Synthesis and Pharmacological Evaluation of Triazolopyrimidinone Derivatives as

Noncompetitive, Intracellular Antagonists for CC

Chemokine Receptors 2 and 5

Natalia V. Ortiz Zacarías, Jacobus P. D. van Veldhoven, Lisa S. den Hollander, Burak Dogan, Joseph Openy, Ya-Yun Hsiao, Eelke B. Lenselink, Laura H. Heitman, Adriaan P. IJzerman*

Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden
University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands

Table of contents:

- Figure S1. Characterization of intracellular ligands in a U2OS-CCR5 β-arrestinrecruitment assay (S3)
- Figure S2. Correlation between $\log \mathrm{P}(\mathrm{cLog} \mathrm{P})$ and affinity $\left(\mathrm{pK}_{\mathrm{i}}\right)$ values in CCR2 (S4)
- Figure S3. Characterization of compounds $\mathbf{3 9}$ and $\mathbf{4 3}$ as potential inverse agonists in hCCR2 (S5)
- Figure S4. Docking of compounds 8, 39, 40 and 43 (S6)
- Figure S5. ${ }^{1} \mathrm{H}$ NMR of compound 39, with peaks assigned (S7)
- Figure S6. ${ }^{13} \mathrm{C}$ NMR of compound 39, with peaks assigned (S8)
- Figure S7. ${ }^{13} \mathrm{C}$ NMR-APT of compound 39, with peaks assigned (S9)
- Table S1. List of intermediate compounds 4aa-na, 4bb-bq, 4eq-ev (S10)
- Table S2. Functional activity of TAK-779 and CCR2-RA-[R] in hCCR5, using a CCL3-induced β-arrestin recruitment assay (S11)
- Table S3. Functional activity of compounds 8, $\mathbf{3 9}$ and $\mathbf{4 3}$ in hCCR2, using a CCL2induced β-arrestin recruitment assay (S12)

Figure S1. Characterization of intracellular ligands in a U2OS-CCR5 β-arrestin-recruitment assay. (a) Increasing concentrations of CCL3-induced β-arrestin recruitment in U2OS-CCR5 cells, with a pEC_{50} value of $8.3 \pm 0.08(6 \mathrm{nM})$ and a pEC_{80} of 7.9 ± 0.08 (14 nM). (b) Inhibition of β-arrestin recruitment in U2OS-CCR5 by the orthosteric compound TAK-779 and several intracellular ligands with different chemical structures, all tested at $1 \mu \mathrm{M}$, after stimulation with an EC_{80} concentration of CCL3. The dashed line indicates 70% inhibition. Only TAK-779 and compound $\mathbf{8}$ were able to inhibit CCL3-induced β-arrestin recruitment more than 70%.

Figure S2. Correlation between $\log \mathrm{P}$ (cLogP) and affinity (pK_{i}) values in CCR2. (a) Correlation shown for compounds $\mathbf{8}$ - $\mathbf{2 3}$ (Table 1), with R^{1} modifications. (b) Correlation shown for all triazolopyrimidinone derivatives. In all cases, cLogP values were calculated using the calculator plugins in MarvinSketch, version 19.1.0, 2019, developed by ChemAxon (http://www.chemaxon.com). pK_{i} values were determined from $\left[{ }^{3} \mathrm{H}\right]$-CCR2-RA-[R] displacement assays in U2OS-CCR2 and are shown in Tables $1-3$.

Figure S3. Characterization of compounds $\mathbf{3 9}$ and $\mathbf{4 3}$ as potential inverse agonists in hCCR2. In absence of CCL2, compounds 39 and $\mathbf{4 3}(1 \mu \mathrm{M})$ decrease basal $\left[{ }^{35} \mathrm{~S}\right] \mathrm{GTP} \gamma \mathrm{S}$ binding levels by $6.9 \pm 0.6 \%$ and $8.2 \pm 1.5 \%$, respectively. Data are presented as normalized mean \pm SEM values of four experiments performed in triplicate, in which 0% represents basal activity and 100% represents $\left[{ }^{35} \mathrm{~S}\right] \mathrm{GTP} \gamma \mathrm{S}$ binding after stimulation with 100 nM CCL2.

Figure S4. Docking of compounds 8, 39, 40 and 43. Overlay showing the proposed binding mode of compounds $\mathbf{8}$ (green), $\mathbf{3 9}$ (yellow), $\mathbf{4 0}$ (pink) and $\mathbf{4 3}$ (orange) in hCCR2b. Model of hCCR2 is based on the crystal structure of CCR2 (PDB 5T1A). ${ }^{1}$

Figure S5. ${ }^{1} \mathrm{H}$ NMR of compound 39, with peaks assigned.
13C-NMR (125 MHz, DMSO-d6) Compound 39

Figure S6. ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 9}$, with peaks assigned.

Figure S7. ${ }^{13} \mathrm{C}$ NMR-APT of compound 39, with peaks assigned.

Table S1. List of intermediate compounds 4aa-na, 4bb-bq, 4eq-ev.

Compound	\mathbf{R}^{3}	R ${ }^{1}$
4aa	Me	$3-\mathrm{Cl}$
4ba	$c \mathrm{Pr}$	$3-\mathrm{Cl}$
4bb	$c \mathrm{Pr}$	H
4bc	$c \mathrm{Pr}$	2-Me
4bd	$c \mathrm{Pr}$	$2-\mathrm{Cl}$
4be	$c \mathrm{Pr}$	$2-\mathrm{OMe}$
4bf	$c \mathrm{Pr}$	3-Me
4bg	$c \mathrm{Pr}$	3-F
4bh	${ }^{\text {Pr }}$	$3-\mathrm{Br}$
4bi	$c \mathrm{Pr}$	3-I
4bj	${ }_{c} \mathrm{Pr}$	$3-\mathrm{OMe}$
4bk	$c \mathrm{Pr}$	3-CF3
4bl	$c \mathrm{Pr}$	4-Me
4bm	$c \mathrm{Pr}$	4-F
4bn	$c \mathrm{Pr}$	4-Cl
4bo	$c \mathrm{Pr}$	$4-\mathrm{Br}$
4bp	$c \mathrm{Pr}$	4-OMe
4bq	${ }^{\text {Pr }}$	3,4-diCl
4ca	Et	$3-\mathrm{Cl}$
4da	Pr	$3-\mathrm{Cl}$
4ea	$i \mathrm{Pr}$	$3-\mathrm{Cl}$
4 eq	$i \mathrm{Pr}$	3,4-diCl
4er	$i \mathrm{Pr}$	2,3-diCl
4es	$i \mathrm{Pr}$	2,5-diCl
4et	$i \mathrm{Pr}$	$3,5-\mathrm{diCl}$
4 eu	$i \mathrm{Pr}$	$3,5-\mathrm{diBr}$
4 ev	$i \mathrm{Pr}$	$3-\mathrm{Br}, 4-\mathrm{Cl}$
4fa	Bu	$3-\mathrm{Cl}$
4ga	2-EtBu	$3-\mathrm{Cl}$
4ha	Pent	$3-\mathrm{Cl}$
4ia	c Pent	$3-\mathrm{Cl}$
4ja	Hex	$3-\mathrm{Cl}$
4ka	Hept	$3-\mathrm{Cl}$
4la	Ph	$3-\mathrm{Cl}$
4ma	4-MePh	$3-\mathrm{Cl}$
4na	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	$3-\mathrm{Cl}$

Table S2. Functional activity of TAK-779 and CCR2-RA-[R] in hCCR5, using a CCL3induced β-arrestin recruitment assay.

Compound	pIC $_{\mathbf{5 0}} \pm \mathbf{S E M}\left(\mathbf{I C}_{\mathbf{5 0}}, \mathbf{n M}\right)$	Hill slope
TAK-779	$8.32 \pm 0.17(6)$	-1.1 ± 0.1
CCR2-RA- $[R]$	$6.15 \pm 0.02(703)$	$-2.4 \pm 0.2^{* *}$

Data represent the mean \pm standard error of the mean (SEM) of three independent experiments performed in duplicate. ${ }^{* *} \mathrm{p}<0.01$ ($\mathrm{p}=0.0038$) versus Hill slope $\left(n_{\mathrm{H}}\right)$ of TAK779 , determined with a two-tailed, unpaired Student's t-test.

Table S3. Functional activity of compounds $\mathbf{8}, \mathbf{3 9}$ and $\mathbf{4 3}$ in hCCR2, using a CCL2-induced β-arrestin recruitment assay.

Compound	$\mathbf{p I C}_{\mathbf{5 0}} \pm \mathbf{S E M}\left(\mathbf{I C}_{\mathbf{5 0}}, \mathbf{n M}\right)$	Hill slope
$\mathbf{8}$	$7.99 \pm 0.01(10)$	-2.7 ± 0.2
$\mathbf{3 9}$	$7.68 \pm 0.05(21)$	-2.5 ± 0.2
$\mathbf{4 3}$	$8.40 \pm 0.01(4)$	-3.4 ± 0.4

Data represent the mean \pm standard error of the mean (SEM) of three independent experiments performed in duplicate.

References:

1. Zheng, Y.; Qin, L.; Ortiz Zacarías, N. V.; de Vries, H.; Han, G. W.; Gustavsson, M.; Dabros, M.; Zhao, C.; Cherney, R. J.; Carter, P.; Stamos, D.; Abagyan, R.; Cherezov, V.; Stevens, R. C.; IJzerman, A. P.; Heitman, L. H.; Tebben, A.; Kufareva, I.; Handel, T. M. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 2016, 540, 458-461.
