Synthesis and Pharmacological Evaluation of Triazolopyrimidinone Derivatives as Noncompetitive, Intracellular Antagonists for CC Chemokine Receptors 2 and 5

Natalia V. Ortiz Zacarías, Jacobus P. D. van Veldhoven, Lisa S. den Hollander, Burak Dogan, Joseph Openy, Ya-Yun Hsiao, Eelke B. Lenselink, Laura H. Heitman, Adriaan P. IJzerman*

Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands

Table of contents:

- Figure S1. Characterization of intracellular ligands in a U2OS-CCR5 β-arrestinrecruitment assay (S3)
- Figure S2. Correlation between log P (cLogP) and affinity (pK_i) values in CCR2 (S4)
- Figure S3. Characterization of compounds 39 and 43 as potential inverse agonists in hCCR2 (S5)
- Figure S4. Docking of compounds 8, 39, 40 and 43 (S6)
- Figure S5. ¹H NMR of compound **39**, with peaks assigned (S7)
- Figure S6. ¹³C NMR of compound **39**, with peaks assigned (S8)
- Figure S7. ¹³C NMR-APT of compound **39**, with peaks assigned (S9)
- Table S1. List of intermediate compounds 4aa-na, 4bb-bq, 4eq-ev (S10)
- Table S2. Functional activity of TAK-779 and CCR2-RA-[R] in hCCR5, using a CCL3-induced β-arrestin recruitment assay (S11)
- Table S3. Functional activity of compounds 8, 39 and 43 in hCCR2, using a CCL2induced β-arrestin recruitment assay (S12)

Figure S1. Characterization of intracellular ligands in a U2OS-CCR5 β -arrestin-recruitment assay. (a) Increasing concentrations of CCL3-induced β -arrestin recruitment in U2OS-CCR5 cells, with a pEC₅₀ value of 8.3 ± 0.08 (6 nM) and a pEC₈₀ of 7.9 ± 0.08 (14 nM). (b) Inhibition of β -arrestin recruitment in U2OS-CCR5 by the orthosteric compound TAK-779 and several intracellular ligands with different chemical structures, all tested at 1 μ M, after stimulation with an EC₈₀ concentration of CCL3. The dashed line indicates 70% inhibition. Only TAK-779 and compound **8** were able to inhibit CCL3-induced β -arrestin recruitment more than 70%.

Figure S2. Correlation between log P (cLogP) and affinity (pK_i) values in CCR2. (a) Correlation shown for compounds **8** – **23** (Table 1), with R¹ modifications. (b) Correlation shown for all triazolopyrimidinone derivatives. In all cases, cLogP values were calculated using the calculator plugins in MarvinSketch, version 19.1.0, 2019, developed by ChemAxon (<u>http://www.chemaxon.com</u>). pK_i values were determined from [³H]-CCR2-RA-[*R*] displacement assays in U2OS-CCR2 and are shown in Tables 1 – 3.

Figure S3. Characterization of compounds 39 and 43 as potential inverse agonists in hCCR2. In absence of CCL2, compounds 39 and 43 (1 μ M) decrease basal [³⁵S]GTP γ S binding levels by 6.9 \pm 0.6% and 8.2 \pm 1.5%, respectively. Data are presented as normalized mean \pm SEM values of four experiments performed in triplicate, in which 0% represents basal activity and 100% represents [³⁵S]GTP γ S binding after stimulation with 100 nM CCL2.

Figure S4. Docking of compounds **8**, **39**, **40** and **43**. Overlay showing the proposed binding mode of compounds **8** (green), **39** (yellow), **40** (pink) and **43** (orange) in hCCR2b. Model of hCCR2 is based on the crystal structure of CCR2 (PDB 5T1A).¹

Figure S5. ¹H NMR of compound 39, with peaks assigned.

Figure S6. ¹³C NMR of compound **39**, with peaks assigned.

Figure S7. ¹³C NMR-APT of compound **39**, with peaks assigned.

Compound	R ³	R ¹
4aa	Me	3-Cl
4ba	cPr	3-C1
4bb	cPr	Н
4bc	cPr	2-Me
4bd	cPr	2-Cl
4be	cPr	2-OMe
4bf	cPr	3-Me
4bg	cPr	3-F
4bh	cPr	3-Br
4bi	cPr	3-I
4bj	cPr	3-OMe
4bk	cPr	3-CF3
4bl	cPr	4-Me
4bm	cPr	4-F
4bn	cPr	4-Cl
4bo	cPr	4-Br
4bp	cPr	4-OMe
4bq	cPr	3,4-diCl
4ca	Et	3-C1
4da	Pr	3-C1
4ea	<i>i</i> Pr	3-C1
4eq	<i>i</i> Pr	3,4-diCl
4er	<i>i</i> Pr	2,3-diCl
4es	<i>i</i> Pr	2,5-diCl
4et	<i>i</i> Pr	3,5-diCl
4eu	<i>i</i> Pr	3,5-diBr
4ev	<i>i</i> Pr	3-Br, 4-Cl
4fa	Bu	3-C1
4ga	2-EtBu	3-C1
4ha	Pent	3-C1
4ia	cPent	3-C1
4ja	Hex	3-C1
4ka	Hept	3-C1
4la	Ph	3-C1
4ma	4-MePh	3-C1
4na	CH ₂ CH ₂ Ph	3-Cl

 Table S1. List of intermediate compounds 4aa-na, 4bb-bq, 4eq-ev.

Table S2. Functional activity of TAK-779 and CCR2-RA-[R] in hCCR5, using a CCL3induced β -arrestin recruitment assay.

Compound	$pIC_{50} \pm SEM (IC_{50}, nM)$	Hill slope
TAK-779	8.32 ± 0.17 (6)	-1.1 ± 0.1
CCR2-RA-[<i>R</i>]	6.15 ± 0.02 (703)	$-2.4 \pm 0.2^{**}$

Data represent the mean \pm standard error of the mean (SEM) of three independent experiments performed in duplicate. **p < 0.01 (p = 0.0038) versus Hill slope (*n*_H) of TAK-779, determined with a two-tailed, unpaired Student's t-test.

Table S3. Functional activity of compounds **8**, **39** and **43** in hCCR2, using a CCL2-induced β -arrestin recruitment assay.

Compound	pIC50 ± SEM (IC50, nM)	Hill slope
8	7.99 ± 0.01 (10)	-2.7 ± 0.2
39	7.68 ± 0.05 (21)	-2.5 ± 0.2
43	8.40 ± 0.01 (4)	-3.4 ± 0.4

Data represent the mean \pm standard error of the mean (SEM) of three independent experiments performed in duplicate.

References:

1. Zheng, Y.; Qin, L.; Ortiz Zacarías, N. V.; de Vries, H.; Han, G. W.; Gustavsson, M.; Dabros, M.; Zhao, C.; Cherney, R. J.; Carter, P.; Stamos, D.; Abagyan, R.; Cherezov, V.; Stevens, R. C.; IJzerman, A. P.; Heitman, L. H.; Tebben, A.; Kufareva, I.; Handel, T. M. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. *Nature* **2016**, 540, 458-461.