\text{Ru}^{\text{III/II*}}) = E_{1/2} - E_{00} (eV) / F \text{ (eq. S3) with F} = 1 \text{ eV/V}$$

	E _{1/2}	λ max, MLCT	λ max, ex	λ max, em	$\lambda_{00, em}^{b}$	E ₀₀	$\mathrm{E}_{1/2}\left(\mathrm{Ru}^{\mathrm{III/II}*}\right)$
	(V vs NHE)	(nm)	(nm)	(nm)	(nm)	(eV)	(eV)
4-CF ₃ -4'-PO ₃ H ₂ -bpy	1.602	461	467	624	594	2.087	-0.485
4-CF ₃ -5'-PO ₃ H ₂ -bpy	1.600	468	468	640	611	2.029	-0.429
4-PO ₃ H ₂ -bpy	1.342	458	467	628	593	2.091	-0.749
5-PO ₃ H ₂ -bpy	1.340	467	468	640	608	2.039	-0.699
4-CF ₃ -bpy	1.512	455	467	617	585	2.120	-0.608
5-CF ₃ -bpy	1.536	464	467	630	600	2.067	-0.531
bpy	1.260	454	466	611	584	2.123	-0.863

Table S1. Photophysical properties for the chromophores $[Ru(L)_3]^{2+.a}$

 $a^{20} \mu$ M chromophores in 0.1M HClO₄ solution at room temperature. $b^{b} \lambda_{00, em}$ was obtained by the crossover point of tangent line of emission spectrum with wavelength.

Table S2 summarizes the calculated photophysical parameters. K_{sv} is calculated from emission quenching data as a function of the concentration of persulfate, which follows the Stern-Volmer relationship:

$$\frac{l_0}{l} = k_{sv} [S_2 O_8^2] + 1 \text{ (eq. S4)}$$

where $K_{sv} = \tau_0 k_q$. The quantum yield was calculated according to Lakowicz's method in *Principles* of fluorescence spectroscopy.³ As shown in equation S5, Φ is the quantum yield, *Int* is the area under the emission peak (on a wavelength scale), *A* is absorbance at the excitation wavelength, and η is the refractive index of the solvent.

$$\Phi_p = \Phi_{ref} \times \frac{lnt_p}{lnt_{ref}} \times \frac{(1-10^{-A_{ref}})}{(1-10^{-A_p})} \times \frac{n_p^2}{n_{ref}^2}$$
 (eq. S5)

Considering the similar absorbance value and the same solvent (0.1 M HClO_4) in the experiment, the above equation can be simplified as equation S6:

$$\Phi_p = \Phi_{ref} \times \frac{lnt_p}{lnt_{ref}}$$
 (eq. S6)

where Φ_{ref} is 0.042 according to Van Houten and Watts' work⁴. Then k_{nr} can be calculated by using equation S7 and S8 below:

$$k_r \tau_0 = \Phi_p \text{ (eq. S7)}$$

 $\tau_0^{-1} = k_r + k_{nr} \text{ (eq. S8)}$

L	E ₀₀ (cm ⁻¹)	k _{sv} (M ⁻¹)	$ au_0$ (ns)	Фр	$10^{-4} \cdot k_r (s^{-1})$	$10^{-6} \cdot k_{nr} (s^{-1})$
$4-CF_3-4'-PO_3H_2-bpy$	16835	6.8	667	0.0334	5.01	1.45
$4\text{-}CF_3\text{-}5'\text{-}PO_3H_2\text{-}bpy$	16366	2.2	222	0.0123	5.54	4.45
4-PO ₃ H ₂ -bpy	16863	64	534	0.0379	7.10	1.8
5-PO ₃ H ₂ -bpy	16447	11	147	0.0128	8.71	6.72
4-CF ₃ -bpy	17094	344	731	0.0141	1.93	1.35
5-CF ₃ -bpy	16667	17	258	0.0238	9.22	3.78
bpy	17123	929	580	0.042	7.24	1.65

Table S2. Photophysical parameters for the chromophores $[Ru(L)_3]^{2+}$ based on Table S1.

Figure S2. UV-vis spectra of chromophores after photochemical water oxidation experiments.

Figure S3. TON as a function of time for the chromophores in 0.1M HClO₄ and DClO₄ at room temperature.

The pK_a of $[(bpy)_2Ru(5-PO(OH)_2-bpy)]Cl_2$ ($E_{1/2} = 1.26$ vs NHE) was determined by spectroelectrochemistry at various pH values, with an applied potential of 1.56 V vs NHE. Ru^{II} shows an absorption peak at 288 nm while Ru^{III} shows an absorption peak at 315 nm. Monitoring the UV-vis spectra, once the absorption at 315 nm stopped increasing with applied potential, Ru^{III} generation was considered complete.

Figure S4. (*left*) Square wave voltammograms and (right) spectra recorded during spectroelectrochemical experiment of $1 \text{mM} [(bpy)_2 \text{Ru}(5-\text{PO}(\text{OH})_2-bpy)] \text{Cl}_2 \text{ in } 0.1 \text{M} \text{HClO}_4$.

Figure S5. Absorbance vs pH traces at 315nm for [(bpy)₂Ru(5-PO₃H₂-bpy)]Cl₂, applied potential: 1.56V vs NHE.

Figure S6. Stern Volmer Plots for chromophores in 0.1 M HClO₄ and DClO₄ at room temperature.

I	Solvent	K _{sv}	K _{SV,H} /	$ au_{o}$	$ au_{0,\mathrm{H}}/ au_{0,\mathrm{H}}$	k_q	$k_{q,\mathrm{H}}/k_{q,\mathrm{H}}$
L	Solvent	(M ⁻¹)	K _{SV,D}	(ns)	D	$(M^{-1}s^{-1})$	D
4-CF ₃ -4-PO ₃ H ₂ -	HClO ₄	6.8	0.10	667	0.59	$1.0 * 10^7$	0.22
bpy	DClO ₄	35.6	0.19	1150	0.58	$3.1 * 10^7$	0.32
4-CF ₃ -5-PO ₃ H ₂ -	HClO ₄	2.2	0.26	222	0.59	$9.9 * 10^{6}$	0.62
bpy	DClO ₄	6.0	0.36	383	0.58	$1.6 * 10^7$	0.62
	HClO ₄	64	0.42	534	0.52	$1.2 * 10^8$	0.00
4-РО ₃ н ₂ -ору	DClO ₄	153	0.42 1028	0.52	$1.5 * 10^8$	0.80	
5 DO H. have	HClO ₄	11	0.26	147	0.52	$7.5 * 10^{7}$	0.69
5-РО ₃ Н ₂ -вру	DClO ₄	30.7	0.36	276	0.53	1.1 × 10 ⁸	0.68
	HClO ₄	344	0.70	731	0.00	$4.7 * 10^8$	1.00
4- СF ₃ -bру	DClO ₄	435	0.79	1107	0.66	3.9 *10 ⁸	1.20
	HClO ₄	17	0.40	258	0.55	$6.6 * 10^7$	0.50
5-CF ₃ -bpy	DClO ₄	42.5	0.40	469	0.55	9.1 × 10 ⁷	0.73

Table S3. K_{sv} , τ_o , and k_q data for the chromophores $[Ru(L)_3]^{2+}$ in 0.1 M HClO₄ and DClO₄.

To show the effect of $Na_2S_2O_8$ concentration on water oxidation activity, the theoretical concentration of $Na_2S_2O_8$ to quench 90% of the emission was calculated as shown in Table S4. In HClO₄, it requires 4 M Na_2S_2O_8 to quench 90% of the emission for 4-CF₃-5-PO₃H₂-bpy while in our experiments, 1.58 M was used limited by the solubility of $Na_2S_2O_8$.

Table S4. Calculated required $Na_2S_2O_8$ concentration (M) to quench 90% emission of the chromophores $[Ru(L)_3]^{2+}$ in 0.1M HClO₄ and DClO₄.^{*a*}

L	HClO ₄	DClO ₄
$4-CF_{3}-4-PO_{3}H_{2}-bpy$	1.29	0.245
$4-CF_3-5-PO_3H_2-bpy$	4	1.44
4-PO ₃ H ₂ -bpy	0.14	0.059
5-PO ₃ H ₂ -bpy	0.80	0.29
4-CF ₃ -bpy	0.03	0.024
5-CF ₃ -bpy	0.52	0.21
bpy	0.01	

^{*a*} Calculations are based on the results in Figure S6.

Figure S7. Electron density distribution (*left*). TOF calibration of $Ru(4-CF_3-5-PO_3H_2-bpy)_3]^{2+in}$ 0.1M HClO₄ (*right*).

To gain further understanding of the mechanism for photochemical water oxidation catalysis, the kinetics of $[Ru(bda)(isq)_2]$ -catalyzed photochemical water oxidation were studied using pressure measurements. $[Ru(bda)(isq)_2]$ displayed two different kinetic regimes, with rate laws depending on the catalyst concentration: zero order in catalyst at higher concentrations and first order in catalyst at lower concentrations. This kinetic behavior is the same as chemical water oxidation of Ru(bda)(isq)_2 catalysts in solution with Ce^{IV} as the oxidant.⁵ The rate laws for these two regimes are represented by equations S9 and S10, respectively. The catalyst concentration at which the rate-determining step changes, represented by the red "X" in Figure S8, is the value of $[Ru]_X$ for which the two rate laws are equal (eq. S9 = eq. S10), as shown in eq. S11. $[Ru]_X$ is 21.7 μ M, while in chemical water oxidation with Ce(IV) is 9.2 μ M.

$$\frac{rate}{[Ru]} = \text{TOF} = \frac{k[Ru]^2}{[Ru]} = k_1[\text{Ru}] \text{ (eq. S9)}$$

$$\frac{rate}{[Ru]} = \text{TOF} = \frac{k \times [Ru] \times [Ox]}{[Ru]} = k_0[O_X] \text{ (eq. S10)}$$

$$[\text{Ru}]_X = \frac{k_0[Ox]}{k_1} \text{ (eq. S11)}$$

Figure S8. Ru(bda)(isq)₂ TOF as a function of catalyst concentration in 0.1 M HClO₄. Condition: 200 μ M Chromophore [Ru(5-PO₃H₂-bpy)₃]²⁺, 1.5M Na₂S₂O₈ at 25 °C.

L	Solvent	TON	TOF_{max} (s ⁻¹)	KIE
4-CF -4-PO H -bpy	HNO ₃	135	0.245	1.40
4-C1 ₃ -4-1 O ₃ 11 ₂ -0py	DNO ₃	100	0.175	1.40
4-CF -5-PO H -bpy	HNO ₃	110	0.143	1.00
$4 - Cr_3 - 3 - rO_3 r_2 - opy$	DNO ₃	110	0.131	1.09
4-PO H -bny	HNO ₃	140	0.245	1 9 1
4-rO ₃ 11 ₂ -0py	DNO ₃	120	0.135	1.01
5-PO H -bny	HNO ₃	130	0.220	2 1 1
5-r0 ₃ 1 ₂ -0py	DNO ₃	140	0.090	2.44
4-CF -bpy	HNO ₃	120	0.205	0.05
	DNO ₃	130	0.215	0.95
5-CF -bny	HNO ₃	170	0.188	0.87
5 Cr ₃ opy	DNO ₃	160	0.215	0.07

Table S5. KIEs of chromophores $[Ru(L)_3]^{2+}$ in 0.1 M Nitric Acid (pH 1).

^{*a*} KIE was obtained from photochemical water oxidation experiments. Condition: 200 μ M chromophore; 20 μ M catalyst, Ru(bda)(isq)₂; 1 M or 1.5 M Na₂S₂O₈ at 25 °C.

Figure S9. Stern Volmer Plot for $[Ru(5-PO_3H_2-bpy)_3]^{2+}$ in (*left*) 0.1M HClO₄ and (*right*) 0.1M HNO₃ at room temperature.

Figure S10. [Ru(5-Me-5'-CH₂-PO₃H₂-bpy)₃]²⁺[Cl⁻]₂ properties: (*top left*) molecular structure; (*top right*) square wave voltammograms; (*bottom left*) Stern Volmer Plot; (*bottom right*) TON changing with time.

Synthetic Procedures

Figure S11. Synthesis of diethyl (4'-(trifluoromethyl)-[2,2'-bipyridin]-4-yl)phosphonate ligand.

Synthesis of 4-chloro-4'-(trifluoromethyl)-2, 2'-bipyridine. An oven-dried round-bottomed flask was charged with tetrakis(triphenylphosphine)palladium(0) (220 mg, 0.19 mmol) and placed under an argon atmosphere. 2-bromo-4-(trifluoromethyl) pyridine (430 mg, 1.91 mmol), 4-chloro-2-(tributylstannyl) pyridine (1 g, 2.48 mmol) and 60 mL anhydrous toluene were added. The reaction mixture was degassed with argon for 15 min and slowly warmed up to 120 °C and refluxed under argon overnight. After cooling, the solid material was separated by filtration. The filtrate was taken to dryness by rotatory evaporation and a dark brown oil was obtained. The crude product was dissolved in 100 mL dichloromethane and extracted with 6 M HCl (30 mL × 3). The combined aqueous phase was neutralized with 25% ammonium hydroxide to pH ~8. The white solid product that precipitated was collected by vacuum filtration, washed with 10% NH₄OH and then water. The product was dried under vacuum to provide 440 mg of a white solid in 89% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.83 (d, *J* = 5.0 Hz, 1H), 8.66 (s, 1H), 8.58 (d, *J* = 5.2 Hz, 1H), 8.47 (d, *J* = 1.5 Hz, 1H), 7.54 (d, *J* = 4.7 Hz, 1H), 7.35 (dd, *J* = 5.2, 1.8 Hz, 1H).

Synthesis of diethyl (4'-(trifluoromethyl)-[2,2'-bipyridin]-4-yl)phosphonate. An oven-dried round-bottomed flask was charged with 4-chloro-4'-(trifluoromethyl)-2,2'-bipyridine (350 mg, 1.356 mmol), palladium(II) acetate (30 mg, 0.136 mmol), bis(diphenylphosphino)ferrocene (150 mg, 0.272 mmol) and placed under an argon atmosphere. Diethyl phosphite (420 uL, 3.26 mmol), triethylamine (460 uL, 3.26 mmol) and 50 mL anhydrous toluene were added. The reaction mixture was degassed with argon for 15 min and slowly warmed up to 120 °C then refluxed under argon overnight. After cooling, solids were separated by filtration, the filtrate was taken to dryness by rotatory evaporation, and a dark brown oil was obtained. The crude product was purified by column chromatography on silica (100% dichloromethane then 98% dichloromethane with 2% methanol) to provide the title compound as yellow oil (325 mg, 0.9 mmol). Yield: 67 %. ¹H NMR (400 MHz, CDCl₃): δ 8.88 – 8.76 (m, 3H), 8.67 (s, 1H), 7.73 (dd, *J* = 13.0, 4.3 Hz, 1H), 7.53 (d, *J* = 4.1 Hz, 1H), 4.25 – 4.11 (m, 4H), 1.35 (t, *J* = 7.0 Hz, 6H).

Figure S12. ¹H NMR spectrum for 4'-CF₃-4-PO₃Et₂-bpy in CDCl₃.

Synthesis of diethyl (4'-(trifluoromethyl)-[2,2'-bipyridin]-5-yl)phosphonate. Diethyl (4'-(trifluoromethyl)-[2,2'-bipyridin]-5-yl)phosphonate was synthesized using the same procedure used for diethyl (4'-(trifluoromethyl)-[2,2'-bipyridin]-4-yl)phosphonate but using 5-chloro-2-(tributylstannyl) pyridine (1 g, mmol) and 5-chloro-4'-(trifluoromethyl)-2,2'-bipyridine (365 mg, 1.02 mmol). After chromatography (100% dichloromethane then 98% dichloromethane with 2% methanol), some diethyl phosphite remained; however, it does not affect the next step, and the material was used without further purification. Yield: 75 %. ¹H NMR (400 MHz, CDCl₃): δ 9.04 (d, *J* = 6.1 Hz, 1H), 8.87 (d, *J* = 5.0 Hz, 1H), 8.74 (s, 1H), 8.55 (dd, *J* = 7.9, 2.8 Hz, 1H), 8.29 – 8.21 (m, 1H), 7.57 (d, *J* = 4.8 Hz, 1H), 4.26 – 4.07 (m, 4H), 1.36 (t, *J* = 7.1 Hz, 6H).

Figure S13. ¹H NMR spectrum for 4'-CF₃-5-PO₃Et₂-bpy in CDCl₃.

Synthesis of diethyl [2,2'-bipyridin]-4-ylphosphonate. diethyl [2,2'-bipyridin]-4-ylphosphonate was synthesized by a procedure similar to diethyl (4'-(trifluoromethyl)-[2,2'-bipyridin]-4-yl)phosphonate using 4-chloro-2,2'-bipyridine (290 mg, 1.53 mmol). After chromatography (100% dichloromethane then 98% dichloromethane with 2% methanol), some diethyl phosphite remained, and the material was used without further purification. Yield: 88 %. ¹H NMR (400 MHz, CDCl₃): δ 9.03 (d, J = 6.0 Hz, 1H), 8.71 (d, J = 4.6 Hz, 1H), 8.56 – 8.42 (m, 2H), 8.21 (ddd, J = 12.8, 8.1, 1.7 Hz, 1H), 7.85 (t, J = 7.0 Hz, 1H), 7.39 – 7.33 (m, 1H), 4.16 (td, J = 14.3, 7.1 Hz, 8H), 1.36 (td, J = 7.1, 2.7 Hz, 11H), 1.24 (t, J = 7.0 Hz, 3H).

Figure S14. ¹H NMR spectrum for 4-PO₃Et₂-bpy in CDCl₃.

Synthesis of diethyl [2,2'-bipyridin]-5-ylphosphonate. [2,2'-bipyridin]-5-ylphosphonate was synthesized by a procedure similar to [2,2'-bipyridin]-4-ylphosphonate using 5-chloro-2,2'-bipyridine (330 mg, 1.73 mmol) in place of 4-chloro-2,2'-bipyridine. After chromatography (100% dichloromethane then 98% dichloromethane with 2% methanol), some diethyl phosphite remained, and the material was used without further purification. Yield: 93 %. ¹H NMR (400 MHz, CDCl₃): δ 9.03 (d, *J* = 6.0 Hz, 1H), 8.71 (d, *J* = 4.6 Hz, 1H), 8.56 – 8.42 (m, 2H), 8.21 (ddd, *J* = 12.8, 8.1, 1.7 Hz, 1H), 7.85 (t, *J* = 7.0 Hz, 1H), 7.39 – 7.33 (m, 1H), 4.16 (td, *J* = 14.3, 7.1 Hz, 8H), 1.36 (td, *J* = 7.1, 2.7 Hz, 11H), 1.24 (t, *J* = 7.0 Hz, 3H).

Figure S15. ¹H NMR spectrum for 5-PO₃Et₂-bpy in CDCl₃.

Figure S16. Synthesis of 4-(trifluoromethyl)-2,2'-bipyridine ligand.

Synthesis of 4-(trifluoromethyl)-2,2'-bipyridine. 4-(trifluoromethyl)-2,2'-bipyridine was synthesized by a procedure similar to 5'-chloro-4-(trifluoromethyl)-2,2'-bipyridine except that 2-(tributylstannyl) pyridine (1.06 mg, 2.8mmol) was used in place of 5-chloro-2-(tributylstannyl) pyridine. Yield: 80%. ¹H NMR (400 MHz, CDCl₃): δ 8.84 (d, *J* = 5.0 Hz, 1H), 8.71 (dd, *J* = 7.1, 3.0 Hz, 2H), 8.44 (d, *J* = 8.0 Hz, 1H), 7.85 (td, *J* = 7.8, 1.7 Hz, 1H), 7.56 – 7.47 (m, 1H), 7.36 (ddd, *J* = 7.5, 4.8, 1.0 Hz, 1H).

Figure S17. ¹H NMR spectrum for 4-CF₃-bpy in CDCl₃.

Synthesis of 5-(trifluoromethyl)-2,2'-bipyridine. 5-(trifluoromethyl)-2,2'-bipyridine was synthesized by a procedure similar to 4-(trifluoromethyl)-2,2'-bipyridine except that 2-bromo-5-(trifluoromethyl) pyridine (500 mg, 2.22 mmol) was used in place of 2-bromo-4-(trifluoromethyl) pyridine. Yield: 80%. ¹H NMR (400 MHz, CDCl₃): δ 8.92 (s, 1H), 8.70 (s, 1H), 8.64 – 8.35 (m, 2H), 8.04 (s, 1H), 7.84 (s, 1H), 7.36 (s, 1H).

Figure S18. ¹H NMR spectrum for 5-CF₃-bpy in CDCl₃.

Figure S19. Synthesis of diethyl ((5'-methyl-[2,2'-bipyridin]-5-yl)methyl)phosphonate ligand.

Synthesis of diethyl ((5'-methyl-[2,2'-bipyridin]-5-yl)methyl)phosphonate. A roundbottomed flask was charged with 5,5'-dimethyl-2,2'-bipyridine (3.1 g, 16.8 mmol), NBS (3 g, 16.8 mmol), and AIBN (140 mg, 5% eq.) then placed under an argon atmosphere. 75 mL anhydrous carbon tetrachloride was added. The reaction mixture was degassed with argon for 10 min then refluxed at 77 °C for 17 hours. The mixture was filtered while hot, and the filtrate was stored in a refrigerator for 2 days to precipitate out any dibromo derivative which was separated by filtration. After rotary evaporation of the filtrate, the 5-(bromomethyl)-5'-methyl-2,2'-bipyridine (4.78 mmol) was then reacted with triethyl phosphite (28 mmol) at 90 °C under Ar for 5 hours. The crude product was purified by chromatography on silica (100% dichloromethane then 98% dichloromethane with 2% methanol) to provide 2.95 g (9.23 mmol) of the title compound as a yellow oil. Yield: 82%. ¹H NMR (400 MHz, CDCl₃): δ 8.52 (s, 1H), 8.46 (s, 1H), 8.28 (d, *J* = 8.2 Hz, 1H), 8.22 (d, *J* = 8.1 Hz, 1H), 7.77 – 7.71 (m, 1H), 7.59 (d, *J* = 8.1 Hz, 1H), 4.02 (dd, *J* = 15.2, 7.1 Hz, 4H), 3.16 (d, *J* = 21.7 Hz, 2H), 2.36 (s, 3H), 1.24 (t, *J* = 7.0 Hz, 6H).

Figure S20. ¹H NMR spectrum for 5-Me-5'-CH₂-PO₃Et₂-bpy in CDCl₃.

Figure S21. Synthesis of [Ru(4-CF₃-5'-PO₃H₂-bpy)₃]Cl₂ chromophore.

Synthesis of $[Ru(4'-CF_3-4-PO_3H_2-bpy)_3][Cl]_2$. The complex was prepared by a modification of the procedure reported for $[Ru(4,4'-(PO_3H_2)_2-bpy)_3]Cl_2.^5 RuCl_3.3H_2O$ (61 mg, 0.233 mmol) and diethyl (4'-(trifluoromethyl)-[2,2'-bipyridin]-5-yl)phosphonate (335 mg, 0.93 mmol) were suspended in 40 mL of EtOH. The mixture was heated at 150 °C in a microwave reactor for 4 hours and periodically monitored by UV-vis until only the ¹MLCT (~460nm) absorption is present. After removing the solvent and washing the solid with diethyl ether, a mixture of $[Ru(4'-CF_3-4-PO_3Et_2-bpy)_3]Cl_2$ and $[Ru(4'-CF_3-4-PO_3H_2-bpy)_3]Cl_2$ was obtained. The mixture was then hydrolyzed in 6M HCl at 120 °C overnight. After removing the solvent by rotatory evaporation, the material was purified by chromatography on Sephadex LH20 to provide the title complex as an orange-red solid (200 mg, 83% yield). ¹H NMR (400 MHz, D₂O): δ 8.48 – 8.36 (m, 2H), 7.61 (dd, *J* = 10.4, 9.7 Hz, 1H), 7.37 – 7.16 (m, 3H). HR-MS (ESI): m/z⁺ = 504.9728 (M²⁺ - 4H⁺). Elemental Analysis (calcd., found) for C₃₃H₂₄F₉N₆O₉P₃RuCl₂·4H₂O: C (34.27, 33.91), H (2.79, 2.77), N (7.27, 6.95).

Figure S22. ¹H NMR spectrum for $[Ru(4'-CF_3-4-PO_3H_2-bpy)_3]Cl_2$ in D₂O.

Figure S23. Experimental (top) and simulated (bottom) mass spectrum for $[Ru(4'-CF_3-4-PO_3H_2-bpy)_3]Cl_2$ in MeOH.

Synthesis of [Ru(4'-CF₃-5-PO₃H₂-bpy)₃]Cl₂. A procedure similar to [Ru(4'-CF₃-4-PO₃H₂-bpy)₃]Cl₂ was used substituting diethyl (4'-(trifluoromethyl)-[2,2'-bipyridin]-5-yl)phosphonate (335 mg, 0.93 mmol) in place of diethyl (4'-(trifluoromethyl)-[2,2'-bipyridin]-4-yl)phosphonate. Yield: 210 mg, ~85%. ¹H NMR (400 MHz, D₂O): δ 8.65 (s, 1H), 8.41 (s, 1H), 8.09 (d, *J* = 8.8 Hz, 1H), 7.98 – 7.72 (m, 2H), 7.45 (s, 1H). HR-MS (ESI): m/z⁺ = 504.9727 (M²⁺ - 4H⁺). Elemental

Analysis (calcd., found) for $C_{33}H_{24}F_9N_6O_9P_3RuCl_2\cdot 4H_2O$: C (34.27, 34.45), H (2.79, 2.82), N (7.27, 6.96).

Figure S24. ¹H NMR spectrum for [Ru(4'-CF₃-5-PO₃H₂-bpy)₃]Cl₂ in D₂O.

Figure S25. Experimental (top) and simulated (bottom) mass spectrum for [Ru(4'-CF₃-5-PO₃H₂-bpy)₃]Cl₂.

Synthesis of [Ru(4-PO₃H₂-bpy)₃]Cl₂. [Ru(4-PO₃H₂-bpy)₃]Cl₂ was synthesized by a procedure similar to [Ru(4-CF₃-5-PO₃H₂-bpy)₃]Cl₂ except that diethyl [2,2'-bipyridin]-4-ylphosphonate (292 mg, 1 mmol) was used in place of diethyl (4'-(trifluoromethyl)-[2,2'-bipyridin]-5-yl)phosphonate and reacted at 150 °C in the microwave for 40 minutes. Yield: 165 mg, 80%. ¹H NMR (400 MHz,

D₂O): δ 8.31 (dd, J = 11.2, 3.9 Hz, 1H), 8.19 (d, J = 8.1 Hz, 1H), 7.70 (dd, J = 12.0, 7.6 Hz, 1H), 7.52 – 7.28 (m, 2H), 7.23 – 7.10 (m, 1H), 7.01 (d, J = 5.9 Hz, 1H). HR-MS (ESI): m/z⁺ = 806.9897 (M²⁺ - 3H⁺). Elemental Analysis (calcd., found) for C₃₀H₂₇N₆O₉P₃RuCl₂·H₂O: C (40.10, 40.13), H (3.25, 3.29), N (9.35, 9.18).

Figure S26. ¹H NMR spectrum for $[Ru(4-PO_3H_2-bpy)_3]Cl_2$ in D₂O.

Figure S27. Experimental (top) and simulated (bottom) mass spectrum for $[Ru(4-PO_3H_2-bpy)_3]Cl_2$.

Synthesis of [Ru(5-PO₃H₂-bpy)₃]Cl₂. [Ru(5-PO₃H₂-bpy)₃]Cl₂ was synthesized by a procedure similar to [Ru(4-PO₃H₂-bpy)₃]Cl₂ except that diethyl [2,2'-bipyridin]-5-ylphosphonate (292 mg, 1 mmol) was used in place of diethyl [2,2'-bipyridin]-4-ylphosphonate. Yield: 165 mg, 80%. ¹H NMR (400 MHz, D₂O): δ 8.11 (dd, *J* = 13.4, 6.3 Hz, 2H), 7.79 (t, *J* = 8.3 Hz, 1H), 7.65 (dt, *J* = 17.3, 8.1 Hz, 2H), 7.43 – 7.27 (m, 1H), 6.99 – 6.91 (m, 1H). HR-MS (ESI): m/z⁺ = 806.9908 (M²⁺ - 3H⁺). Elemental Analysis (calcd., found) for C₃₀H₂₆N₆O₉P₃RuCl·H₂O: C (41.8, 42.07), H (3.27, 3.31), N (9.75, 9.81).

Figure S28. ¹H NMR spectrum for $[Ru(5-PO_3H_2-bpy)_3]Cl_2$ in D₂O.

Figure S29. Experimental (top) and simulated (bottom) mass spectrum for $[Ru(5-PO_3H_2-bpy)_3]Cl_2$.

Figure S30. Synthesis of [Ru(4-CF₃-bpy)₃](OTf)₂ chromophore.

Synthesis of [Ru(4-CF₃-bpy)₃](OTf)₂. [Ru(4-CF₃-bpy)₃](OTf)₂ was prepared by a procedure analogous to the other complexes. RuCl₃· 3H₂O (90 mg, 0.344 mmol) and 4-(trifluoromethyl)-2,2'-bipyridine (350 mg, 1.56 mmol) were suspended in 40 mL EtOH. The mixture was heated at 150 °C in the microwave for 4 hours. After removing the solvent, a saturated aqueous solution of LiOTf was added to precipitate and an orange-red solid, which was collected by filtration. Final purification was achieved by chromatography on silica eluting with acetonitrile and LiOTf. After concentrating the solution to ~5mL, a saturated aqueous solution of LiOTf was added to precipitate again and to obtain the pure product. Yield: 340 mg, 92%. ¹H NMR (400 MHz, CD₃CN): δ 8.78 (s, 2H), 8.67 (d, *J* = 8.2 Hz, 2H), 8.14 (t, *J* = 7.9 Hz, 2H), 8.00 (d, *J* = 5.9 Hz, 1H), 7.91 (t, *J* = 5.5 Hz, 1H), 7.71 (t, *J* = 5.0 Hz, 1H), 7.64 (d, *J* = 5.9 Hz, 2H), 7.51 – 7.44 (m, 2H). HR-MS (ESI): m/z⁺ = 923.0248 (M ²⁺ + OTf). Elemental Analysis (calcd., found) for C₃₅H₂₁S₂F₁₅N₆O₆Ru·H₂O: C (38.36, 38.29), H (1.86, 1.77), N (7.65, 7.62).

Figure S31. ¹H NMR spectrum for [Ru(4-CF₃-bpy)₃](OTf)₂ in CD₃CN.

Figure S32. Experimental (top) and simulated (bottom) mass spectrum for $[Ru(4-CF_3-bpy)_3](OTf)_2$.

Synthesis of [Ru(5-CF₃-bpy)₃](PF₆)₂. [Ru(5-CF₃-bpy)]₃(PF₆)₂ was synthesized by a procedure analogous to [Ru(4-CF₃-bpy)₃](OTf)₂ except that 5-(trifluoromethyl)-2,2'-bipyridine (350 mg, 1.56 mmol) was used in place of 4-(trifluoromethyl)-2,2'-bipyridine and in the final precipitation, NH₄PF₆ was used instead of LiOTf. Yield: 350 mg, 96%. ¹H NMR (400 MHz, CD₃CN): δ 8.67 (d, *J* = 8.6 Hz, 1H), 8.60 (d, *J* = 8.1 Hz, 1H), 8.37 (d, *J* = 8.7 Hz, 1H), 8.14 (dd, *J* = 9.7, 6.0 Hz, 1H), 7.98 (s, 1H), 7.87 (d, *J* = 4.4 Hz, 1H), 7.75 (d, *J* = 6.2 Hz, 1H), 7.64 (d, *J* = 5.3 Hz, 1H), 7.52 – 7.44 (m, 1H). HR-MS (ESI): m/z⁺ = 919.0370 (M²⁺ + PF₆⁻). Elemental Analysis (calcd., found) for C₃₃H₂₁F₂₁N₆P₂Ru: C (36.84, 36.90), H (1.90, 1.80), N (7.85, 7.88).

Figure S33. ¹H NMR spectrum for $[Ru(5-CF_3-bpy)_3](PF_6)_2$ in CD₃CN.

Figure S34. Experimental (top) and simulated (bottom) mass spectrum for $[Ru(5-CF_3-bpy)_3](PF_6)_2$.

Synthesis of $[Ru(bpy)_2(5-PO_3H_2-bpy)]Cl_2$. $[Ru(bpy)_2(5-PO_3H_2-bpy)_3]Cl_2$ was synthesized by a similar procedure to $[Ru(bpy)_2(4,4'-(PO_3H_2)_2-bpy)]Cl_2,^6$ starting from $[Ru(bpy)_2Cl_2]$ (113 mg, 0.233 mmol) and diethyl [2,2'-bipyridin]-5-ylphosphonate (68 mg, 0.233 mmol, 1 equiv.) After removing the solvent and washing the solid with diethyl ether, the mixture was hydrolyzed in 6M HCl at 120 °C overnight. After removing the solvent by rotatory evaporation and purification by chromatography on Sephadex LH20, an orange red solid was obtained. Yield: 125 mg, 75%. ¹H NMR (400 MHz, D₂O): δ 7.90 (t, *J* = 7.4 Hz, 5H), 7.64 – 7.55 (m, 2H), 7.43 (dd, *J* = 17.8, 7.9 Hz, 6H), 7.20 – 7.04 (m, 5H), 6.83 – 6.66 (m, 5H). HR-MS (ESI): m/z⁺ = 649.0695 (M²⁺ - H⁺). Elemental Analysis (calcd., found) for C₃₀H₂₅N₆O₃PRuCl₂·3HCl: C (43.42, 43.68), H (3.40, 3.31), N (10.13, 9.86).

Figure S35. ¹H NMR spectrum for $[Ru(bpy)_2(5-PO_3H_2-bpy)]Cl_2$ in D₂O.

Figure S36. Experimental (top) and simulated (bottom) mass spectrum for [Ru(bpy)₂(5-PO₃H₂-bpy)]Cl₂.

Synthesis of $[Ru(5-Me-5'-CH_2-PO_3H_2-bpy)_3]Cl_2$. $[Ru(5-Me-5'-CH_2-PO_3H_2-bpy)_3]Cl_2$ was synthesized by a procedure similar to $[Ru(4-PO_3H_2-bpy)_3]Cl_2$ except that diethyl ((5'-methyl-[2,2'bipyridin]-5-yl)methyl)phosphonate (240 mg, 0.212 mmol) was used in place of diethyl [2,2'bipyridin]-4-ylphosphonate. Yield: 70% (143 mg). ¹H NMR (400 MHz, D₂O): δ 8.13 (s, 2H), 7.53 (dd, *J* = 139.6, 50.8 Hz, 4H), 2.54 (d, *J* = 97.8 Hz, 2H), 1.91 (s, 3H). HR-MS (ESI): m/z⁺ = 891.0834 (M²⁺ - 3H⁺). Elemental Analysis (calcd., found) for C₃₆H₃₉N₆O₉P₃RuCl₂·H₂O·2CH₃OH: C (43.60, 43.85), H (4.72, 4.77), N (8.03, 8.06).

Figure S37. ¹H NMR spectrum for $[Ru(5-Me-5'-CH_2-PO_3H_2-bpy)_3]Cl_2$ in D₂O.

Figure S38. Experimental (top) and simulated (bottom) mass spectrum for [Ru(5-Me-5'-CH₂-PO₃H₂-bpy)₃]Cl₂.

References

1. Harris, R. K.; Becker, E. D.; Cabral de Menezes, S. M.; Goodfellow, R.; Granger, P., NMR nomenclature. Nuclear Spin Properties and Conventions for Chemical Shifts (IUPAC Recommendations 2001). *Pure Appl. Chem.* **2001**, *73*, 1795-1818.

2. Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A., Ru(II) Polypyridine Complexes: Photophysics, Photochemistry, Eletrochemistry, and Chemiluminescence. *Coord. Chem. Rev.* **1988**, *84*, 85-277.

3. Lakowicz, J. R., *Principles of Fluorescence Spectroscopy*. Springer Science & Business Media: 2013.

4. Van Houten, J.; Watts, R. J., Temperature Dependence of the Photophysical and Photochemical Properties of the Tris(2, 2'-bipyridyl)ruthenium (II) Ion in Aqueous Solution. *J. Am. Chem. Soc.* **1976**, *98*, 4853-4858.

5. Shaffer, D. W.; Xie, Y.; Szalda, D. J.; Concepcion, J. J., Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine–Dicarboxylate Complexes. *Inorg. Chem.* **2016**, *55*, 12024-12035.

6. Norris, M. R.; Concepcion, J. J.; Glasson, C. R.; Fang, Z.; Lapides, A. M.; Ashford, D. L.; Templeton, J. L.; Meyer, T. J., Synthesis of Phosphonic Acid Derivatized Bipyridine Ligands and their Ruthenium Complexes. *Inorg. Chem.* **2013**, *52*, 12492-12501.