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 S1. Theoretical methodologies  

S1.1 Parameters and model details for the fine structure 

In the EMA, the single particle electronic wave functions, for the hole and the electron, , are 

written as a product of a radial envelope and a Bloch function . The Bloch 

function are taken at the  point of the Brillouin zone and defined over one unit cell.  

In bulk CdSe, the conduction band is made of s-type orbitals of the Cd atoms and has a symmetry  

in the Td group and the  valence band is made of p type orbitals of the Se atoms. The electron wave 

functions of the ground state of the electrons in the conduction band can be written as  

 (1) 

where the Bloch function  is of s (l=0) symmetry and the spin of the electron s=1/2, with 

projections sz = ±1/2. We consider only the ground state envelope function for the electron, which is 

also of l=0, that is of s symmetry. The electron state is labeled 1Se where S stands for the L value of 

the radial wave function and is a two-fold degenerate state with a total angular momentum S = 1/2 

and Sz = ±1/2. 

The structure of the single particle states of the hole of the valence band is more complex. Due to the 

strong spin orbit coupling in the bulk between the orbital angular momentum of the p shell and the 

spin of the hole, spin is not a good quantum number for the hole Bloch function.1,2 The manifold of 

states is further split by the exchange coupling and the crystal field coupling that can lead to band 

mixing between hole functions of different orbital quantum number.  

Taking into account the strong spin orbit coupling in the valence band of bulk CdSe, two values of 

the total hole angular momentum, , for the Bloch function are possible, j = 3/2 and j=1/2. In 

the simple model that we use, we neglect band mixing and take L =0 for the angular momentum of 

the radial envelope function, so that Jh, the total angular momentum of a hole state is equal to that of 

the hole Bloch function. We therefore have two sets of single particle wave functions for the hole: 

the lower four degenerate J = 3/2 branch (heavy and light hole states), with MJ projection values,        

-3/2, -1/2, +1/2 and +3/2, and the higher two fold degenerate J = 1/2 band with projections MJ = -1/2 

and +1/2. 

When combining the angular momentum values with the electron spin, one new quantum number, 

the parity quantum number  is obtained, which leads to a 8 degenerate manifold for the J 

= 3/2 band with F values 1 and 2 and projections Fz 0, ±1 for F=1 and 0, ±1 and ±2 for F=2 and a 4 

degenerate manifold for the J = 1/2 band, F=0 and F = 1 with Fz 0, ±1. The states Fz = 0 and  ±1 of 

the J=3/2 branch are given a subscript L while those of the J=1/2 branch are given a subscript U. The 
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hole states are usually labeled  with the J value of the angular momentum and the angular 

momentum of the envelope function. The single particle wave function for the hole then takes the 

form: 

 (2) 

In the fine structure model used here, only S hole states,  and  appear since the envelope 

function is restricted to L=0 states. The P hole states give rise to exciton that fall outside of the laser 

band width for the QD sizes considered in the experiments. 

The EMA and k·p parabolic expansion at the  point of the Brillouin zone provide a one particle 

Schrödinger equation for the radial envelope functions. Using a finite depth spherical confinement 

potential, one gets specific effective masses for the different states of the hole and the electron inside 

and outside the spherical well.3 The model parameters were determined using spherical wells for the 

confinement potential (particle in a sphere, PS)  for the hole and the electron (see for example ref. 4). 

  

, i=e,h  (3) 

which can be solved implicitly to get the eigen function  and Ei .  is the confining spherical 

potential of radius a 

 (4) 

The effective mass of the hole or the electron inside the QD are =0.13 and =0.82 for the electron 

and the hole, respectively. The effective mass outside the QD is taken equal to 1. The depth of the 

confinement potentials depend on the QD size and were estimated from the empirical relation given 

in ref.5 : , . The term   Veh is the diagonal (first 

order in perturbation theory) Coulomb attraction between the hole and the electron wave function. It 

is computed as in ref. 4.  

The energy of an exciton band takes the form: 

 (5) 

where Egap  is the bulk value for CdSe (= 1.75 eV). Ee and Eh are computed by solving the Schrödinger 

equation Eq. (3) for the electron and the hole. 

 LJ

   
ψ h

LJ r( ) = Rh r( )uJ ,Mz r( )

  S1/2   S3/2

Γ

HiRi r( ) = − !
2

2
∇ 1
mi ri( )∇ +Vi ri( )⎛

⎝
⎜

⎞

⎠
⎟ Ri r( ) = EiRi r( )

Ri r( )   Vi ri( )

Vi r( ) = 0 r < a
Vi
0 r > a

⎧
⎨
⎪

⎩⎪

  me
*

  mh
*

  V0
e a( ) = 3.49+ 2.47(2a)−1.32

  V0
h a( ) = 5.23+ 0.74(2a)−0.95

Eexciton = Ee − Eh + Egap +Veh



 4 

Excitons are labeled by the angular momentum of the radial envelope function, L, and the spin state, 

s, of the Bloch function for the hole and the electron, . The ground state exciton (lowest 

electronic excited state) is labeled . Here we consider two hole states and one electron 

state, which leads to four exciton bands : , ,  and  where 

we dropped the s value for the electron because it is 1/2 throughout. 

The validity of the PS model for the value of the energy of ground state exciton, (Eq. (5)) 

was checked with respect to results available in the literature that are plotted in Figure S2.1. 

 

Figure S1.1. Comparison between the energy of the GS-  transition computed using Eq. 

(5) and experimental values of the energy for the lowest absorption band of CdSe QD of radius 

ranging from 1 and 3 nm taken from the refs.5–9  

 

 

The PS model is known to be less accurate for larger QD sizes where interband mixing starts to be 

important.1,10 The computed value for GS-  transition the QD of 3.3 nm (1.75 nm radius) 

is in good agreement with the experimental data of Figure S1.1. For the larger QD of 4.4 nm, the 

value is underestimated. In order to get a correct fit of the absorption spectrum shown in Figure 1d, 

we took a QD diameter of 3.9 nm (radius of 1.95 nm) for the model results which is well within the 

width of the size dispersion histogram reported in Figure 2(f). The simple PS model also significantly 

over estimates the energy of the excited exciton band 2S which involves the first excited hole state. 

Moreover, accurate spectroscopic data for excited excitons are scarcer. The discrepancy arises both 

from neglecting off diagonal Coulomb interactions and band mixing. For fitting the absorption spectra 
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of Figure 2(a) and (d), the value of the energy difference between the two lowest excitons was 

therefore taken from a fit to the spectroscopic data of ref.11. 

 

 
 

Figure S1.2. Experimental energy difference between first (E1= ) and second absorption 

maxima (E2= ) of CdSe QD of different radius as a function of the absolute value of the 

maximum absorption of the first maximum. Extracted and adapted from Norris and Bawendi.11 The 

black line is the linear fit is the linear fit (E2 – E1= – 0.524 + 0.294 ´ E1) in the E1 range [1.9-2.9] eV. 

 

 

 

The two fitted energies for the  and  excitons were then used to build the fine 

structure matrix that includes the SO coupling and therefore also the higher spin bands (S=1/2) of the 

hole states, leading to two more excitons bands : the  and the . So in total we 
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bands. The spin orbit interaction can only couple states that corresponds to triplet and singlet 
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on Table S1.2 for the 2S excitonic band. The values of the parameters used for the coupling are given 

in Table S1.3. The value of the SO coupling was obtained from fitting the experimental absorption 

spectra of QD of 3.3 and 4.4 nm of Figure 2. As explained in the main text, the obtained value for the 

SO coupling is 220 meV, about half of the bulk value. A computational study on the effect of SO in 
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between the 1S1/2 and the 2S3/2 bands decreases with the value of the SO coupling. Systematic 

modeling studies show these two bands can cross for low values,14 see also ref.15 for CdS 

nanocrystals. The set of parameters reported in Table S2.3 is valid for the absorption spectra measured 

in range of diameters 3.3 to 4.9 nm.  

The exciton transition dipoles, , where r is the particle coordinate, were computed 

numerically using the wave functions of the hole and the electron, obtained by Eq. (3) as a function 

of the QD radius, Figure S1.3 for the 1S and 2S exciton bands. The states of the 1S band are about 

twice brighter that the states of the 2S band. In each band, the states of the S3/2 manifold with Fz = ±2 

and 0L are dark. Transition dipole moments of 1S and 2S bands are redistributed over all bright 

excitons of the fine structure based on their coefficients after diagonalization. 

 
Figure S1.3. Computed transition dipoles of the 1S and 2S using the PS model as a function of the 

QD size. 
 

 

Table S1.1. Model exciton Hamiltonian, 1S. 
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Table S1.2. Model exciton Hamiltonian, 2S. 

 

 

 

 

 

 

 

 

Where: 

 
Table S1.3. Parameters used for modeling the fine structure. 

 
 

S1.2 Absorption spectra 

The eigen energies of the fine structure excitons are obtained by diagonalization of the matrices of 

Tables S1.1 and S1.2 and the oscillator strengths of the bright eigenstates from the eigenvectors. 

These provide stick spectra shown in Figures 2(a) and 1(d) and the level structures shown in Figure 

1 of the main text and in the right panels of Figures S1.4 and S1.5. The absorption spectra of Figure 

2(a) and 1(d) are obtained by convoluting the stick spectra with a Gaussian of FWHM of 0.08 eV. 

The projection quantum number Fz is conserved upon diagonalization but because of the spin orbit 

and the exchange interaction, rigorously, the zero order spin label 3/2 and 1/2 is lost. However, as 

shown in scheme 1 and in Figures S1.4 and S1.5, for each S band, groups of eigenstates have energies 

that correspond to the energy of the S3/2 and S1/2 zero order (zo) states. We therefore kept this labeling 

in Figure 1 and in Figure 2, as is typically done in the assignment of spectroscopic data. The 8 lowest 

energy eigenstates fall in the S3/2 energy range. The lowest ones (1 and 2) have Fz values equal to -2 
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and +2. They are not mixed by the SO or the exchange interactions. Their energies correspond to the 

zo energies. The next pair of degenerate eigenstates have values of Fz = -1 and +1. They are 

superpositions of the three zero order eigenstates of the Fzv= -1 and Fz = +1 manifolds, respectively. 

Their main weight is on the zero order S3/2 excitons (i.e., zo states 4 and 8 in Table S1.3 which belong 

to the L branch (from F=2)). The next eigenstate belongs to Fz = 0, it is a mixture of the zo exciton 9 

(S1/2) and 10 and 11 (both S3/2) with its main weight on exciton 11 (L branch of F=0). Next comes 

a degenerate pair of Fz = -1 and Fz = +1 eigenstates, superpositions with equal weights of the S1/2 

and S3/2 excitons (zo excitons 3, 5 and 6,7 respectively). The highest eigenstate is F = 0. It is a 

superposition of zo states 9 (S1/2), 10 (S3/2) and 12 (S1/2) with the highest weight on state 10 (L branch). 

The 4 highest eigenstates have energies that fall in the range of the S1/2 zo states. They are however 

all of mixed S1/2 and S3/2 character. The lowest state of this manifold has Fz = 0, with equal weights 

on zo states 9, 10 and 12. Next is a pair of Fz = -1 and Fz = +1 degenerate eigenstates, with equal 

weights on zo states 3, 4, 5 and 6, 7, 8 respectively. The highest state is Fz = 0 with equal mixtures of 

zo states 9, 11 and 12.  

Because the value of the SO coupling between the S3/2 and S1/2 bands is larger than the energy 

difference between the 1S and the 2S exciton bands, for the range of QD size investigated, one obtains 

the order shown in Scheme 1 for the eigen states: a band of 8 states in the range of 1S3/2, a band of 8 

states in the range of 2S3/2 and then two bands of 4 states in the range of 1S1/2 and 2S1/2.  

 

S1.3 Assignment of modeled coherences  

The transition energies between the different bands of eigenstates lead to the spectra of the transition 

frequencies plotted in the left panels of Figures S1.4 and S1.5 for the 3.3 and 4.4 nm QD, respectively. 

Based on the analysis given above in Section S2.2, one can label the transitions frequencies according 

to an intra-band and inter-band character.  
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Figure S1.4.  Energy gaps involved in the bright transitions between fine structure levels in CS3.3, 

calculated using the energies reported in the inset (the 24 fine levels are labeled by increasing energy 

from 1 to 24.). The transitions are color-coded as intra-band 1S1/2 (magenta); intra-band 1S3/2 and 

2S3/2 (blue); intra-band 1S3/2 and 1S1/2 (green); inter-band 2S3/2-1S1/2 (yellow) and 1S3/2-2S3/2 (red). 

Close to each line, the pairs of states (i-j, with i and j ranging from 1 to 24) separated by that specific 

energy gap are reported. 
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Figure S1.5. Energy gaps involved in the bright transitions between fine structure levels in CS4.4, 

estimated using the energies reported in the inset (the 24 fine levels are labeled by increasing energy 

from 1 to 24.). The transitions are color-coded as intra-band1S1/2 (magenta); intra-band 1S3/2 and 2S3/2 

(blue); intra-band 1S3/2 and 1S1/2 (green); inter-band 2S3/2-1S1/2 (yellow) and inter-band 1S3/2-2S3/2 

(red). Close to each line, the pairs of states (i-j, with i and j ranging from 1 to 24) separated by that 

specific energy gap are reported. 
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S2. 2DES measures 

S2.1 Pulse characterization 

 

 

Figure S2.1. FROG measurement at the sample position in a 1mm cuvette filled with dimethyl-

sulphoxide (laser profile of Figure 2(d)). The pulse duration is estimated to be 8 fs.  

 

S2.2 Data analysis 

The datasets are analyzed with a global complex multi-exponential fit method as proposed in ref. 16,17.  

Briefly, the decay of the total complex signal at each point of the 2D map is fitted with a global 

function written as a sum of complex exponentials:𝑓 = ∑ 𝑎%𝑒'()𝑒*+, -)⁄ 𝑒*'/)+,0
%12 . Components 

with 𝜔% = 0 describe population decay contributions, whereas components with 𝜔% ≠ 0 represent 

oscillating components associated to coherent dynamics along t2. The corresponding amplitude 𝑎% 

plotted in a 2D map as a function of ω1 and ω3 builds the so-called DAS (decay associated spectra) 

and CAS (coherence associated spectra), respectively. These maps allow the direct visualization of 

the sign and the amplitude distribution of a particular decay component along the 2D spectra. Given 

the 𝑛-th component associated to the time constant 𝜏%, a positive amplitude is found at positions in 

the 2D maps where the signal is decaying with 𝜏%, whereas a negative amplitude is found where the 

signal is rising with 𝜏%. Note that with this methodology it is possible to directly extract the time 

constants regulating the population dynamics but also the dephasing time and phase of the beating 

contributions. 

 

  



 12 

Table S2.1. Population dynamics parameters from the global fitting applied on 2DES data of the different 

samples considered in this work. The first 10 fs have been discarded from the fitting.  

sample component 
Time 

constant 
Physical interpretation DAS 

CS3.3-

MPA 

water 

1 20 fs 
hot carrier relaxation, 

spectral diffusion, scattering 

 

2 197 fs 

Inter-band relaxation and/or 

surface related relaxation 

channels 

 

3 >>1ps 
Relaxation dynamics of the 

lowest energy exciton 

 

CS3.3-

MUA 

water 

1 25 fs 

hot carrier relaxation, 

spectral diffusion, scattering, 

pulse overlap effects 
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2 305 fs 

Inter-band relaxation and/or 

surface related relaxation 

channels 

 

3 >>1ps 
Relaxation dynamics of the 

lowest energy exciton 

 

CS4.4-

TOPO 

hexane 

1 29 fs 
hot carrier relaxation, 

spectral diffusion, scattering 

 

2 >1ps 
Relaxation dynamics of the 

lowest energy exciton 
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S2.2 Additional 2DES data 

 

Figure S2.2. Rephasing 2DES data of CS3.3-MPA in water. 

 

 

 

 

Figure S2.3. Non-rephasing 2DES data of CS3.3-MPA in water. 
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Figure S2.4. Total (pure absorptive) 2DES data of CS3.3-MPA in water. 

 

 

 

 

 

Figure S2.5. Rephasing 2DES data of CS3.3-MUA in water. 
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Figure S2.6. Non-rephasing 2DES data of CS3.3-MUA in water. 

 

 

 

 

Figure S2.7. Total (pure absorptive) 2DES data of CS3.3-MUA in water. 
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Figure S2.8. Rephasing 2DES data of CS4.4-TOPO in hexane. 

 

 

 

 

 

Figure S2.9. Non-rephasing 2DES data of CS4.4-TOPO in hexane. 

 



 18 

 

Figure S2.10. Total (pure absorptive) 2D data of CS4.4-TOPO in hexane. 
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