Supporting Information

Direct and Selective Photocatalytic Oxidation of CH₄ to Oxygenates with O₂ on cocatalysts/ZnO at Room Temperature in Water

Hui Song, Xianguang Meng, Shengyao Wang, Wei Zhou, Xusheng Wang, Tetsuya Kako, Jinhua Ye*

Figure S1. Schematic diagram (a) and picture (b) of batch-reactor system.

Figure S2. The spectrum of the incident light source and UV-vis spectrum of 0.1wt% Au/ZnO.

CH₃OOH formation:

$$CH_4 \xrightarrow{-(e^- + H^+)} CH_3$$

$$O_2 \xrightarrow{+ (e^- + H^+)} OOH$$

(Note: O₂ reduction process may also undergo 2 e⁻ or 4 e⁻ reduction reaction)

. . . .

$$CH_3 + OOH \longrightarrow CH_3OOH$$

CH₃OH & HCHO formation:

$$\begin{array}{rcl} & & & +2(e^{-}+H^{+}) \\ \hline & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Figure S3. The processes of electron and proton transfer in the formation of CH₃OOH, CH₃OH and HCHO in photocatalytic CH₄ oxidation with O₂.

As shown in Figure S3, formation of one CH₃OOH molecule only needs the oxidation of CH₄ by one photo-generated hole. Then, two electron transfers are required for reduction of one CH₃OOH molecule into one CH₃OH molecule. A further two-charge transfer process should be involved for oxidation of one CH₃OH molecule into one HCHO molecule. Therefore, the AQY = Number of reacted electrons×100%/Number of incident photons = [N(CH₃OOH) ×1+N(CH₃OH)×3+N(HCHO)×5]/N(Photons), where N(CH₃OOH), N(CH₃OH) and N(HCHO) represent the number of formed CH₃OOH, CH₃OH and HCHO molecules, respectively, and N(Photons) represents the number of incident photons.

Figure S4. Calibration curve for the quantification of CH₃OH by ¹H NMR. As the number of protons of methyl in CH₃OH and CH₃OOH molecules is same, quantification of CH₃OOH is calibrated by the same curve as that of CH₃OH.

Figure S5. Calibration curve for the quantification of HCHO by colorimetric method.

Table S1. Photocatalytic activity of catalysts for direct oxidation of CH₄ using O₂ as the oxidant in water. Reaction conditions: 10 mg catalyst, 2 MPa CH₄, 0.1 MPa O₂, 100 mL water, 25 ± 2 °C reaction temperature, 2 h reaction time, light source: 300 W Xe lamp, $300 < \lambda < 500$ nm, light intensity 100 mW cm⁻².

Entry	Catalyst	Ar	Amount of product (µmol)				Liquid	All	Liquid
		CH ₃ OOH	CH ₃ OH	НСНО	CO	CO ₂	products	products	product
			-				(µmor)	(µmoi)	(%)#
1	ZnO	0	0	25.2	0.04	1.2	25.2	26.4	95.3
2	TiO ₂ (P25)	0	0	43.0	0.06	6.5	43.0	49.6	86.7
3	TiO_2 (anatase)	0	0	8.8	0	1.6	8.8	10.4	84.6
4	TiO ₂ (rutile)	0	0	3.5	0	0.8	3.5	4.3	81.4
5	SrTiO ₃	0	0	0	0	0.2	0.2	0.2	-
6	WO ₃	0	0	0	0	0.2	0.2	0.2	-
7	BiVO ₄	0	0	0	0	0	0	0	-
8	BiOCl	0	0	0	0	0	0	0	-
9	CdS	0	0	0	0	0	0	0	-
10	C_3N_4	0	0	0	0	0	0	0	-

#Liquid product selectivity (%) = mol of (CH₃OOH + CH₃OH + HCHO) $\times 100$ / total mol of products.

Catalyst	$S_{BET} (m^2 g^{-1})$	Metal loading (wt%)
ZnO	28.5	-
TiO ₂ (P25)	568	-
0.1 wt% Pt/ZnO	27.5	0.12
0.1 wt% Pd/ZnO	27.1	0.11
0.1% wt Au/ZnO	27.7	0.12
0.1 wt% Ag/ZnO	27.3	0.10
0.1 wt% Pt/TiO ₂ (P25)	55.8	0.12
0.1 wt% Pd/TiO ₂ (P25)	56.2	0.11
0.1 wt% Au/TiO ₂ (P25)	56.1	0.12
0.1 wt% Ag/TiO ₂ (P25)	55.9	0.10

Table S2. Physicochemical properties of ZnO- and TiO₂-based photocatalysts.

Figure S6. (a) Transmission electron microscopy (TEM) image, (b) scanning TEM (STEM) image, (c) X-ray diffraction (XRD) pattern and (d) high resolution TEM (HRTEM) image of ZnO nanoparticles.

The transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) images of ZnO showed that the particle size of ZnO is in the range of 15-50 nm. The X-ray diffraction (XRD) pattern and high resolution TEM (HRTEM) image of ZnO showed that they were highly crystalline with wurtzite phase (JCPDS No. 36-1451).

Figure S7. TEM images of 0.1 wt% Pt/ZnO (A), 0.1 wt% Pd/ZnO (B), 0.1 wt% Au/ZnO (C), and 0.1 wt% Ag/ZnO (D). Metal nanoparticles are marked with red circles.

As shown in Figure S4, the average size of Pt, Pd, Au, and Ag nanoparticles is around 2 nm, 3 nm, 5 nm, and 10 nm, respectively.

Figure S8. ¹H NMR spectrum of the liquid product obtained from photocatalytic methane oxidation over 0.1 wt% Au/ZnO. Reaction conditions: 10 mg 0.1 wt% Au/ZnO, 100 mL water, 2 MPa CH₄, 0.1 MPa O₂, 2 h reaction time, 25±2 °C reaction temperature, light source: 300 W Xe lamp, $300 < \lambda < 500$ nm, light intensity 100 mW cm⁻². (CH₃OOH, δ = 3.74 ppm; CH₃OH, δ = 3.23 ppm; DMSO, δ = 2.60ppm)

Catalyst	Oxidant	Reaction condition	Liquid oxyg	Ref.	
			Product	Selectivity (%)	-
0.1 wt% Au/ZnO	O ₂	<u>Photocatalysis</u> 10 mg catalyst, 2.0 MPa CH ₄ , 0.1 MPa bar O ₂ ,	Total: 251 μmol CH ₃ OOH + CH ₃ OH + HCHO	95	This work
		25 °C, 2h			
0.33 wt% FeO _x /TiO ₂	H ₂ O ₂	Photocatalysis 10 mg catalyst, 70 μmol CH ₄ , 8 μmol H ₂ O ₂ , 25 °C, 3h	Total: 11.4 μmol CH ₃ OH + CH ₃ CH ₂ OH	97	Nat. Catal. 2018, 1, 889- 896.
Au-Pd colloids	$\begin{array}{c} O_2 + \\ H_2 O_2 \end{array}$	<u>Thermocatalysis</u> 6.6 μmol of metal, 30 bar CH ₄ , 5 bar O ₂ , 50 μmol H ₂ O ₂ , 23 °C, 0.5h	Total: 5.2 μmol. CH ₃ OOH + CH ₃ OH	96	<i>Science</i> 2017, <i>358</i> (6360), 223-227
0.6 wt% Rh- TiO ₂	$\begin{array}{c} \text{CO} + \\ \text{O}_2 \end{array}$	Thermocatalysis20 mg catalyst,20 bar CH4, 2 bar O2, 5 bar CO,150 °C, 3h	Total: 4.6 μmol CH ₃ OH	100	Nature 2017, 551, 605-608
0.3 wt% Rh/ ZrO ₂	H ₂ O ₂	<u>Thermocatalysis</u> 30 mg catalyst, 30 bar 95% CH ₄ /He, 5 mmol H ₂ O ₂ , 70 °C, 0.5h	Total: 1.1 μmol CH ₃ OOH + CH ₃ OH	78	J. Am. Chem. Soc. 2017, 139 (48), 17694-17699.
FeN4/GN	H ₂ O ₂	Thermocatalysis 50 mg catalyst, 20 bar CH ₄ , 49.5 mmol H ₂ O ₂ , 25 °C, 10 h	Total: 118 μmol CH ₃ OH + CH ₃ OOH + HCOOH	94	<i>Chem</i> 2018, <i>4</i> (8), 1902- 1910.

Table S3. Comparison of catalytic activity in oxidation of methane to liquid oxygenates.

Table S4. The amount of formed liquid oxygenates molecules and the number of incident photons in photocatalytic CH_4 oxidation over 0.1 wt% Au/ZnO for 6 h, as well as the measurement of AQY.

Wavelength	Photon	Amount	Amount of product (µmol)				
(nm)	number*	CH ₃ OOH	CH ₃ OH	НСНО			
368 (λ _{1/2} =23.8 nm)	1.95×10 ²¹	41.5	24.8	52.6	11.7		

*Light intensity: 0.0032 W/cm^2 , irradiation area: 15.2 cm^2 , irradiation time: 6 h. \$AQY = $(41.5+24.8\times3+52.6\times5)\times10^{-6}\times6.02\times10^{23}\times100/1.95\times10^{21}$. **Table S5.** Photocatalytic activity of 0.1 wt% Pt, Pd, Au or Ag/ZnO catalysts for oxidation of methane using O₂ as oxidant. Reaction conditions: 10 mg catalyst, 2 MPa CH₄, 0.1 MPa O₂, 100 mL water, 25 ± 2 °C reaction temperature, 4 h reaction time; light source, 300 W Xe lamp, 300 < λ < 500 nm, light intensity 100 mW cm⁻².

Entry	Catalyst	Amount of product (µmol)					Liquid	All	Liquid
		CH ₃ OOH	CH ₃ OH	НСНО	СО	CO ₂	products (µmol)	products (µmol)	product selectivity (%)
1	0.1 wt% Pt/ZnO	117.6	85.3	113.2	1.3	35.7	316.1	353.1	89.5
2	0.1 wt% Pd/ZnO	35.5	108.2	122.5	0.1	35.5	266.2	301.8	88.2
3	0.1 wt% Au/ZnO	170.1	58.6	104.9	1.25	28.4	333.6	363.3	91.8
4	0.1 wt% Ag/ZnO	48.7	23.0	140.0	1.4	12.9	211.7	226.0	93.6

Table S6. Photocatalytic activity of 1.0 wt% Pt, Pd, Au or Ag/ZnO catalysts for oxidation of methane using O₂ as oxidant. Reaction conditions: 10 mg catalyst, 2 MPa CH₄, 0.1 MPa O₂, 100 mL water, 25 ± 2 °C reaction temperature, 2 h reaction time; light source, 300 W Xe lamp, $300 < \lambda < 500$ nm, light intensity 100 mW cm⁻².

Entry	Catalyst	Amount of product (µmol)				Liquid	All	Liquid	
		СН ₃ ООН	CH₃OH	НСНО	СО	CO ₂	products (µmol)	products (µmol)	selectivity (%)
1	1.0 wt% Pt/ZnO	52.3	77.2	82.9	0.2	32.9	212.4	245.5	86.5
2	1.0 wt% Pd/ZnO	33.6	114.1	79.7	0.1	30.9	227.4	258.4	88.0
3	1.0 wt% Au/ZnO	107.2	85.3	64	0.1	13.2	256.5	269.8	95.1
4	1.0 wt% Ag/ZnO	45.3	30.3	113.8	0.4	8.2	189.4	198.0	95.7

Table S7. Conversion of CH₄ over 0.1 wt% Au/ZnO for 2 and 4 hours. Reaction conditions: 10 mg catalyst, 2 MPa CH₄, 0.1 MPa O₂, 100 mL water, 25 ± 2 °C reaction temperature; light source, 300 W Xe lamp, $300 < \lambda < 500$ nm, light intensity 100 mW cm⁻².

Reaction time (h)	2	4
Total amount of all products (µmol)*	262.9	363.3
CH ₄ conversion (%)#	0.3	0.4

*The products include CH₃OOH, CH₃OH, HCHO, CO and CO₂.

#CH₄ conversion = total amount of all products \times 100% / amount of CH₄ introduced. The working volume of reactor is 100 mL, so the amount of CH₄ = 81.6 mmol.

Figure S9. Product yields in photocatalytic oxidation of methanol. Reaction conditions: 10 mg 0.1 wt% Au/ZnO, 0.1 MPa O₂, 100 mL of 100 mM CH₃OH, 25±2 °C reaction temperature, 1 h reaction time; light source, 300 W Xe lamp, $300 < \lambda < 500$ nm, light intensity 100 mW cm⁻².

Figure S10. EPR spectra of cocatalysts/ZnO under light irradiation for 10 min in aqueous solution. DMPO was added into the reaction mixture as the radical trapping agent.

Figure S11. OH production of cocatalyst/ZnO and cocatalyst/TiO₂ (P25) photocatalysts.

Figure S12. Calculation models. The diagram of CH_4 dissociation on the surface of (a) ZnO (101) and (b) TiO₂ (101). Zn, Ti, O, H and C atoms are shown in blue, purple, red, white and gray, respectively.

According to the surface configurations, the reaction sites of oxygen atom at surface lost one to third coordination number with cations in TiO_2 (101) models, while one half coordination number was remained for surface oxygen atoms in ZnO (101) models. Thus, the more unsaturation of surface oxygen atom as reaction site provides stronger interaction with hydrogen to lower the energy barrier of CH₄ dissociation.

Figure S13. GC-MS spectra of CO₂ generated over 0.1 wt% Au/ZnO with ${}^{18}\text{O}_2 + \text{H}_2{}^{16}\text{O}$ or ${}^{16}\text{O}_2 + \text{H}_2{}^{18}\text{O}$ in photocatalytic CH₄ oxidation.

As shown in Figure S13, when ¹⁸O₂ and H₂¹⁶O was used as the reactants, the products C¹⁶O¹⁶O (m/z=44) and C¹⁶O¹⁸O (m/z=46) accounted for 96% and 4%, respectively, while no product C¹⁸O¹⁸O (m/z=48) was detected. When ¹⁶O₂ and H₂¹⁸O was used as the reactants, the products C¹⁶O¹⁶O (m/z=44), C¹⁶O¹⁸O (m/z=46) and C¹⁸O¹⁸O (m/z=48) accounted for 5%, 35% and 60%, respectively. These results demonstrate that the O atoms of CO₂ were mainly from H₂O. Thus, the overoxidation of liquid oxygenates to CO₂ was mainly dominated by 'OH derived from photooxidation of H₂O.